• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Not Your Average App: A Large-scale Privacy Analysis of Android Browsers

Compartir
Identificadores
URI: https://hdl.handle.net/20.500.12761/1622
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Pradeep, Amogh; Feal, Álvaro; Gamba, Julien; Rao, Ashwin; Lindorfer, Martina; Vallina-Rodriguez, Narseo; Choffnes, David
Fecha
2023-07
Resumen
The privacy-related behavior of mobile browsers has remained widely unexplored by the research community. In fact, as opposed to regular Android apps, mobile browsers may present contradicting privacy behaviors. On the one hand, they can have access to (and can expose) a unique combination of sensitive user data, from users' browsing history to permission-protected personally identifiable information (PII) such as unique identifiers and geolocation. On the other hand, they are in a unique position to protect users' privacy by limiting data sharing with other parties by implementing ad-blocking features. In this paper, we perform a comparative and empirical analysis on how hundreds of Android web browsers protect or expose user data during browsing sessions. To this end, we collect the largest dataset of Android browsers to date, from the Google Play Store and four Chinese app stores. Then, we develop a novel analysis pipeline that combines static and dynamic analysis methods to find a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-harming behaviors (e.g., sending browsing histories to third parties, not validating TLS certificates, and exposing PII---including non-resettable identifiers---to third parties) across browsers. We find that various popular apps on both Google Play and Chinese stores have these privacy-harming behaviors, including apps that claim to be privacy-enhancing in their descriptions. Overall, our study not only provides new insights into important yet overlooked considerations for browsers' adoption and transparency, but also that automatic app analysis systems (e.g., sandboxes) need context-specific analysis to reveal such privacy behaviors.
Compartir
Identificadores
URI: https://hdl.handle.net/20.500.12761/1622
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!