• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Framework for Wireless Technology Classification using Crowdsensing Platforms

Compartir
Ficheros
Preprint-Tech_Classification_with_Electrosense.pdf (12.52Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1670
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Scalingi, Alessio; Giustiniano, Domenico; Calvo-Palomino, Roberto; Apostolakis, Nikolaos; Bovet, Gerome
Fecha
2023-05-17
Resumen
Spectrum crowdsensing systems do not provide labeled data near real-time yet. We propose a framework that addresses this challenge and relies solely on Power Spectrum Density (PSD) data collected by low-cost receivers. A major hurdle is to design a system that is computationally efficient for near real-time operation, yet using only the limited 2 MHz bandwidth of low-cost spectrum sensors. First, we present a method for unsupervised transmission detection that works with PSD data already collected by the backend of the crowdsensing platform, and that provides stable detection of transmission boundaries. Second, we introduce a data-driven deep learning solution to classify the wireless technology used by the transmitter, using transmission features in a compressed space extracted from single PSD measurements over at most 2 MHz band. We build an experimental platform, and evaluate our framework with real-world data collected from 47 different sensors deployed across Europe. We show that our framework yields an average classification accuracy close to 94.25% over the testing dataset, with a maximum latency of 3.4 seconds when integrated in the backend of a major crowdsensing network. Code and data have been released for reproducibility and further studies.
Compartir
Ficheros
Preprint-Tech_Classification_with_Electrosense.pdf (12.52Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1670
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!