• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detecting algorithmically generated malicious domain names

Compartir
Ficheros
Detecting_Algorithmically_Generated_Malicious_Domain_Names_-_2010_EN.pdf (278.1Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1263
Metadatos
Mostrar el registro completo del ítem
Autor(es)
Yadav, Sandeep; Kumar Reddy, Ashwath; Narasimha Reddy, A.L.; Ranjan, Supranamaya
Fecha
2010-11-01
Resumen
Recent Botnets such as Conficker, Kraken and Torpig have used DNS based “domain fluxing” for command-and-control, where each Bot queries for existence of a series of domain names and the owner has to register only one such domain name. In this paper, we develop a methodology to detect such “domain fluxes” in DNS traffic by looking for patterns inherent to domain names that are generated algorithmically, in contrast to those generated by humans. In particular, we look at distribution of alphanumeric characters as well as bigrams in all domains that are mapped to the same set of IP-addresses. We present and compare the performance of several distance metrics, including KL-distance, Edit distance and Jaccard measure. We train by using a good data set of domains obtained via a crawl of domains mapped to all IPv4 address space and modeling bad data sets based on behaviors seen so far and expected. We also apply our methodology to packet traces collected at a Tier-1 ISP and show we can automatically detect domain fluxing as used by Conficker botnet with minimal false positives
Materias
Q Science::Q Science (General)
Q Science::QA Mathematics::QA75 Electronic computers. Computer science
T Technology::T Technology (General)
T Technology::TA Engineering (General). Civil engineering (General)
T Technology::TK Electrical engineering. Electronics Nuclear engineering
Compartir
Ficheros
Detecting_Algorithmically_Generated_Malicious_Domain_Names_-_2010_EN.pdf (278.1Kb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1263
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!