• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-speed Machine Learning-enhanced Receiver for Millimeter-Wave Systems

Compartir
Ficheros
Author Version (5.085Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1660
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Garcia Marti, Dolores; Ruiz, Rafael; Lacruz, Jesús Omar; Widmer, Joerg
Fecha
2023-05-17
Resumen
Machine Learning (ML) is a promising tool to design wireless physical layer (PHY) components. It is particularly interesting for millimeter-wave (mm-wave) frequencies and above, due to the more challenging hardware design and channel environment at these frequencies. Rather than building individual ML-components, in this paper, we design an entire ML-enhanced mm-wave receiver for frequency selective channels. Our ML-receiver jointly optimizes the channel estimation, equalization, phase correction and demapper using Convolutional Neural Networks. We also show that for mm-wave systems, the channel varies significantly even over short timescales, requiring frequent channel measurements, and this situation is exacerbated in mobile scenarios. To tackle this, we propose a new MLchannel estimation approach that refreshes the channel state information using the guard intervals (not intended for channel measurements) that are available for every block of symbols in communication packets. To the best of our knowledge, our MLreceiver is the first work to outperform conventional receivers in general scenarios, with simulation results showing up to 7dB gains. We also provide an experimental validation of the ML-enhanced receiver with a 60 GHz FPGA-based testbed with phased antenna arrays, which shows a throughput increase by a factor of up to 6 over baseline schemes in mobile scenarios.
Compartir
Ficheros
Author Version (5.085Mb)
Identificadores
URI: https://hdl.handle.net/20.500.12761/1660
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!