Mostrar el registro sencillo del ítem

dc.contributor.authorEleftherakis, Stavros 
dc.contributor.authorSantaromita, Giuseppe 
dc.contributor.authorRea, Maurizio 
dc.contributor.authorOtim, Timothy 
dc.contributor.authorGiustiniano, Domenico 
dc.date.accessioned2022-10-27T08:13:47Z
dc.date.available2022-10-27T08:13:47Z
dc.date.issued2022-12
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1638
dc.description.abstractContact tracing is a key approach to control the spread of Covid- 19 and any other pandemia. Recent attempts have followed either traditional ways of tracing (e.g. patient interviews) or unreliable app-based localization solutions. The latter has raised both privacy concerns and low precision in the contact inference. In this work, we present the idea of contact tracing through the multipath profile similarity. At first, we collect Channel State Information (CSI) traces from mobile devices, and then we estimate the multipath profile. We then show that positions that are close obtain similar multipath profiles, and only this information is shared outside the local network. This result can be applied for deploying a privacy-preserving contact tracing system for healthcare authorities.es
dc.language.isoenges
dc.titleCovid-19 Contact Tracing through Multipath Profile Similarityes
dc.typeconference objectes
dc.conference.date6-9 December 2022es
dc.conference.placeRome, Italyes
dc.conference.titleACM International Conference on Emerging Networking Experiments and Technologies*
dc.event.typeworkshopes
dc.pres.typepaperes
dc.type.hasVersionAMes
dc.rights.accessRightsopen accesses
dc.acronymCoNEXT*
dc.rankA*
dc.description.refereedTRUEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem