Mostrar el registro sencillo del ítem

dc.contributor.authorAttanasio, Giulia 
dc.contributor.authorMoghadas Gholian, Serly 
dc.contributor.authorFiandrino, Claudio 
dc.contributor.authorFiore, Marco 
dc.contributor.authorWidmer, Joerg 
dc.date.accessioned2022-10-13T16:09:48Z
dc.date.available2022-10-13T16:09:48Z
dc.date.issued2022-06-08
dc.identifier.citation[1] Z. Tianhang, B. Li, "Poisoning Attacks on Deep Learning based Wireless Traffic Prediction," in IEEE INFOCOM 2022 [2] S. Lundberg, S. Lee, “A Unified Approach to Interpreting Model Predictions,” in NeurIPS. 2017. [3] S. Lapuschkin, A. Binder, G. Mantovan, K. Muller, W. Samek in “The LRP Toolbox for Artificial Neural Networks,” in JMLR. 2016 [4] C. Fiandrino, G. Attanasio, M. Fiore, J. Widmer “Toward Native Explainable and Robust AI in 6G Networksç Current State, Challenges and Road Ahead,” under submission in ComCom. 2022.es
dc.identifier.urihttps://hdl.handle.net/20.500.12761/1630
dc.description.abstract6G networks are expected to face the daunting task of providing support to a set of extremely diverse services, each more demanding than those of previous generation networks (e.g., holographic communications, unmanned mobility, etc.), while at the same time integrating non-terrestrial networks, incorporating new technologies, and supporting joint communication and sensing. The resulting network architecture, component interactions, and system dynamics are unprecedentedly complex, making human-only operation impossible, and thus calling for AI-based automation and configuration support. For this to happen, AI solutions need to be robust and interpretable, i.e., network engineers should trust the way AI operates and understand the logic behind its decisions. In this paper, we revise the current state of tools and methods that can make AI robust and explainable, shed light on challenges and open problems, and indicate potential future research directions.es
dc.description.sponsorshipSpanish Ministry of Science and Innovationes
dc.description.sponsorshipEuropean Union’s Horizon 2020 research and innovation programmees
dc.description.sponsorshipComunidad de Madrides
dc.description.sponsorshipMadrid Regional Governmentes
dc.language.isoenges
dc.titleTowards Native Explainable and Robust AI in 6G Networkses
dc.typeconference objectes
dc.conference.date8 July 2022es
dc.conference.placeMadrid, Spaines
dc.conference.title12th IMDEA Networks Annual International Workshop*
dc.event.typeworkshopes
dc.pres.typeposteres
dc.type.hasVersionVoRes
dc.rights.accessRightsopen accesses
dc.page.final1es
dc.page.initial1es
dc.relation.projectIDIJC2019-039885-Ies
dc.relation.projectID101017109es
dc.relation.projectID2019-T1/TIC-16037es
dc.relation.projectIDS2018/TCS-4496es
dc.relation.projectNameJuan de la Ciervaes
dc.relation.projectNameDAEMONes
dc.relation.projectNameAtracción de Talento Investigadores
dc.relation.projectNameTAPIR-CM programes
dc.subject.keyword6G networkses
dc.subject.keywordAIes
dc.subject.keywordexplainable AIes
dc.subject.keywordrobust AIes
dc.description.refereedFALSEes
dc.description.statuspubes


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem