Mostrar el registro sencillo del ítem

dc.contributor.authorArkin, Esther M.
dc.contributor.authorFernández Anta, Antonio 
dc.contributor.authorMitchell, Joseph S. B.
dc.contributor.authorMosteiro, Miguel A.
dc.date.accessioned2021-07-13T10:22:18Z
dc.date.available2021-07-13T10:22:18Z
dc.date.issued2015-02
dc.identifier.issn0925-7721
dc.identifier.urihttp://hdl.handle.net/20.500.12761/1497
dc.description.abstractMotivated by low energy consumption in geographic routing in wireless networks, there has been recent interest in determining bounds on the length of edges in the Delaunay graph of randomly distributed points. Asymptotic results are known for random networks in planar domains. In this paper, we obtain upper and lower bounds that hold with parametric probability in any dimension, for points distributed uniformly at random in domains with and without boundary. The results obtained are asymptotically tight for all relevant values of such probability and constant number of dimensions, and show that the overhead produced by boundary nodes in the plane holds also for higher dimensions. To our knowledge, this is the first comprehensive study on the lengths of long edges in Delaunay graphs.
dc.language.isoeng
dc.publisherElsevier
dc.titleProbabilistic bounds on the length of a longest edge in Delaunay graphs of random points in d-dimensionsen
dc.typejournal article
dc.journal.titleComputational Geometry: Theory and Applications
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.volume.number48
dc.issue.number2
dc.identifier.doidoi:10.1016/j.comgeo.2014.08.008
dc.page.final146
dc.page.initial134
dc.subject.keywordMultidimensional Delaunay Graphs
dc.subject.keywordRandom Geometric Graph s
dc.subject.keywordRadio Networks
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/996


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem