Show simple item record

dc.contributor.authorFernández Anta, Antonio 
dc.contributor.authorMilani, Alessia
dc.contributor.authorMosteiro, Miguel A.
dc.contributor.authorZaks, Shmuel 
dc.date.accessioned2021-07-13T09:58:41Z
dc.date.available2021-07-13T09:58:41Z
dc.date.issued2012-08
dc.identifier.issn0178-2770
dc.identifier.urihttp://hdl.handle.net/20.500.12761/1131
dc.description.abstractThe topic of this paper is the study of Information Dissemination in Mobile Ad-hoc Networks by means of deterministic protocols. We characterize the connectivity resulting from the movement, from failures and from the fact that nodes may join the computation at different times with two values, α and β, so that, within α time slots, some node that has the information must be connected to some node without it for at least β time slots. The protocols studied are classified into three classes: oblivious (the transmission schedule of a node is only a function of its ID), quasi-oblivious (the transmission schedule may also depend on a global time), and adaptive. The main contribution of this work concerns negative results. Contrasting the lower and upper bounds derived, interesting complexity gaps among protocolclasses are observed. More precisely, in order to guarantee any progress towards solving the problem, it is shown that β must be at least n − 1 in general, but that β ∈ Ω(n 2/ log n) if an oblivious protocol is used. Since quasi-oblivious protocols can guarantee progress with β ∈ O(n), this represents a significant gap, almost linear in β, between oblivious and quasi-oblivious protocols. Regardingthe time to complete the dissemination, a lower bound of Ω(nα + n 3/ log n) is proved for oblivious protocols, which is tight up to a polylogarithmic factor because a constructive O(nα + n 3 log n) upper bound exists for the same class. It is also proved that adaptive protocols require Ω(nα + n 2), which is optimal given that a matching upper bound can be proved for quasi-oblivious protocols. These results show that the gap in time complexity between oblivious and quasioblivious, and hence adaptive, protocols is almost linear. This gap is what we call the profit of global synchrony, since it represents the gain the network obtains from global synchrony with respect to not having it.
dc.language.isoeng
dc.publisherSpringer Science+Business Media
dc.subject.lccQ Science::Q Science (General)
dc.subject.lccQ Science::QA Mathematics::QA75 Electronic computers. Computer science
dc.subject.lccT Technology::T Technology (General)
dc.subject.lccT Technology::TA Engineering (General). Civil engineering (General)
dc.subject.lccT Technology::TK Electrical engineering. Electronics Nuclear engineering
dc.titleOpportunistic Information Dissemination in Mobile Ad-hoc Networks: The Profit of Global Synchronyen
dc.typejournal article
dc.journal.titleDistributed Computing
dc.type.hasVersionVoR
dc.rights.accessRightsopen access
dc.volume.number25
dc.issue.number4
dc.identifier.urlhttp://www.springer.com/computer/communication+networks/journal/446
dc.identifier.doiDOI: 10.1007/s00446-012-0165-9
dc.page.final296
dc.page.initial279
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttp://eprints.networks.imdea.org/id/eprint/44


Files in this item

This item appears in the following Collection(s)

Show simple item record