dc.identifier.citation | [1] X. Li, D. Zhang, T. Zhang, Q. Ji, and B. Lucey, “Awareness, energy consumption and pro-environmental choices of Chinese households,” J. Clean. Prod., vol. 279, p. 123734, 2021. [2] H. Lo, S. Blumsack, P. Hines, and S. Meyn, “Electricity rates for the zero marginal cost grid,” Electr. J., vol. 32, no. 3, pp. 39–43, 2019. [3] E. Sarker et al., “Progress on the demand side management in smart grid and optimization approaches,” Int. J. Energy Res., vol. 45, no. 1, pp. 36–64, 2021. [4] Y. H. Lin and Y. C. Hu, “Residential consumer-centric demand-side management based on energy disaggregation-piloting constrained swarm intelligence: Towards edge computing,” Sensors (Switzerland), vol. 18, no. 5, pp. 1–13, 2018. [5] K. Kotilainen, “Energy Prosumers’ Role in the Sustainable Energy System,” in Affordable and Clean Energy. Encyclopedia of the UN Sustainable Development Goals, Springer, Cham, 2021, pp. 507–520. [6] T. R. Bajracharya, S. R. Shakya, and A. Sharma, “Energy and environment: sustainability and security,” Handb. Energy Environ. Secur., pp. 469–480, Jan. 2022. [7] P. K. Ray, S. R. Mohanty, and N. Kishor, “Small-signal analysis of autonomous hybrid distributed generation systems in presence of ultracapacitor and tie-line operation,” J. Electr. Eng., vol. 61, no. 4, pp. 205–214, 2010. [8] S. M. Moghaddas-Tafreshi, M. Jafari, S. Mohseni, and S. Kelly, “Optimal operation of an energy hub considering the uncertainty associated with the power consumption of plug-in hybrid electric vehicles using information gap decision theory,” Int. J. Electr. Power Energy Syst., vol. 112, pp. 92–108, 2019. [9] N. Nikmehr and S. Najafi Ravadanegh, “Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1648–1657, 2015. [10] F. Bandeiras, E. Pinheiro, M. Gomes, P. Coelho, and J. Fernandes, “Review of the cooperation and operation of microgrid clusters,” Renew. Sustain. Energy Rev., vol. 133, no. March, p. 110311, 2020. [11] S. Yassine, E. K. Najib, and L. Fatima, “A Survey: Centralized, Decentralized, and Distributed Control Scheme in Smart Grid Systems,” 7th Mediterr. Congr. Telecommun. 2019, C. 2019, pp. 1–11, 2019. [12] A. Abhishek, A. Ranjan, S. Devassy, B. Kumar Verma, S. K. Ram, and A. K. Dhakar, “Review of hierarchical control strategies for DC microgrid,” IET Renew. Power Gener., vol. 14, no. 10, pp. 1631–1640, 2020. [13] L. Ahmethodzic and M. Music, “Comprehensive review of trends in microgrid control,” Renew. Energy Focus, vol. 38, pp. 84–96, 2021. [14] S. Sen and V. Kumar, “Microgrid control: A comprehensive survey,” Annu. Rev. Control, vol. 45, no. April, pp. 118–151, 2018. [15] J. Aguilar, J. Giraldo, M. Zapata, A. Jaramillo, L. Zuluaga, and M. R-Moreno, “Autonomous Cycle of Data Analysis Tasks for Scheduling the Use of Controllable Load Appliances using Renewable Energy,” Proc. Intl. Conf. Comput. Sci. Comput. Intell., 2021. [16] P. Palensky and D. Dietrich, “Demand side management: Demand response, intelligent energy systems, and smart loads,” IEEE Trans. Ind. Informatics, vol. 7, no. 3, pp. 381–388, 2011. [17] H. J. Touma et al., “Energy management system of microgrid: Control schemes, pricing techniques, and future horizons,” Int. J. Energy Res., vol. 45, no. 9, pp. 12728–12739, 2021. [18] A. Abou El-Ela, D. Gado, T. Fetouh, A. Mansour, and S. Moussa, “Power Flow Management and Control of Energy Storage System for Electric Vehicles in Smart Girds,” ERJ. Eng. Res. J., vol. 44, no. 3, pp. 263–271, 2021. [19] D. Mathur, N. Kanwar, and S. K. Goyal, “Impact of electric vehicles on community microgrid,” AIP Conf. Proc., vol. 2294, no. December, 2020. [20] J. Aguilar, A. Garces-Jimenez, M.D. R-Moreno, Rodrigo García, "A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings", Renewable and Sustainable Energy Reviews, Vol.151, 2021. [21] J Aguilar, O Buendia, A Pinto, J Gutiérrez, “Social learning analytics for determining learning styles in a smart classroom”, Interactive Learning Environments, Vol. 30, no.2, pp. 245-261, 2022. [22] J. Aguilar, C. Salazar, H. Velasco, J. Monsalve-Pulido, E. Montoya. "Comparison and Evaluation of Different Methods for the Feature Extraction from Educational Contents" Computation, vol. 8, no. 2, 2020. [23] J. Terán, J. Aguilar, M. Cerrada, “Integration in industrial automation based on multi-agent systems using cultural algorithms for optimizing the coordination mechanisms”, Computers in Industry, Vol. 91, pp. 11-23, 2017. [24] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J. Deneubourg, “Adaptive Task Allocation Inspired by a Model of Division of Labor in Social Insects,” Biocomput. Emergent Comput., no. 8, pp. 36–45, 1997. [25] D. Teruya, B. Indurkhya, T. Maksaki, and H. Nakajo, “Autonomous Distributed System Based on Behavioral Model of Social Insects,” in Int’l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA’18, 2018, pp. 289–295. [26] Z. Ding, Y. Huang, H. Yuan, and H. Dong, “Introduction to Reinforcement Learning,” in Deep Reinforcement Learning, Singapore: Springer Singapore, 2020, pp. 47–123. [27] E. Bonabeau, “Fixed Response Thresholds and the Regulation of Division of Labor in Insect Societies,” Bull. Math. Biol., vol. 60, no. 4, pp. 753–807, 1998. [28] G. Theraulaz, E. Bonabeau, J. Deneubourg, D. P. Animale, U. P. Sabatier, and D. Narbonne, “Response threshold reinforcement and division of labour in insect societies,” in Proc. R. Soc. Lond. B, 1998, no. 1393, pp. 327–332. [29] P. Anderson, A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Appar. Syst., vol. PAS-102, no. 12, pp. 3791–3795, 1983. [30] L. Wang, D. Lee, W. Lee, Z. Chen, “Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link,” J. Power Sources, vol. 185, no. 2, pp. 1284–1292, 2008. [31] S. Mousavi, M. Nikdel, “Various battery models for various simulation studies and applications,” Renew. Sustain. Energy Rev., vol. 32, pp. 477–485, 2014. [32] M. Soltani et al., “Environmental, economic, and social impacts of geothermal energy systems,” Renew. Sustain. Energy Rev., vol. 140, no. May 2020, p. 110750, 2021. [33] S. Zarrouk, H. Moon, “Efficiency of geothermal power plants: A worldwide review,” Geothermics, vol. 51, pp. 142–153, 2014, [Online]. Available: http://dx.doi.org/10.1016/j.geothermics.2013.11.001 [34] E. Espe, V. Potdar, and E. Chang, “Prosumer Communities and Relationships in Smart Grids : A Literature Review , Evolution and Future Directions,” Energies, vol. 11, no. 10, 2018. [35] B. Khan et al., “Analysing integration issues of the microgrid system with utility grid network,” Int. J. Emerg. Electr. Power Syst., vol. 22, no. 1, pp. 113–127, 2021. [36] P. Domański, “Control Performance Assesment: Theoretical Analyses and Industrial Practice”. Springer, 2020. [37] D., Diagne, P. Lauret, “Outputs and error indicators for solar forecasting models”. Proc. World Renewable Energy Forum, pp. 13-17, 2012. [38] B. Alagoz, A. Kaygusuz, A. Karabiber, “A user-mode distributed energy management architecture for smart grid applications”, Energy, vol. 44, pp. 167-177, 2012. [39] J. Aguilar, M. Cerrada, F. Hidrobo, “A Methodology to Specify Multiagent Systems”. Lecture Notes in Computer Science, vol. 4496, pp. 92–101, 2007. [40] J. Aguilar, I. Bessembel, M. Cerrada, F. Hidrobo, F. Narciso, “Una Metodología para el Modelado de Sistemas de Ingeniería Orientado a Agentes Inteligencia Artificial”. Revista Iberoamericana de Inteligencia Artificial, vol. 12, pp. 39- 60, 2008. [41] M. Alam, S. Chakrabarti, X. Liang, "A Benchmark Test System for Networked Microgrids," IEEE Transactions on Industrial Informatics, vol. 16, pp. 6217-6230, 2020. | es |