• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

RAPID: Retrofitting IEEE 802.11ay Access Points for Indoor Human Detection and Sensing

Compartir
Ficheros
Articulo principal (19.93Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1713
DOI: DOI 10.1109/TMC.2023.3291882
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Pegoraro, Jacopo; Lacruz, Jesús Omar; Meneghello, Francesca; Bashirov, Enver; Rossi, Michele; Widmer, Joerg
Fecha
2023-07-03
Resumen
In this work we present RAPID, the first joint communication and radar system based on next-generation IEEE 802.11ay WiFi networks operating in the 60 GHz band. Unlike existing approaches for human sensing at millimeter-wave frequencies, which rely on special-purpose radars, RAPID achieves radar-level sensing accuracy with IEEE 802.11ay access points, thus avoiding the burden of installing ad-hoc sensors. RAPID enables contactless human sensing applications, such as people tracking, Human Activity Recognition (HAR), and person identification without requiring modifications to the standard packet structure. Specifically, we leverage IEEE 802.11ay beam training to accurately localize and track multiple individuals within the same environment. Then, we propose a new way of using beam tracking to extract micro-Doppler signatures from the time-varying Channel Impulse Response (CIR) estimated from reflected packets. Such signatures are fed to a deep learning classifier to perform HAR and person identification. RAPID is implemented on a cutting-edge IEEE 802.11ay-compatible FPGA platform with phased antenna arrays, and evaluated on a large dataset of CIR measurements. It is robust across different environments and subjects, and outperforms state-of-the-art sub-6 GHz WiFi sensing techniques. Using two access points, RAPID reliably tracks multiple subjects, reaching HAR and person identification accuracies of 94% and 90%, respectively.
Compartir
Ficheros
Articulo principal (19.93Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1713
DOI: DOI 10.1109/TMC.2023.3291882
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!