• español
    • English
  • Login
  • español 
    • español
    • English
  • Tipos de Publicaciones
    • bookbook partconference objectdoctoral thesisjournal articlemagazinemaster thesispatenttechnical documentationtechnical report
Ver ítem 
  •   IMDEA Networks Principal
  • Ver ítem
  •   IMDEA Networks Principal
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Model of Self-Avoiding Random Walks for Searching Complex Networks

Compartir
Ficheros
A_Model_of_Self-Avoiding_-_2011_EN.pdf (1.537Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1014
ISSN: 0028-3045
DOI: DOI: 10.1002/net.20461
Metadatos
Mostrar el registro completo del ítem
Autor(es)
López Millán, Víctor M.; Cholvi, Vicent; López, Luis; Fernández Anta, Antonio
Fecha
2012-09
Resumen
Random walks have been proven useful in several applications in networks. Some variants of the basic random walk have been devised pursuing a suitable trade-off between better performance and limited cost. A self-avoiding random walk (SAW) is one that tries not to revisit nodes, therefore covering the network faster than a random walk. Suggested as a network search mechanism, the performance of the SAW has been analyzed using essentially empirical studies. A strict analytical approach is hard since, unlike the random walk, the SAW is not a Markovian stochastic process. We propose an analytical model to estimate the average search length of a SAW when used to locate a resource in a network. The model considers single or multiple in stances of the resource sought and the possible availability of one-hop replication in the network (nodes know about resources held by their neighbors). The model characterize networks by their size and degree distribution, without assuming a particular topology. It is, therefore, a mean-field model, whose applicability to real networks is validated by simulation. Experiments with sets of randomly built regular networks, Erd ̋s–R ́nyi networks, and scale-free networks of several of several sizes and degree averages, with and without one-hop replication, show that model predictions are very close to simulation results, and allow us to draw conclusions about the applicability of SAWs to network search.
Materias
Q Science::QA Mathematics::QA75 Electronic computers. Computer science
Q Science::QA Mathematics::QA76 Computer software
T Technology::T Technology (General)
T Technology::TA Engineering (General). Civil engineering (General)
T Technology::TK Electrical engineering. Electronics Nuclear engineering
Compartir
Ficheros
A_Model_of_Self-Avoiding_-_2011_EN.pdf (1.537Mb)
Identificadores
URI: http://hdl.handle.net/20.500.12761/1014
ISSN: 0028-3045
DOI: DOI: 10.1002/net.20461
Metadatos
Mostrar el registro completo del ítem

Listar

Todo IMDEA NetworksPor fecha de publicaciónAutoresTítulosPalabras claveTipos de contenido

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

Difusión

emailContacto person Directorio wifi Eduroam rss_feed Noticias
Iniciativa IMDEA Sobre IMDEA Networks Organización Memorias anuales Transparencia
Síguenos en:
Comunidad de Madrid

UNIÓN EUROPEA

Fondo Social Europeo

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional

UNIÓN EUROPEA

Fondos Estructurales y de Inversión Europeos

© 2021 IMDEA Networks. | Declaración de accesibilidad | Política de Privacidad | Aviso legal | Política de Cookies - Valoramos su privacidad: ¡este sitio no utiliza cookies!