Mostrar el registro sencillo del ítem

dc.contributor.authorMoghadas Gholian, Serly 
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorCollet, Alan 
dc.contributor.authorAttanasio, Giulia 
dc.contributor.authorFiore, Marco 
dc.contributor.authorWidmer, Joerg 
dc.date.accessioned2023-01-16T17:14:24Z
dc.date.available2023-01-16T17:14:24Z
dc.date.issued2023-05
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1662
dc.description.abstractThe ability to forecast mobile traffic patterns is key to resource management for mobile network operators and planning for local authorities. Several Deep Neural Networks (DNN) have been designed to capture the complex spatiotemporal characteristics of mobile traffic patterns at scale. These models are complex black boxes whose decisions are inherently hard to explain. Even worse, they have proven vulnerable to adversarial attacks which undermine their applicability in production networks. In this paper, we conduct a first in-depth study of the vulnerabilities of DNNs for large-scale mobile traffic forecasting. We propose DEEXP, a new tool that leverages EXplainable Artificial Intelligence (XAI) to understand which Base Stations (BSs) are more influential for forecasting from a spatio-temporal perspective. This is challenging as existing XAI techniques are usually applied to computer vision or natural language processing and need to be adapted to the mobile network context. Upon identifying the more influential BSs, we run stateof-the art Adversarial Machine Learning (AML) techniques on those BSs and measure the accuracy degradation of the predictors. Extensive evaluations with real-world mobile traffic traces pinpoint that attacking BSs relevant to the predictor significantly degrades its accuracy across all the scenarios.es
dc.description.sponsorshipComunidad de Madrides
dc.description.sponsorshipMinisterio de Ciencia e Innovaciónes
dc.description.sponsorshipEuropean Uniones
dc.language.isoenges
dc.titleSpotting Deep Neural Network Vulnerabilities in Mobile Traffic Forecasting with an Explainable AI Lenses
dc.typeconference objectes
dc.conference.date17-20 May 2023es
dc.conference.placeNew York, United Stateses
dc.conference.titleIEEE International Conference on Computer Communications*
dc.event.typeconferencees
dc.pres.typepaperes
dc.rights.accessRightsopen accesses
dc.acronymINFOCOM*
dc.rankA**
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020-ICT-2020-2/101017109es
dc.relation.projectNameTAPIR-CM (Técnicas Avanzadas para Potenciar la Inteligencia de las Redes 5G)es
dc.relation.projectNamebRAIN (Explainable and robust AI for integration in next generation networked systems)es
dc.relation.projectNameDAEMON (Network intelligence for aDAptive and sElf-Learning MObile Networks)es
dc.relation.projectNameJuan de la Cierva - IJC2019-039885-Ies
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem