Mostrar el registro sencillo del ítem
Edge-based Platoon Control
dc.contributor.author | Quadri, Christian | |
dc.contributor.author | Mancuso, Vincenzo | |
dc.contributor.author | Ajmone Marsan, Marco | |
dc.contributor.author | Rossi, Gian Paolo | |
dc.date.accessioned | 2021-09-22T16:16:52Z | |
dc.date.available | 09-2021 | |
dc.date.issued | 2022-01 | |
dc.identifier.citation | [1] M. Williams, Prometheus-the european research programme for optimis- ing the road transport system in europe, in: IEE Colloquium on Driver Information, IET, 1988, pp. 1–1. [2] D. Jia, K. Lu, J. Wang, X. Zhang, X. Shen, A survey on platoon-based vehicular cyber-physical systems, IEEE Communications Surveys Tutorials 18 (1) (2016) 263–284. doi:10.1109/COMST.2015.2410831. [3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella, On multi- access edge computing: A survey of the emerging 5g network edge cloud architecture and orchestration, IEEE Communications Surveys & Tutorials 19 (3) (2017) 1657–1681. [4] Y. Zheng, S. Eben Li, J. Wang, D. Cao, K. Li, Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies, IEEE Transactions on Intelligent Transportation Systems 17 (1) (2016) 14–26. doi:10.1109/TITS.2015.2402153. [5] T. Zeng, O. Semiari, W. Saad, M. Bennis, Joint communica- tion and control for wireless autonomous vehicular platoon sys- tems, IEEE Trans. on Communications 67 (11) (2019) 7907–7922. doi:10.1109/TCOMM.2019.2931583. [6] G. Cecchini, A. Bazzi, B. M. Masini, A. Zanella, Performance comparison between IEEE 802.11p and LTE-V2V in-coverage and out-of-coverage for cooperative awareness, in: 2017 IEEE Vehicular Networking Conference (VNC), 2017, pp. 109–114. doi:10.1109/VNC.2017.8275637. [7] F. Dressler, F. Klingler, M. Segata, R. Lo Cigno, Cooperative driving and the tactile internet, Proceedings of the IEEE 107 (2) (2019) 436–446. doi:10.1109/JPROC.2018.2863026. [8] S. Lucero, Cellular–vehicle to everything (C-V2X) connectivity, IHS Tech- nology, Internet Everything (2016). [9] B. P. Rimal, D. Pham Van, M. Maier, Mobile-edge computing versus centralized cloud computing over a converged fiwi access network, IEEE Transactions on Network and Service Management 14 (3) (2017) 498–513. doi:10.1109/TNSM.2017.2706085. [10] A. Virdis, G. Nardini, G. Stea, A framework for MEC-enabled platooning, in: IEEE Wireless Communications and Networking Conference Workshop (WCNCW), IEEE, 2019, pp. 1–6. [11] X. Fan, T. Cui, C. Cao, Q. Chen, K. S. Kwak, Minimum-cost offloading for collaborative task execution of MEC-assisted platooning, Sensors 19 (4) (2019) 847. [12] Y. Hu, T. Cui, X. Huang, Q. Chen, Task offloading based on Lyapunov optimization for MEC-assisted platooning, in: International Conference on Wireless Communications and Signal Processing (WCSP), 2019, pp. 1–5. doi:10.1109/WCSP.2019.8928035. [13] S. Dabbene, C. Lehmann, C. Campolo, A. Molinaro, F. H. P. Fitzek, A mec-assisted vehicle platooning control through docker containers, in: 2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS), 2020, pp. 1–6. doi:10.1109/CAVS51000.2020.9334658. [14] A. Lekidis, F. Bouali, C-v2x network slicing framework for 5g-enabled vehicle platooning applications, in: VTC2021-Spring Workshops, IEEE, United States, 2021, pp. (In–Press), 93rd Vehicular Technology Confer- ence, VTC2021-Spring ; Conference date: 25-04-2021 Through 28-04-2021. [15] C. Chen, J. Jiang, N. Lv, S. Li, An intelligent path plan- ning scheme of autonomous vehicles platoon using deep reinforce- ment learning on network edge, IEEE Access 8 (2020) 99059–99069. doi:10.1109/ACCESS.2020.2998015. [16] R. Rajamani, Vehicle dynamics and control, Springer, 2012, Ch. 7. [17] M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler, R. Lo Cigno, Plexe: A platooning extension for Veins, in: IEEE Vehicular Networking Conference (VNC), 2014, pp. 53–60. doi:10.1109/VNC.2014.7013309. [18] R. Rajamani, Han-Shue Tan, Boon Kait Law, Wei-Bin Zhang, Demon- stration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons, IEEE Transactions on Control Systems Technology 8 (4) (2000) 695–708. doi:10.1109/87.852914. [19] J. Ploeg, B. Scheepers, E. van Nunen, N. van de Wouw, H. Nijmeijer, Design and experimental evaluation of cooperative adaptive cruise control (2011) 260–265. [20] S. Santini, A. Salvi, A. S. Valente, A. Pescap ́e, M. Segata, R. Lo Cigno, A consensus-based approach for platooning with intervehicular communi- cations and its validation in realistic scenarios, IEEE Trans. on Vehicular Technology 66 (3) (2017) 1985–1999. doi:10.1109/TVT.2016.2585018. [21] Y. Ma, Z. Li, R. Malekian, R. Zhang, X. Song, M. A. Sotelo, Hierarchical fuzzy logic-based variable structure control for vehicles platooning, IEEE Transactions on Intelligent Transportation Systems 20 (4) (2019) 1329– 1340. doi:10.1109/TITS.2018.2846198. [22] F. Navas, V. Milan ́es, C. Flores, F. Nashashibi, Multi-model adaptive con- trol for cacc applications, IEEE Transactions on Intelligent Transportation Systems 22 (2) (2021) 1206–1216. doi:10.1109/TITS.2020.2964320. [23] V. Vegamoor, S. Yan, S. Rathinam, S. Darbha, Mobility and safety benefits of connectivity in cacc vehicle strings, in: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020, pp. 1–6. doi:10.1109/ITSC45102.2020.9294203. [24] W. Hao, L. Liu, X. Yang, Y. Li, Y. J. Byon, Reducing cacc pla- toon disturbances caused by state jitters by combining two stages driv- ing state recognition with multiple platoons’ strategies and risk predic- tion, IEEE Transactions on Intelligent Transportation Systems (2020) 1– 11doi:10.1109/TITS.2020.3033436. [25] B. Tian, G. Wang, Z. Xu, Y. Zhang, X. Zhao, Communica- tion delay compensation for string stability of cacc system us- ing lstm prediction, Vehicular Communications 29 (2021) 100333. doi:https://doi.org/10.1016/j.vehcom.2021.100333. [26] S. Sadraddini, S. Sivaranjani, V. Gupta, C. Belta, Provably safe cruise control of vehicular platoons, IEEE Control Systems Letters 1 (2) (2017) 262–267. doi:10.1109/LCSYS.2017.2713772. [27] N. Chen, M. Wang, T. Alkim, B. van Arem, A robust longitudinal control strategy of platoons under model uncertainties and time delays, Journal of Advanced Transportation 2018 (2018). [28] O. E. Gungor, I. L. Al-Qadi, All for one: Centralized optimization of truck platoons to improve roadway infrastructure sustainability, Trans- portation Research Part C: Emerging Technologies 114 (2020) 84–98. doi:https://doi.org/10.1016/j.trc.2020.02.002. [29] C. Quadri, V. Mancuso, M. Ajmone Marsan, G. P. Rossi, Platooning on the edge, in: ACM MSWiM, 2020. doi:10.1145/3416010.3423220. URL https://doi.org/10.1145/3416010.3423220 [30] Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Ser- vice, Tech. rep., ETSI Std. EN 302 637-2 V1.3.2 (Oct. 2014). [31] Vehicle Safety Communications-Applications (VSC-A), Final Report, Tech. rep., DOT HS 811 492A, U.S. Dept. Transp., Nat. Highway Traffic Safety Admin. (September 2011). [32] J. Mart ́ın-P ́erez, L. Cominardi, C. J. Bernardos, A. de la Oliva, A. Az- corra, Modeling mobile edge computing deployments for low latency multi- media services, IEEE Transactions on Broadcasting 65 (2) (2019) 464–474. doi:10.1109/TBC.2019.2901406. [33] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Fl ̈otter ̈od, R. Hilbrich, L. Lu ̈cken, J. Rummel, P. Wagner, E. Wießner, Microscopic traffic simulation using SUMO, in: IEEE International Conference on In- telligent Transportation Systems, 2018. [34] S. Moon, I. Moon, K. Yi, Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoid- ance, Control Engineering Practice 17 (4) (2009) 442–455. doi:https://doi.org/10.1016/j.conengprac.2008.09.006. [35] TS 23.203 (Rel-15); Policy and charging control architecture, Tech. rep., 3GPP (October 2019). [36] C. Bonnet, H. Fritz, Fuel consumption reduction in a platoon: Experimen- tal results with two electronically coupled trucks at close spacing, Tech. rep., SAE Technical Paper (2000). [37] C. Quadri, V. Mancuso, V. Cislaghi, M. Ajmone Marsan, G. P. Rossi, From PLATO to platoons, in: IEEE MedComNet, 2021. | es |
dc.identifier.issn | 0140-3664 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12761/1510 | |
dc.description.abstract | Platooning of cars or trucks is one of the most relevant applications of autonomous driving, since it has the potential to greatly improve efficiency in road utilization and fuel consumption. Traditional proposals of vehicle platoon- ing were based on distributed architectures with computation on board platoon vehicles and direct vehicle-to-vehicle (V2V) communications (or Dedicated Short Range Communication - DSRC), possibly with the support of roadside units. However, with the introduction of the 5G technology and of computing elements at the edge of the network, according to the multi-access edge com- puting (MEC) paradigm, the possibility emerges of placing control of platoons on MEC, with several significant advantages with respect to the V2V approach. For this reason, in this article we investigate the feasibility of vehicle platooning in an edge-based scenario where the control of vehicle speed and acceleration is managed by the network through its MEC facilities, possibly with a platooning- as-a-service (PaaS) paradigm. Using a detailed simulator, we show that, with realistic values of latency and packet loss probability, as well as of engines and inertia of vehicles, large platoons can be effectively controlled by MEC hosts. On the one hand, we unveil that platooning on the edge is a viable and robust solution. On the other hand, we also shed light on the necessity to consider realistic characteristics of vehicles and speed profiles, since they can yield severe, yet not critical, performance degradation with respect to simple models. | es |
dc.description.sponsorship | Ramon y Cajal grant RYC-2014-16285 from the Spanish Ministry of Economy and Competitiveness | es |
dc.description.sponsorship | The work was supported by the Spanish Ministry of Science and Innovation grant PID2019-109805RB-I00 (ECID). | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.title | Edge-based Platoon Control | es |
dc.type | journal article | es |
dc.journal.title | Computer Communications | es |
dc.type.hasVersion | AM | es |
dc.rights.accessRights | open access | es |
dc.volume.number | 181 | |
dc.identifier.doi | 10.1016/j.comcom.2021.09.021 | |
dc.page.final | 31 | |
dc.page.initial | 17 | |
dc.relation.projectName | ECID | es |
dc.description.refereed | TRUE | es |
dc.description.status | pub | es |