• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Site-specific millimeter-wave compressive channel estimation algorithms with hybrid MIMO architectures

Compartir
Ficheros
S-JNL-VOL2.ISSUE4-2021-A02-PDF-E.pdf (667.3Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1515
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Subramanyam Thoota, Sai; Garcia Marti, Dolores; Tuğfe Demir, Özlem; Mundlamuri, Rakesh; Palacios, Joan; Yetis, Cenk M.; Kurisummoottil Thomas, Christo; Bharadwaja, Sameera H.; Björnson, Emil; Giselsson, Pontus; Kountouris, Marios; Murthy, Chandra R.; González-Prelcic, Nuria; Widmer, Joerg
Fecha
2021-07-14
Resumen
In this paper, we present and compare three novel model‑cum‑data‑driven channel estimation procedures in a millimeter‑wave Multi‑Input Multi‑Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) wireless communication system. The transceivers employ a hybrid analog‑digital architecture. We adapt techniques from a wide range of signal processing methods, such as detection and estimation theories, compressed sensing, and Bayesian inference, to learn the unknown virtual beamspace domain dictionary, as well as the delay‑and‑beamspace sparse channel. We train the model‑based algorithms with a site‑speciϔic training dataset generated using a realistic ray tracing‑based wireless channel simulation tool. We assess the performance of the proposed channel estimation algorithms with the same site’s test data. We benchmark the performance of our novel procedures in terms of normalized mean squared error against an existing fast greedy method and empirically show that model‑based approaches combined with data‑driven customization unanimously outperform the state‑of‑the‑art techniques by a large margin. The proposed algorithms were selected as the top three solutions in the “ML5G‑PHY Channel Estimation Global Challenge 2020” organized by the International Telecommunication Union.
Compartir
Ficheros
S-JNL-VOL2.ISSUE4-2021-A02-PDF-E.pdf (667.3Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1515
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!