• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

SkillVet: Automated Traceability Analysis of Amazon Alexa Skills

Compartir
Ficheros
2103.02637.pdf (936.8Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1574
ISSN: 1941-0018
DOI: 10.1109/TDSC.2021.3129116
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Edu, Jide; Ferrer-Aran, Xavier; Such, Jose; Suarez-Tangil, Guillermo
Fecha
2023
Resumen
Skills are essential components of Smart Personal Assistants (SPA). Their numbers have grown rapidly, dominated by a changing environment that has no clear business model. Skills can access personal information and this may pose a risk to users. However, there is little information about how this ecosystem works, let alone the tools to facilitate its study. In this paper, we present a systematic measurement of the Alexa skill ecosystem. We study developers practices, including how they collect and justify the need for sensitive information, by designing a methodology to identify over-privileged skills with broken privacy policies. We collect 199,295 skills and uncover that around 43% of the skills (and 50% of developers) that request permissions follow bad privacy practices, including (partially) broken data permissions traceability. To perform this kind of analysis at scale, we present SkillVet that leverages machine learning and natural language processing techniques, and generates high-accuracy prediction sets. We report several concerning practices, including how developers can bypass Alexas permission system through account linking and conversational skills, and offer recommendations on how to improve transparency, privacy and security. Resulting from the responsible disclosure we did, 13% of the reported issues no longer pose a threat at submission time.
Compartir
Ficheros
2103.02637.pdf (936.8Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1574
ISSN: 1941-0018
DOI: 10.1109/TDSC.2021.3129116
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!