Mostrar el registro sencillo del ítem
Brief Announcement: Achieving Reliability in Master-Worker Computing via Evolutionary Dynamics
dc.contributor.author | Christoforou, Evgenia | |
dc.contributor.author | Fernández Anta, Antonio | |
dc.contributor.author | Georgiou, Chryssis | |
dc.contributor.author | Mosteiro, Miguel A. | |
dc.contributor.author | Sánchez, Ángel | |
dc.date.accessioned | 2021-07-13T09:55:41Z | |
dc.date.available | 2021-07-13T09:55:41Z | |
dc.date.issued | 2012-07-16 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12761/1083 | |
dc.description.abstract | This work considers Internet-based task computations in which a master process assigns tasks, over the Internet, to rational workers and collect their responses. The objective is for the master to obtain the correct task outcomes. For this purpose we formulate and study the dynamics of evolu- tion of Internet-based master-worker computations through reinforcement learning. | |
dc.language.iso | eng | |
dc.subject.lcc | Q Science::Q Science (General) | |
dc.subject.lcc | Q Science::QA Mathematics::QA75 Electronic computers. Computer science | |
dc.subject.lcc | T Technology::T Technology (General) | |
dc.subject.lcc | T Technology::TA Engineering (General). Civil engineering (General) | |
dc.subject.lcc | T Technology::TK Electrical engineering. Electronics Nuclear engineering | |
dc.title | Brief Announcement: Achieving Reliability in Master-Worker Computing via Evolutionary Dynamics | en |
dc.type | conference object | |
dc.conference.date | 16-18 July 2012 | |
dc.conference.place | Funchal, Madeira, Portugal | |
dc.conference.title | The 31st Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (ACM PODC 2012) | * |
dc.event.type | conference | |
dc.pres.type | paper | |
dc.type.hasVersion | VoR | |
dc.rights.accessRights | open access | |
dc.page.final | 226 | |
dc.page.initial | 225 | |
dc.subject.keyword | Internet-based task computing | |
dc.subject.keyword | Evolutionary dynamics | |
dc.subject.keyword | Re- inforcement learning | |
dc.subject.keyword | Algorithmic mechanism design | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | http://eprints.networks.imdea.org/id/eprint/357 |