Mostrar el registro sencillo del ítem

dc.contributor.authorLeony, Derick
dc.contributor.authorMuñoz-Merino, Pedro J.
dc.contributor.authorPardo, Abelardo
dc.contributor.authorRuipérez-Valiente, José A. 
dc.contributor.authorArellano Martín-Caro, David
dc.contributor.authorDelgado Kloos, Carlos
dc.date.accessioned2021-07-13T10:20:30Z
dc.date.available2021-07-13T10:20:30Z
dc.date.issued2014-05-15
dc.identifier.urihttp://hdl.handle.net/20.500.12761/1473
dc.description.abstractThe current relevance of Massive Open Online Courses (MOOCs) has provoked researchers in educational technology to work towards improving their pedagogical outcomes. Adaptive MOOCs are an example within this context. Given the importance of affective information within the adaptive systems, we propose a set of models to detect four emotions known to correlate with learning gains. The implementation of the models and the initial results from its application in a case study dataset are also provided.
dc.language.isoeng
dc.titleRule-based detection of emotions in the Khan Academy platformen
dc.typeconference object
dc.conference.date15 -16 May 2014
dc.conference.placeAntigua, Guatemala
dc.conference.titleInternational Workshop on Massive Open Online Courses*
dc.event.typeworkshop
dc.pres.typepaper
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.page.final6
dc.page.initial1
dc.place.issuedAntigua Guatemala
dc.subject.keywordMOOCs
dc.subject.keywordemotion detection
dc.subject.keyworduser modeling
dc.subject.keywordlearning analytics
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/965


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem