• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compressive Spectral Video Sensing Using The Convolutional Sparse Coding Framework CSC4D

Compartir
Ficheros
CCSV4DcbarajasV2.pdf (11.01Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1727
DOI: 10.1016/j.jvcir.2023.103782
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Barajas, Crisóstomo; Ramirez, Juan Marcos; Martinez Torre, Jose Ignacio; Arguello, Henry
Fecha
2023-04-01
Resumen
Spectral Videos (SV) contain a scene’s spatial–spectral-time information. Just as with Spectral Images (SI), SVs require expensive sensing hardware, storage plus high frame ratios. Although Super Resolution techniques improve the quality of low-resolution SVs, Compressive Spectral Video Sensing (CSVS) senses high-quality SVs by extending the Compressive Sensing Image (CSI) techniques. CSI uses the universal Sparse Signal Representation (SSR) model for SVs and SIs despite the limited quality of the recovered signals. On the other hand, dictionaries synthesis models are used successfully for representing SIs, SVs, and in CSI. This work proposes the 4D convolutional sparse representation (CSC4D) for recovering full-resolution SV from CSVS measurements. It is based on a multidimensional formulation of the CSC model, profiting from its robustness without additional optical flow information. Extensive numerical simulations (two CSI architectures and noise models) show that the proposed CSC4D+CSVS improves the state-of-the-art in both quality and border sharpness by up to 1.5 dB.
Compartir
Ficheros
CCSV4DcbarajasV2.pdf (11.01Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1727
DOI: 10.1016/j.jvcir.2023.103782
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!