Mostrar el registro sencillo del ítem

dc.contributor.authorAttanasio, Giulia 
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorFiore, Marco 
dc.contributor.authorWidmer, Joerg 
dc.contributor.authorLudant, Norbert 
dc.contributor.authorBloessl, Bastian
dc.contributor.authorKousias, Konstantinos
dc.contributor.authorAlay, Ozgu
dc.contributor.authorJacquot, Lise
dc.contributor.authorStanica, Razvan
dc.date.accessioned2022-11-14T16:09:04Z
dc.date.available2022-11-14T16:09:04Z
dc.date.issued2022-12-24
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1645
dc.description.abstractThe advance of mobile network technologies and components heavily relies on data-driven techniques. This is especially true for fifth generation (5G) and the upcoming sixth generation (6G) networks, as the optimization of network components and protocols is expected to be fueled by artificial intelligence (AI) based solutions. When using real-world radio access measurement traces, the identity of individual users is not directly accessible because at runtime operation Base Stations (BSs) assign Radio Network Temporary Identifiers (RNTIs) to users. RNTIs are not bound to a user but are reused upon expiration of an inactivity timer, whose duration is operator dependent. This implies that, over time, multiple users are mapped to the same RNTI. In fact, the allocation of RNTIs to users is implemented in diverse and proprietary ways by operators and equipment vendors. Distinguishing individual users within the RNTI space is a non-trivial task and key to analyze traffic traces properly. In this paper, we make the following contributions: i) we propose and validate two complementary methodologies to identify the RNTI inactivity threshold, and we characterize ii) the RNTI allocation process of network operators, and iii) the user traffic patterns given the specific RNTI allocation process. Our study is based on a large dataset we collected from production BSs of several mobile network operators across five different countries. We find that there exist heterogeneous strategies for RNTI allocation that BSs dynamically use depending on the traffic load and daytime. We further observe that the RNTI expiration threshold is in the order of minutes, and demonstrate how using thresholds around 10 seconds, as in the vast majority of the literature, can bias subsequent analyses. Overall, our work provides an important step towards dependable mobile network trace analysis, and lays solid foundations to research relying on traffic traces for data-driven analysis.es
dc.description.sponsorshipComunidad de Madrides
dc.description.sponsorshipMinisterio de Ciencia e Innovaciónes
dc.language.isoenges
dc.titleIn-depth Study of RNTI Management in Mobile Networks: Allocation Strategies and Implications on Data Trace Analysises
dc.typejournal articlees
dc.journal.titleComputer Networkses
dc.rights.accessRightsopen accesses
dc.relation.projectNameTAPIR-CM (Técnicas Avanzadas para Potenciar la Inteligencia de las Redes 5G)es
dc.relation.projectNameJuan de la Cierva - IJC2019-039885-Ies
dc.relation.projectNameAtracción de Talento - 2019-T1/TIC-16037 NetSensees
dc.subject.keywordMobile networkses
dc.subject.keywordnetwork measurementses
dc.subject.keywordRNTI expiration thresholdes
dc.subject.keywordRNTI allocationes
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem