Mostrar el registro sencillo del ítem

dc.contributor.authorRuipérez-Valiente, José A. 
dc.contributor.authorMuñoz-Merino, Pedro J.
dc.contributor.authorDelgado Kloos, Carlos
dc.date.accessioned2021-07-13T09:26:20Z
dc.date.available2021-07-13T09:26:20Z
dc.date.issued2015-06-22
dc.identifier.urihttp://hdl.handle.net/20.500.12761/160
dc.description.abstractThis work approaches the prediction of learning gains in an environ- ment with intensive use of exercises and videos, specifically using the Khan Academy platform. We propose a linear regression model which can explain 57.4% of the learning gains variability, with the use of four variables obtained from the low level data generated by the students. We found that two of these variables are related to exercises (the proficient exercises and the average number of attempts in exercises), and one is related to both videos and exercises (the total time spent in both) related to exercises, whereas only one is related to videos.
dc.language.isoeng
dc.titleA Predictive Model of Learning Gains for a Video and Exercise Intensive Learning Environmenten
dc.typeconference object
dc.conference.date22-26 June 2015
dc.conference.placeMadrid, Spain
dc.conference.titleThe 17th International Conference on Artificial Intelligence in Education (AIED 2015)*
dc.event.typeconference
dc.pres.typeposter
dc.rights.accessRightsopen access
dc.page.final763
dc.page.initial760
dc.subject.keywordEducational data mining
dc.subject.keywordlearning analytics
dc.subject.keywordprediction
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/1245


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem