dc.identifier.citation | [1] M. Williams, Prometheus-the european research programme for optimis- ing the road transport system in europe, in: IEE Colloquium on Driver Information, IET, 1988, pp. 1–1. [2] D. Jia, K. Lu, J. Wang, X. Zhang, X. Shen, A survey on platoon-based vehicular cyber-physical systems, IEEE Communications Surveys Tutorials 18 (1) (2016) 263–284. doi:10.1109/COMST.2015.2410831. [3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella, On multi- access edge computing: A survey of the emerging 5g network edge cloud architecture and orchestration, IEEE Communications Surveys & Tutorials 19 (3) (2017) 1657–1681. [4] Y. Zheng, S. Eben Li, J. Wang, D. Cao, K. Li, Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies, IEEE Transactions on Intelligent Transportation Systems 17 (1) (2016) 14–26. doi:10.1109/TITS.2015.2402153. [5] T. Zeng, O. Semiari, W. Saad, M. Bennis, Joint communica- tion and control for wireless autonomous vehicular platoon sys- tems, IEEE Trans. on Communications 67 (11) (2019) 7907–7922. doi:10.1109/TCOMM.2019.2931583. [6] G. Cecchini, A. Bazzi, B. M. Masini, A. Zanella, Performance comparison between IEEE 802.11p and LTE-V2V in-coverage and out-of-coverage for cooperative awareness, in: 2017 IEEE Vehicular Networking Conference (VNC), 2017, pp. 109–114. doi:10.1109/VNC.2017.8275637. [7] F. Dressler, F. Klingler, M. Segata, R. Lo Cigno, Cooperative driving and the tactile internet, Proceedings of the IEEE 107 (2) (2019) 436–446. doi:10.1109/JPROC.2018.2863026. [8] S. Lucero, Cellular–vehicle to everything (C-V2X) connectivity, IHS Tech- nology, Internet Everything (2016). [9] B. P. Rimal, D. Pham Van, M. Maier, Mobile-edge computing versus centralized cloud computing over a converged fiwi access network, IEEE Transactions on Network and Service Management 14 (3) (2017) 498–513. doi:10.1109/TNSM.2017.2706085. [10] A. Virdis, G. Nardini, G. Stea, A framework for MEC-enabled platooning, in: IEEE Wireless Communications and Networking Conference Workshop (WCNCW), IEEE, 2019, pp. 1–6. [11] X. Fan, T. Cui, C. Cao, Q. Chen, K. S. Kwak, Minimum-cost offloading for collaborative task execution of MEC-assisted platooning, Sensors 19 (4) (2019) 847. [12] Y. Hu, T. Cui, X. Huang, Q. Chen, Task offloading based on Lyapunov optimization for MEC-assisted platooning, in: International Conference on Wireless Communications and Signal Processing (WCSP), 2019, pp. 1–5. doi:10.1109/WCSP.2019.8928035. [13] S. Dabbene, C. Lehmann, C. Campolo, A. Molinaro, F. H. P. Fitzek, A mec-assisted vehicle platooning control through docker containers, in: 2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS), 2020, pp. 1–6. doi:10.1109/CAVS51000.2020.9334658. [14] A. Lekidis, F. Bouali, C-v2x network slicing framework for 5g-enabled vehicle platooning applications, in: VTC2021-Spring Workshops, IEEE, United States, 2021, pp. (In–Press), 93rd Vehicular Technology Confer- ence, VTC2021-Spring ; Conference date: 25-04-2021 Through 28-04-2021. [15] C. Chen, J. Jiang, N. Lv, S. Li, An intelligent path plan- ning scheme of autonomous vehicles platoon using deep reinforce- ment learning on network edge, IEEE Access 8 (2020) 99059–99069. doi:10.1109/ACCESS.2020.2998015. [16] R. Rajamani, Vehicle dynamics and control, Springer, 2012, Ch. 7. [17] M. Segata, S. Joerer, B. Bloessl, C. Sommer, F. Dressler, R. Lo Cigno, Plexe: A platooning extension for Veins, in: IEEE Vehicular Networking Conference (VNC), 2014, pp. 53–60. doi:10.1109/VNC.2014.7013309. [18] R. Rajamani, Han-Shue Tan, Boon Kait Law, Wei-Bin Zhang, Demon- stration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons, IEEE Transactions on Control Systems Technology 8 (4) (2000) 695–708. doi:10.1109/87.852914. [19] J. Ploeg, B. Scheepers, E. van Nunen, N. van de Wouw, H. Nijmeijer, Design and experimental evaluation of cooperative adaptive cruise control (2011) 260–265. [20] S. Santini, A. Salvi, A. S. Valente, A. Pescap ́e, M. Segata, R. Lo Cigno, A consensus-based approach for platooning with intervehicular communi- cations and its validation in realistic scenarios, IEEE Trans. on Vehicular Technology 66 (3) (2017) 1985–1999. doi:10.1109/TVT.2016.2585018. [21] Y. Ma, Z. Li, R. Malekian, R. Zhang, X. Song, M. A. Sotelo, Hierarchical fuzzy logic-based variable structure control for vehicles platooning, IEEE Transactions on Intelligent Transportation Systems 20 (4) (2019) 1329– 1340. doi:10.1109/TITS.2018.2846198. [22] F. Navas, V. Milan ́es, C. Flores, F. Nashashibi, Multi-model adaptive con- trol for cacc applications, IEEE Transactions on Intelligent Transportation Systems 22 (2) (2021) 1206–1216. doi:10.1109/TITS.2020.2964320. [23] V. Vegamoor, S. Yan, S. Rathinam, S. Darbha, Mobility and safety benefits of connectivity in cacc vehicle strings, in: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020, pp. 1–6. doi:10.1109/ITSC45102.2020.9294203. [24] W. Hao, L. Liu, X. Yang, Y. Li, Y. J. Byon, Reducing cacc pla- toon disturbances caused by state jitters by combining two stages driv- ing state recognition with multiple platoons’ strategies and risk predic- tion, IEEE Transactions on Intelligent Transportation Systems (2020) 1– 11doi:10.1109/TITS.2020.3033436. [25] B. Tian, G. Wang, Z. Xu, Y. Zhang, X. Zhao, Communica- tion delay compensation for string stability of cacc system us- ing lstm prediction, Vehicular Communications 29 (2021) 100333. doi:https://doi.org/10.1016/j.vehcom.2021.100333. [26] S. Sadraddini, S. Sivaranjani, V. Gupta, C. Belta, Provably safe cruise control of vehicular platoons, IEEE Control Systems Letters 1 (2) (2017) 262–267. doi:10.1109/LCSYS.2017.2713772. [27] N. Chen, M. Wang, T. Alkim, B. van Arem, A robust longitudinal control strategy of platoons under model uncertainties and time delays, Journal of Advanced Transportation 2018 (2018). [28] O. E. Gungor, I. L. Al-Qadi, All for one: Centralized optimization of truck platoons to improve roadway infrastructure sustainability, Trans- portation Research Part C: Emerging Technologies 114 (2020) 84–98. doi:https://doi.org/10.1016/j.trc.2020.02.002. [29] C. Quadri, V. Mancuso, M. Ajmone Marsan, G. P. Rossi, Platooning on the edge, in: ACM MSWiM, 2020. doi:10.1145/3416010.3423220. URL https://doi.org/10.1145/3416010.3423220 [30] Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Ser- vice, Tech. rep., ETSI Std. EN 302 637-2 V1.3.2 (Oct. 2014). [31] Vehicle Safety Communications-Applications (VSC-A), Final Report, Tech. rep., DOT HS 811 492A, U.S. Dept. Transp., Nat. Highway Traffic Safety Admin. (September 2011). [32] J. Mart ́ın-P ́erez, L. Cominardi, C. J. Bernardos, A. de la Oliva, A. Az- corra, Modeling mobile edge computing deployments for low latency multi- media services, IEEE Transactions on Broadcasting 65 (2) (2019) 464–474. doi:10.1109/TBC.2019.2901406. [33] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Fl ̈otter ̈od, R. Hilbrich, L. Lu ̈cken, J. Rummel, P. Wagner, E. Wießner, Microscopic traffic simulation using SUMO, in: IEEE International Conference on In- telligent Transportation Systems, 2018. [34] S. Moon, I. Moon, K. Yi, Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoid- ance, Control Engineering Practice 17 (4) (2009) 442–455. doi:https://doi.org/10.1016/j.conengprac.2008.09.006. [35] TS 23.203 (Rel-15); Policy and charging control architecture, Tech. rep., 3GPP (October 2019). [36] C. Bonnet, H. Fritz, Fuel consumption reduction in a platoon: Experimen- tal results with two electronically coupled trucks at close spacing, Tech. rep., SAE Technical Paper (2000). [37] C. Quadri, V. Mancuso, V. Cislaghi, M. Ajmone Marsan, G. P. Rossi, From PLATO to platoons, in: IEEE MedComNet, 2021. | es |