• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

LossLeaP: Learning to Predict for Intent-Based Networking

Compartir
Ficheros
LossLeaPDSpace.pdf (1009.Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1564
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Collet, Alan; Banchs, Albert; Fiore, Marco
Fecha
2022-05-02
Resumen
Intent-Based Networking mandates that high-levelhuman-understandable intents are automatically interpreted andimplemented by network management entities. As a key partin this process, it is required that network orchestrators acti-vate the correct automated decision model to meet the intentobjective. In anticipatory networking tasks, this requirementmaps to identifying and deploying a tailored prediction modelthat can produce a forecast aligned with the specific –andtypically complex– network management goal expressed by theoriginal intent. Current forecasting models for network demandsor network management optimize generic, non-flexible, andmanually designed objectives, hence do not fulfil the needsof anticipatory Intent-Based Networking. To close this gap,we proposeLossLeaP, a novel forecasting model that canautonomously learn the relationship between the prediction andthe target management objective, steering the former to minimizethe latter. To this end,LossLeaPadopts an original deeplearning architecture that advances current efforts in automatedmachine learning, towards a spontaneous design of loss func-tions for regression tasks. Extensive experiments in controlledenvironments and in practical application case studies prove thatLossLeaPoutperforms a wide range of benchmarks, includingstate-of-the-art solutions for network capacity forecasting.
Compartir
Ficheros
LossLeaPDSpace.pdf (1009.Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1564
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!