Mostrar el registro sencillo del ítem

dc.contributor.authorAkem, Aristide Tanyi-Jong 
dc.contributor.authorBütün, Beyza 
dc.contributor.authorGucciardo, Michele 
dc.contributor.authorFiore, Marco 
dc.date.accessioned2023-05-26T17:18:26Z
dc.date.available2023-05-26T17:18:26Z
dc.date.issued2023-06-19
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1693
dc.description.abstractRecent endeavours have enabled the integration of trained machine learning models like Random Forests in resource-constrained programmable switches for line rate inference. In this work, we first show how packet-level information can be used to classify individual packets in production-level hardware with very low latency. We then demonstrate how the newly proposed Flowrest framework improves classification performance relative to the packet-level approach by exploiting flow-level statistics to instead classify traffic flows entirely within the switch without considerably increasing latency. We conduct experiments using measurement data in a real-world testbed with an Intel Tofino switch and shed light on how Flowrest achieves an F1-score of 99% in a service classification use case, outperforming its packet-level counterpart by 8%.es
dc.description.sponsorshipEuropean Union Horizon 2020 research and innovation program under grant agreement no. 101017109 “DAEMON”es
dc.description.sponsorshipEuropean Union Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. 860239 “BANYAN”es
dc.description.sponsorshipCHIST-ERA grant no. CHIST-ERA-20-SICT- 001 “ECOMOME”, via grant PCI2022-133013 of Agencia Estatal de Investigaciónes
dc.language.isoenges
dc.titleShowcasing In-Switch Machine Learning Inferencees
dc.typeconference objectes
dc.conference.date19-23 June 2023es
dc.conference.placeMadrid, Spaines
dc.conference.titleIEEE International Conference on Network Softwarization*
dc.event.typeconferencees
dc.pres.typedemoes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101017109/EU/Network intelligence for aDAptive and sElf-Learning MObile Networks/DAEMONes
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/860239/EU/Big dAta aNalYtics for radio Access Networks/BANYANes
dc.relation.projectNameBANYAN (Big dAta aNalYtics for radio Access Networks)es
dc.relation.projectNameDAEMON (Network intelligence for aDAptive and sElf-Learning MObile Networks)es
dc.relation.projectNameECOMOME (Energy COnsumption Measurements and Optimization in Mobile nEtworks)es
dc.description.awardsBest Demo Award
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem