• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

PRV-FCM: An extension of fuzzy cognitive maps for prescriptive modeling

Compartir
Ficheros
An_extension_of_the_fuzzy_cognitive_maps_for_prescriptive_modeling.pdf (722.2Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1711
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2023.120729
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Hoyos, William; Aguilar, Jose; Toro, Mauricio
Fecha
2023-06-15
Resumen
In this paper, we present a methodology based on fuzzy cognitive maps (FCMs) and metaheuristic algorithms to generate prescriptive models, called PRescriptiVe FCM (PRV-FCM). FCMs are a set of concepts interrelated that describe the behavior of a system. This kind of modeling has been extensively used to build descriptive and predictive models. We propose an extension of FCMs to develop prescriptive models and support decision-making in different domains. This adaptation characterizes FCMs, using system and prescriptive concepts. After that, it uses a metaheuristic algorithm (in this case, we use a genetic algorithm) to optimize prescriptive concepts based on system concepts and the stability of the FCM. Our proposed prescriptive approach was implemented and tested in four scenarios where it demonstrated its capability to find solutions that lead to desired values for the variables of interest. Specifically, no significant differences were found between the values of the prescriptive variables in the datasets and those generated by PRV-FCM.
Compartir
Ficheros
An_extension_of_the_fuzzy_cognitive_maps_for_prescriptive_modeling.pdf (722.2Kb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1711
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2023.120729
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!