Mostrar el registro sencillo del ítem

dc.contributor.authorApostolakis, Nikolaos 
dc.contributor.authorChatzieleftheriou, Livia Elena 
dc.contributor.authorBega, Dario 
dc.contributor.authorGramaglia, Marco 
dc.contributor.authorBanchs, Albert 
dc.date.accessioned2023-06-08T16:21:21Z
dc.date.available2023-06-08T16:21:21Z
dc.date.issued2023-05-08
dc.identifier.issn1558-1896es
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1703
dc.description.abstractDigital Twins (DTs) create fully-synchronized virtual representations of real-world systems, which can serve as interactive counterparts for artificial intelligence (AI) and machine learning (ML) algorithms, and hold significant importance for the upcoming 6G mobile networks. In this paper, we argue that DTs can improve all phases of the intelligent networks' workflow, due to their adaptability and scalability properties that would allow them to transparently integrate new AI/ML algorithms faster, more scalably, and more precisely. Our contribution is two-fold: first, we propose three specific application scenarios of DT-enhanced network architectures in the context of 6G. Second, using open-source tools, we implement and evaluate in detail one of them. Our results demonstrate that our DT reflects the characteristics of the physical object, successfully and scalably twinning it, and adapting to changing contextual conditions.es
dc.language.isoenges
dc.publisherIEEEes
dc.titleDigital Twins for Next-Generation Mobile Networks: Applications and Solutionses
dc.typemagazinees
dc.journal.titleIEEE Communications Magazinees
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.identifier.doi10.1109/MCOM.001.2200854es
dc.page.final7es
dc.page.initial1es
dc.relation.projectNameDAEMON (Network intelligence for aDAptive and sElf-Learning MObile Networks)es
dc.subject.keyword6G mobile communicationes
dc.subject.keywordBehavioral scienceses
dc.subject.keywordReal-time systemses
dc.subject.keywordDigital twinses
dc.subject.keywordData modelses
dc.subject.keywordTraininges
dc.subject.keywordPredictive modelses
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem