• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing and Modeling Mobile Networks User Traffic at Millisecond Level

Compartir
Ficheros
wintech23-madrid-dataset.pdf (1.375Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1743
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Férnandez Pérez, Pablo; Fiandrino, Claudio; Widmer, Joerg
Fecha
2023-10-06
Resumen
The availability of datasets has been instrumental to drive advances in several disciplines like computer vision, image processing, and natural language processing. However, in the context of mobile traffic, data is often not available because of diverse reasons including data sensitivity, legal considerations and business competition. The lack of dataset availability restrains the research advance at large. In this paper, we make a twofold contribution. On the one hand, we make available a large dataset of mobile traffic from multiple Base Stations (BSs). The key distinct feature of the dataset is in the nature of the data, which is based on real LTE traffic information decoded from control channel information at the millisecond level. On the other hand, we carry out an in-depth characterization of user traffic and study how widely adopted probability distributions for mobile traffic do apply at short-term scales. Our analysis shows that mobile data traffic exhibits self-similarity and the number of Radio Resource Control (RRC) connected users exhibits a bi-modal distribution. Overall, our contribution key to verify and reproduce research outcomes as well as driving advances of Artificial Intelligence (AI)/Machine Learning (ML) applied to mobile networks.
Compartir
Ficheros
wintech23-madrid-dataset.pdf (1.375Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1743
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!