• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

CartaGenie: Context-Driven Synthesis of City-Scale Mobile Network Traffic Snapshots

Compartir
Ficheros
percom22_cartagenie_postprint.pdf (970.7Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1576
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Xu, Kai; Singh, Rajkarn; Bilen, Hakan; Fiore, Marco; Marina, Mahesh; Wang, Yue
Fecha
2022-03
Resumen
Mobile network traffic data offers unprecedented opportunities for innovative studies within and beyond networking. However, progress is hindered by the very limited access that the research community at large has to the real-world mobile network data that is needed to develop and dependably test mobile traffic data-driven solutions. As a contribution to overcome this barrier, we propose CartaGenie, a generator of realistic mobile traffic snapshots at city scale. Taking a deep generative modeling approach and through a tailored conditional generator design, CartaGenie can synthesize high-fidelity and artifact-free spatial traffic snapshots using only contextual information about the target geographical region that is easily found in public repositories. Hence, CartaGenie allows researchers to create their own realistic datasets of spatial traffic from open data about their region of interest. Experiments with real-world mobile traffic measurements collected in multiple metropolitan areas show that CartaGenie can produce dependable network traffic loads for areas where no prior traffic information is available, significantly outperforming a comprehensive set of benchmarks. Moreover, tests with practical case studies demonstrate that the synthetic data generated by CartaGenie is as good as real data in supporting diverse research-oriented mobile traffic data-driven applications.
Compartir
Ficheros
percom22_cartagenie_postprint.pdf (970.7Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1576
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!