dc.contributor.author | Attanasio, Giulia | |
dc.contributor.author | Moghadas Gholian, Serly | |
dc.contributor.author | Fiandrino, Claudio | |
dc.contributor.author | Fiore, Marco | |
dc.contributor.author | Widmer, Joerg | |
dc.date.accessioned | 2022-10-13T16:09:48Z | |
dc.date.available | 2022-10-13T16:09:48Z | |
dc.date.issued | 2022-06-08 | |
dc.identifier.citation | [1] Z. Tianhang, B. Li, "Poisoning Attacks on Deep Learning based Wireless Traffic Prediction," in IEEE INFOCOM 2022 [2] S. Lundberg, S. Lee, “A Unified Approach to Interpreting Model Predictions,” in NeurIPS. 2017. [3] S. Lapuschkin, A. Binder, G. Mantovan, K. Muller, W. Samek in “The LRP Toolbox for Artificial Neural Networks,” in JMLR. 2016 [4] C. Fiandrino, G. Attanasio, M. Fiore, J. Widmer “Toward Native Explainable and Robust AI in 6G Networksç Current State, Challenges and Road Ahead,” under submission in ComCom. 2022. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12761/1630 | |
dc.description.abstract | 6G networks are expected to face the daunting task of providing support to a
set of extremely diverse services, each more demanding than those of previous
generation networks (e.g., holographic communications, unmanned mobility,
etc.), while at the same time integrating non-terrestrial networks, incorporating new technologies, and supporting joint communication and sensing. The
resulting network architecture, component interactions, and system dynamics
are unprecedentedly complex, making human-only operation impossible, and
thus calling for AI-based automation and configuration support. For this to
happen, AI solutions need to be robust and interpretable, i.e., network engineers
should trust the way AI operates and understand the logic behind its decisions.
In this paper, we revise the current state of tools and methods that can make
AI robust and explainable, shed light on challenges and open problems, and
indicate potential future research directions. | es |
dc.description.sponsorship | Spanish Ministry of Science and Innovation | es |
dc.description.sponsorship | European Union’s Horizon 2020 research and innovation programme | es |
dc.description.sponsorship | Comunidad de Madrid | es |
dc.description.sponsorship | Madrid Regional Government | es |
dc.language.iso | eng | es |
dc.title | Towards Native Explainable and Robust AI in 6G Networks | es |
dc.type | conference object | es |
dc.conference.date | 8 July 2022 | es |
dc.conference.place | Madrid, Spain | es |
dc.conference.title | 12th IMDEA Networks Annual International Workshop | * |
dc.event.type | workshop | es |
dc.pres.type | poster | es |
dc.type.hasVersion | VoR | es |
dc.rights.accessRights | open access | es |
dc.page.final | 1 | es |
dc.page.initial | 1 | es |
dc.relation.projectID | IJC2019-039885-I | es |
dc.relation.projectID | 101017109 | es |
dc.relation.projectID | 2019-T1/TIC-16037 | es |
dc.relation.projectID | S2018/TCS-4496 | es |
dc.relation.projectName | Juan de la Cierva | es |
dc.relation.projectName | DAEMON | es |
dc.relation.projectName | Atracción de Talento Investigador | es |
dc.relation.projectName | TAPIR-CM program | es |
dc.subject.keyword | 6G networks | es |
dc.subject.keyword | AI | es |
dc.subject.keyword | explainable AI | es |
dc.subject.keyword | robust AI | es |
dc.description.refereed | FALSE | es |
dc.description.status | pub | es |