
Efficiency of Virtualization over MEC plus Cloud
Vincenzo Mancuso∗, Paolo Castagno†, Matteo Sereno†

∗ IMDEA Networks Institute, Madrid, Spain † University of Turin, Italy

Abstract—We study average performance and costs for routing
service requests in a virtualized environment, where either the
MEC or the Cloud can serve user’s requests. Employing a
simple yet precise analytical model validated via simulation, we
focus on latency, service request losses, energy consumption, and
provider utility. The model is very effective in providing insight
and guidelines for setting up server selection strategies with
different characteristics (e.g., energy consumption, penalties, etc.)
and performance requirements. In particular, our results show
that the MEC is latency-efficient but incurs higher costs than
Cloud, and then, to make its use sustainable, it is desirable that
the MEC server is powered with renewable source energy.

I. INTRODUCTION

The Mobile-Edge Computing (MEC) architecture aims to
bring computing capabilities as close as possible to mobile
subscribers [1]. This technology is a crucial ingredient of a
variety of applications, such as autonomous driving, smart
factory, virtual and augmented reality, and smart city applica-
tions. In this type of architecture, multiple small-scale server
farms dedicated to the MEC computation are either co-located
with base stations or placed within the backhaul ring [2]. User
services can be provided by MEC hosts or Cloud datacenters,
with different characteristics, because the MEC is character-
ized by computational resources (CPU/memory/storage) that
are rather limited compared to those offered by the Cloud.
However, the MEC can be reached with much lower delay,
because of proximity. Energy consumption and costs can be
also quite different for reaching and using either MEC or
Cloud resources, the latter being generally more cost-efficient.
Thereby, we suggest that MEC and Cloud resources should
be combined to provide virtualized services with good perfor-
mance and high energy efficiency. We study performance and
costs of such system.

Related work. A relevant issue in virtualizing services via
the MEC instead of the Cloud concerns energy consumption
and strategies that could be used for its optimization. Several
recent papers address these issues. For instance [3], [4] and
[5] propose methods to optimize the energy consumption
in the MEC by using different assumptions/scenarios, while
[6] provides a summary of the possible applications of the
MEC computing paradigm in the field of energy consumption
optimization. In other studies, energy consumption and its op-
timization are tailored to specific application scenarios where
the energy consumption is a cost optimization issue. Energy
is a fundamental ingredient for the availability and reliability
of such systems, for instance with mobile edge and vehicular
MEC applications [7], or with MEC-assisted unmanned aerial
vehicles [8]. Existing studies neglect the possibility to integrate
MEC and Cloud paradigms, and there is no study on the

Fig. 1: System overview

efficiency of mixed MEC and Cloud virtualization solutions,
which is the object of our work.

Our contribution. We consider a simple application sce-
nario in which a set of users submit service requests to the
network. These requests can be processed either in a MEC host
or in the Cloud, according to a generic request routing strategy.
We develop an analytical framework to evaluate the average
latency, loss, energy consumption, and utility yielded by the
selected strategy. We use a discrete event simulator based on
OMNeT++ to validate the model, and show that relying on
both MEC and Cloud is key to achieve high energy efficiency
and good service quality. The MEC results to be less cost-
effective than the Cloud, but it offers low latency, and, given
its small scale, could be run on green energy sources to make
its adoption sustainable.

II. MEC-CLOUD VIRTUALIZATION

We consider the system illustrated in Fig. 1. Mobile users
are connected to a base station, which in turn is connected to
a backhaul subsystem. A MEC server is also attached to the
same backhaul. A Core network connects the backhaul to the
Internet, where a Cloud server is located.

Users generate service requests with arrival rate λ, which are
sent for computation to a server running at either a MEC host
or in the Cloud. We assume that the request can be dropped
by the server, but not by network nodes. Routing a request
towards the MEC or the Cloud is decided according to a
probabilistic routing policy which sends a request to the MEC
with probability α.

A request is a message of PR bits, on average. When
it reaches a server, some computation is carried out, which
requires F floating-point operations, and a response is sent,
consisting of PS bits, on average. The intensity of served
requests that are delivered to the mobile users is ξ ≤ λ.

The total service time is T , which includes the transfer of
the request to a server, the computation time at the server, and
the transport of the server response back to the user.

Access. Service requests access the network via a base
station, with the RACH procedure. The average time spent
in the RACH, that we denote by TA, is practically constant

and the RACH is loss-less as long as the request rate is below
a few thousands per second [9], as we consider in this paper.

Base station forwarding. Once a user has obtained a grant
to access the network, she can send the actual service request
to the base station, who has sliced resources to store and
forward the request towards a server. This uplink process
incurs latency depending on the arrival rate λ and the service
rate µU . In the downlink, the base station will receive service
answers with intensity ξ and serve with rate µD.

Backhauling. The backhaul consists in typically one or
more optical rings that connect several base stations and
MEC servers, as described in [10]. With network slicing, the
backhaul can be seen as a set of point-to-point links between
base stations and MEC hosts. Service rates in the backhaul are
indicated as µBu and µBd for uplink requests and downlink
server responses, respectively.

Reaching the Cloud. The Core connects backhaul and
Cloud. We represent the path as two links to and from the
Cloud, although each link represents tens of hundreds of high-
capacity links. We denote by µCu and µCd the service rate at
the Core to and from the Cloud, respectively.

Service at MEC or Cloud. At the MEC host and at the
Cloud server, we assume that service requests are served as
in a FIFO queue with one or more processors and a finite
buffer. The number of processors represents the number of
virtual machines or CPU cores allocated to the service. The
computation needed to provide service occurs at rate µM
requests/s at the MEC and µC at the Cloud. We denote by
πM and πC the corresponding buffer overflow (i.e., the loss).

Energy for networking. We distinguish between various
sources of energy consumption: (i) negotiating network access
over the RACH, (ii) user uplink transmissions, (iii) base
station’s transmissions to users, (iv) backhaul transmissions,
and (v) Core network transmissions. For the RACH, we also
consider that failures result in retransmissions at progressively
higher transmit power, according to the standard power ramp-
ing scheme of 3GPP [11].

Energy for service execution. A service at the MEC or at
the Cloud incurs an energy cost mainly due to computation
or proportional to that. Thus, we assume that the service
cost is proportional to the number of CPU cycles, thereby
proportional to the average service time, be it µ�1

M or µ�1
C . The

coefficient that multiplies the service time, however, could be
different for MEC and Cloud, because of the efficiency of the
different hardware used at the MEC and at the Cloud.

III. MODEL

A. Network

1) Access: Assuming that RACH losses are negligible, we
can neglect the effects of RACH timeouts, finite number
of RACH retries, and blocking at the base station queue.
Therefore, using the RACH model presented in [9] with
failures only caused by radio issues, the probability that a
request succeeds in i RACH attempts can be obtained as

pA(i) = e�
i(i�1)

2

�
1 − e�i

�
, (1)

which does not depend on the arrival rate λ (at least before
the arrival rate becomes comparable to the RACH capacity).

The average number of RACH attempts is

nA =

1X
i=1

i pA(i) =

1X
i=1

i e�
i(i�1)

2

�
1 − e�i

�
1.42. (2)

The average latency is the latency in a successful attempt
plus the latency in nA − 1 failed attempts:

TA =
W

2
+ (nA − 1) (Z + E[BA]) , (3)

where W is the maximum time allowed in between a success-
ful request is sent to the RACH and a grant is issued, Z < W
is the maximum time to accept a request at the base station,
and E[BA] is the average RACH backoff time taken after a
RACH failure, before a new attempt.

2) Base station, backhaul and Core: We use an M/M/1
FIFO queue to model the behavior of each network segment
traveled by a service request. Therefore, we have 6 indepen-
dent queues (base station, backhaul and Core in uplink and in
downlink), although the Core queues are only for the Cloud.

The arrival rate at the base station uplink queue is the
throughput of the RACH, which is λ, since we have assumed
that the RACH introduces no losses. Therefore, the average
time spent at the base station is 1

µU�λ . Similarly, the downlink
latency at the base station is 1

µD�ξ .
The expressions for latency at backhaul and Core links are

alike. We only have to consider that the backhaul sees arrival
rate λ in uplink and ξ in downlink, while the Core sees (1 −
α)λ in uplink and (1 − πC)(1 − α)λ in downlink.

The throughput, expressed in served requests per second, is
simply given by the following formula:

ξ = ((1 − πM)α+ (1 − πC) (1 − α)) λ = (1 − πL) λ, (4)

where the πL is the overall loss probability.
The average network latency for an accepted service request,

not considering the service itself, is as follows:

Tnet = TA +
1

µU − λ
+

1

µD − ξ
+

1

µBu − λ
+

1

µBd − ξ

+
(1 − πM)αλ

ξ
dM +

(1 − πC)(1 − α)λ

ξ

·
�
dC +

1

µCu − (1−α)λ
+

1

µCd − (1−πC)(1−α)λ

�
,

(5)

where dM and dC are the round-trip times of MEC and Cloud
in absence of traffic. This latency is strongly affected by the
value of α, which appears directly in the formula but also
affects the values of ξ and πC .

3) Network costs: The average cost incurred per time unit,
due to the network component is proportional to the utilization
of network elements:

�net = λEK

"
KX
i=1

ERACH(i)

#
+ λPREuser + (λPA+ξ PS)Ebs

+ (λPR+ξ PS)Ering + (1−α)λ (PR+(1−πC)PS)Ecore,
(6)

where ERACH(i) is the energy used in the transmission of
a RACH request at the i-th attempt (after i − 1 RACH
errors), which ramps up failure after failure, EK indicates the
average over the number of RACH attempts K, Euser is the
transmission energy per bit incurred by the user, Ebs is the
energy per bit at the base station—with PS bits per message
in downlink, and with a coefficient PA that expresses the
cost of RACH acknowledgements—Ering is the energy per
bit transmitted over the backhaul ring, and Ecore is the energy
spent per transmitted bit over the core.

B. Service

1) Average latency: The latency of a request entering an
M/M/n(�)/k(�) FIFO queue depends on the probability to find
a certain number of requests in the queue. The probability to
have j requests in the queue can be computed as

p(�)(j) =

8><>:
p(�)(0)

ρj
(�)

j! j = 0, · · · , n(�);

p(�)(0)
ρi

(�)

n(�)!n
i�n(�)

(�)

j = n(�) + 1, · · · , k(�),
(7)

where p(�)(0) is computed by using
Pk(�)

j=0 p(�)(j) = 1, and
π(�) = p(�)(k(�)) is the loss probability relative to arrivals at
the queue, be (·) either M or C.

The average latency in MEC or Cloud is a service time plus
the waiting time incurred in case to find j ≥ n(�) requests:

T(�)(j) =

(
1
µ(�)

, j < n(�);
1
µ(�)

+
j�n(�)+1

n(�) µ(�)
, n(�) ≤ j < k(�).

(8)

The overall average server latency in the system depends
on the routing probability, which affects the distributions of
served requests over MEC and Cloud:

Tserv =
(1−πM)αλ

ξ
E [TM] +

(1−πC) (1−α)λ

ξ
E [TC] .

(9)

2) Service cost: MEC and Cloud resources are only used
for service requests that reach the server when there is avail-
able space in the local queue. Therefore, the average cost per
second can be expressed as follows:

�serv = (1 − πM)αλF EM + (1 − πC) (1 − α)λF EC ,
(10)

where EM and EC are energy spent per CPU cycle at the
MEC and at the Cloud, respectively.

C. Utility

We model the utility of the system according to rewards,
penalties and costs. The reward of a successful service request
is denoted by R and is expressed in monetary units. However,
to account for the importance of latency, we discount a fraction
of the reward proportionally to the average latency of a served
request, with a coefficient Cl. Discounted rewards generate a
reward rate proportional to the intensity of served requests ξ.
Losses might incur a monetary penalty P , at a loss rate πLλ =
πL

1�πL
ξ (note that πL < 1 for any finite load). Eventually,

network and server costs are additive and so we scale �net

and �serv by a common coefficient Ce representing energy
cost. The resulting utility is:

U=R

�
1−Cl (Tnet+Tserv)−P πL

1−πL

�
ξ − Ce (�net+�serv).

(11)

The coefficient Cl can be set to 0 if the service is not
sensible to latency, or it can be set, e.g., to the inverse of
the maximal tolerable latency. Note that the resulting reward
could be negative in case of exceedingly high latency or high
penalty, which might make sense in case of strict service level
agreements. The utility function expresses the monetary flow
(e.g., in Eur/s) for the provisioning of a service when the
request rate is λ and the routing probability is α.

D. Approximated optimal α
It is intuitive that the optimal value of α must lead the sys-

tem as far as possible from loss. Based on this consideration,
we find near-optimal values of α.

Claim 1 (under-loaded system). If the costs Cl and P tend
to zero and the following conditions hold(

nM µM + nC µC ≥ λ,

nM µM ≤ nC µC ,
(12)

then for R large enough, the optimal value of the routing
probability is included in the following interval:h

max
�

0, 1 − nC µC
λ

�
,min

�
1,
nM µM
λ

�i
. (13)

Rationale: Since the system can serve all the traffic due to
the first condition, the loss can be taken towards zero, which
is always convenient in terms of utility if R is large enough,
so that the rewards grows with λ faster than the cost does.
Therefore, imposing that neither the MEC nor the Cloud suffer
losses, the following conditions are necessary:(

αλ ≤ nM µM ,

(1 − α)λ ≤ nC µC .
(14)

The above system is satisfied by all values of α in the range�
1 − nC µC

λ , nM µM

λ

�
. The range is non-empty because of (12).

Since values of α smaller than 0 and larger than 1 do not have
a physical meaning, the interval reduces to (13).

Claim 2 (overloaded system). If costs Cl and P tend to zero
and the following condition holds

nM µM + nC µC ≤ λ, (15)

then, for R large enough, the optimal value of the routing
probability is included in the following interval:hnM µM

λ
, 1 − nC µC

λ

i
. (16)

Rationale: Here losses cannot be avoided. Proceeding like
for Claim 1, we reach the following inequalities, which
guarantee full utilization of both MEC and Cloud:(

αλ ≥ nM µM ,

(1 − α)λ ≥ nC µC .
(17)

