• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable Phase-Coherent Beam-Training for Dense Millimeter-wave Networks

Compartir
Ficheros
TMC_2020 (2).pdf (16.12Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1542
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Garcia Marti, Dolores; Lacruz, Jesús Omar; Jiménez Mateo, Pablo; Palacios, Joan; Ruiz, Rafael; Widmer, Joerg
Fecha
2021-10
Resumen
Millimeter-wave communications (mm-wave) use analog beamforming techniques, which steer the signal energy in a desired direction, to overcome the high path-loss at such frequencies. To determine the direction in which to steer, mm-wave standards such as IEEE802.11ad specify beam training mechanisms for both access points as well as client stations. However, the overhead of the beam training limits scalability as the density of network deployments increases and mobile devices that require constant training are supported. We design SPIDER, a low-overhead beam-training mechanism where only access points actively participate in the training and stations perform passive compressive estimation of the angle-of-arrival. To this end, stations carry out phase-coherent measurements by switching through multiple receive beam patterns on a time-scale of tens of nanoseconds when receiving a packet preamble. Since no suitable testbed platforms exist that support such fast antenna reconfiguration, we design a high-performance,full-bandwidth FPGA-based testbed platform for flexible mm-wave experimentation, that we make available as open source. The performance analysis with this testbed shows that our algorithm achieves highly accurate angle estimation used to drive the beam steering decisions and reduces overhead by an order of magnitude compared to IEEE 802.11ad beam training.
Compartir
Ficheros
TMC_2020 (2).pdf (16.12Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1542
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!