Mostrar el registro sencillo del ítem
Understanding the Price of Data in Commercial Data Marketplaces
dc.contributor.author | Andres, Santiago | |
dc.contributor.author | Iordanou, Costas | |
dc.contributor.author | Laoutaris, Nikolaos | |
dc.date.accessioned | 2023-02-20T18:08:54Z | |
dc.date.available | 2023-02-20T18:08:54Z | |
dc.date.issued | 2023-04-03 | |
dc.identifier.citation | [1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man ́e, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal- war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi ́egas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale Machine Learning on Heterogeneous Systems, 2015. Software available from tensorflow.org. [2] Advaneo. Access to the world of data. https://www. advaneo-datamarketplace.de/. Last accessed: Oct’22 [3] A. Agarwal, M. Dahleh, and T. Sarkar. A Marketplace for Data: An Algorithmic Solution. In Proc. of ACM EC, 2019. [4] S. Andr ́es Azcoitia and N. Laoutaris. A Survey of Data Marketplaces and their Business Models. SIGMOD Record, 2022. [5] S. Andr ́es Azcoitia, C. Iordanou, N. Laoutaris, “Measuring the Price of Data in Commercial Data Mar | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12761/1672 | |
dc.description.abstract | A large number of Data Marketplaces (DMs) have appeared in the last few years to help owners monetize their data, and data buyers optimize their marketing campaigns, train their ML models, and facilitate other data-driven decision processes. In this paper, we present a first of its kind measurement study of the growing DM ecosystem, focused on understanding which features of data are actually driving their prices in the market. We show that data products listed in commercial DMs may cost from few to hundreds of thousands of US dollars. We analyze the prices of different categories of data and show that products about telecommunications, manufacturing, automotive, and gaming command the highest prices. We also develop classifiers for comparing data products across different DMs, as well as a regression analysis for revealing features that correlate with data product prices of specific categories, such as update rate or history for financial data, and volume and geographical scope for marketing data. | es |
dc.description.sponsorship | Horizon Europe | es |
dc.description.sponsorship | Ministry of Economic Affairs and Digital Transformation | es |
dc.description.sponsorship | European Union-NextGenerationEU/PRTR | es |
dc.language.iso | eng | es |
dc.title | Understanding the Price of Data in Commercial Data Marketplaces | es |
dc.type | conference object | es |
dc.conference.date | 3-7 April 2023 | es |
dc.conference.place | Los Angeles, California, USA | es |
dc.conference.title | IEEE International Conference on Data Engineering | * |
dc.event.type | conference | es |
dc.pres.type | paper | es |
dc.type.hasVersion | AM | es |
dc.rights.accessRights | open access | es |
dc.relation.projectID | https://cordis.europa.eu/project/id/101070069 | es |
dc.relation.projectName | DataBri-X (Data Process & Technological Bricks for expanding digital value creation in European Data Spaces) | es |
dc.relation.projectName | MLEDGE (APRENDIZAJE AUTOMÁTICO EN LA NUBE Y EN EL BORDE - CLOUD AND EDGE MACHINE LEARNING) | es |
dc.subject.keyword | Data economy, data marketplaces, measurement, data pricing | es |
dc.description.refereed | TRUE | es |
dc.description.status | inpress | es |