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Abstract—The advent of the fourth Industrial Revolution (Industry 4.0) requires wireless networked solutions to connect machines.
However, the industrial environment is notorious for being averse to wireless communication, with traditional wireless resource
mechanisms prone to errors because of metallic objects. In this work, we propose to exploit the knowledge of location to derive context
information and dynamically allocate wireless resources in time and space to target devices. We exploit the spatial geometry of the
Access Points (APs) and we introduce a statistical model that maps the user position’s spatial distribution to an angle error distribution
and derive a hypothesis test to declare if the link is under metallic blockage or not. In order to avoid changes to the client side and
operate with a single interface radio, we use the same wireless network both for positioning and scheduling. We experimentally show
that our system can localize four mobile robots deployed in a very harsh environment with metal obstacles and reflections. Context
information applied to wireless resources protocol help increasing up to 40% of the network throughput in the above industrial-like
scenario.

Index Terms—Indoor localization system, wireless communication, industrial environment, context information, wireless protocol.

F

1 INTRODUCTION

The advent of Industry 4.0 solutions to automate manu-
facturing technologies [1] is challenging the way machines
execute complex tasks. Machines are becoming more au-
tonomous, flexible and cooperative, and wireless networked
solutions could ideally greatly help increase the productiv-
ity in these environments. However, environments strongly
affected by the presence of metallic objects, such as Industry
4.0 deployments, challenge the reliability of wireless com-
munication. In turn, the mere usage of wireless protocols
that have been designed for more traditional environments
(home, office, shops, etc.) results in networked solutions that
are prone to error in harsh environments. As of today, there
is a limited investigation of tailored wireless networked
solution for challenging and harsh environments.

Pervasive positioning is a cornerstone to enable several
data analytics and applications, and in this work we in-
vestigate its potential for networked solutions in harsh en-
vironments. While Location-Based Service (LBS) providers
are ready to exploit new and better position information
for data analytics and personalized services, the potential
for network applications of positioning data remains largely
unleashed. Positioning data may be exploited not only as a
service offered to customers, but also in the network core to
better allocate network resources based on the expected link
performance.

The idea is to take advantage of positioning data as a
type of context information to enable reliable mobile com-
munications, where context refers to the information consid-
ered to forecast the system evolution. Past work has mainly
focused on the problem of deriving Radio Environmental
Map (REM) from geo-localized measurement and applied
that to theoretical understanding of how to perform rate
prediction along the users’ trajectories in order to optimize
the scheduler allocation [2]. On the other hand, there is lack

of experimental work in this area. The challenge is that it
requires the integration of several network and positioning
software and hardware components involving a large sci-
entific and engineering effort. As a result, there is limited
experimental understanding of what is possible to do using
location for context-aware communication.

The experimental investigation of networking solutions
is of particular importance for the optimization of the
medium access control (MAC) protocol. The MAC has a
key role in the resource allocation in the network. It is
directly responsible for controlling access to the shared
communication resources. In most cases, the network de-
signer does not know about the network conditions and
has to assume that they may change during operation.
The traditional approach in MAC protocols to handle un-
known or changing conditions is to provide an adaptation
mechanism in order to adjust the operation to the actual
network load and signal-to-noise ratio (for instance, using
a different modulation scheme), and recover from failures
in data transmission (for instance, re-transmitting after a
longer back-off period). We also observe that there is some
similarity between metallic blockages for wireless signals at
sub 6 GHz and a larger variety of blockages for wireless
signals at mmWave frequencies. However, MAC designers
for communication at sub 6 GHz typically ignore the possi-
bility that the wireless channel could undergo total blockage
that can completely reflect the signal transmitted. Recovery
from such cases happens only at higher level through an
inefficient handover procedure that attempts to connect the
client to another AP in the network.

We investigate how to dynamically allocate MAC re-
sources to target devices, based on location data extracted
from a positioning and communication system. In order to
avoid changes to the client side and operate with a single in-
terface radio, we consider essential to use the same wireless
network both for positioning and communication. Our po-
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sitioning solution uses two-way Time-of-Flight (ToF) mea-
surements to compute the ranges from APs to targets [3].
The environment under study (w.iLab.2 testbed1 [4]) is full
of metal objects which block Radio Frequency (RF) signals
and cause strong reflections, impacting on the quality of
wireless communication. In [5], experiments with channel
sounder in the same Testbed confirmed that the presence of
metal obstacles causes much stronger multipath effects with
respect to office environments.

We target the analysis of MAC scheduling strategies
in this environment and aim at studying whether location
information can be leverage to optimize MAC scheduling
decisions.

For such very harsh environment, our contributions are:

� We exploit the spatial geometry of the deployed APs
of our positioning system and present a statistical
model to map the spatial likelihood of target device
position to an angle error distribution.

� We derive a hypothesis test to declare if the link
is under metallic blockage or not, and we propose
a location-aware MAC protocol that leverages our
hypothesis test to alleviate blockage and severe mul-
tipath in industrial-like scenarios;

� We integrate our location-aware MAC protocol in
the WiSHFUL architecture [4], which fully supports
hybrid (centralized and distributed) control and net-
work intelligence, and whose environment presences
strong metallic objects as in industrial scenarios.

Our experimental results show that our statistical angular
information can help increase the network throughput in
industrial-like scenarios for mobile (robots) devices. The ex-
perimental results show a throughput gain of 15% and 40%
for Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) and Time-Division-Multiple Access (TDMA)
protocols, respectively.

The reminder of this paper is organized as follows.
Section 2 presents related work in the area, and Section 3 de-
scribes the motivation behind our work. We then introduce
our angle error model and blockage detection algorithm to
detect the link state in Section 4. We then present the whole
system architecture in Section 5, and the testbeds in Sec-
tion 6. We show the experimental evaluations in Section 7,
and we draw the conclusion in Section 8.

2 RELATED WORK

Recently, the 5G Infrastructure Public Private Partnership
(5G PPP) has started to show interest in exploiting location
information beyond location services for emergency services
and lawful intercept, and has defined parameters that can
be exploited for coverage and capacity optimization as
well as mobility robustness optimization [6]. In this regard,
location-aware network management has the potential to
deliver a resilient network that could rapidly identifies
network issues as well as optimise the service performance.
In particular, having accurate mechanisms for mobile local-
ization is the key to guarantee seamless connectivity and
introduce new services [7].

1. http://doc.ilabt.imec.be/ilabt-documentation/

In the area of network optimization, past work has
mainly focused on building maps of metrics based on geo-
located measurements, a concept denoted as REM, from
geo-localized measurement [8], and being applied to prob-
lems such as frequency reuse planning [9], coverage anal-
ysis [10], or forecast scheduling [2], [11]. The latest refers
to a scheduling concept that utilizes rate prediction along
the users’ trajectories in order to optimize the scheduler
allocation. This work shares the same objective of opti-
mizing the rate allocation across a trajectory. However, it
largely differs from the body of work in the literature for
three fundamental reasons: i) we investigate an industrial
scenario, which presents unique propagation properties, ii)
we rely on location position estimates rather than REM
measurements, iii) we show that our solution works with
an experimental study rather than relying on simulations as
in past work.

Another area that shares some similarity with this work
is network allocation for mmWave frequencies, for which
an accurate location is needed, given the high direction-
ality of beams at these frequencies and the fragility of
the communication links at these frequencies. mmWave
suffers from obstacles, and similarly sub-6 GHz frequency
do in industrial scenarios. For instance, [12] used Angle
of Arrival (AoA) information from a low frequency com-
munication system to drive beam steering decisions for a
mmWave phased antenna array. In this area, past work has
showed that beam training can be accelerated assuming
the availability of context information such as the angle,
the orientation of the mobile device and its distance to the
AP [13], or the device location through Global Positioning
System (GPS) [14]. In particular the latter treats the location
accuracy as a given parameter. We instead develop an angle
error model based on the desired confidence level of the
estimated position. In [3], we introduced our positioning
system in the same testbed as in this work and evaluated
its performance for static and mobile devices, that we refer
in this work as User Equipment (UEs). We experimentally
showed that our system can localize four mobile robots
tracked together with a median error between 1.8 and 3.8 m.
Furthermore, in this industrial environment, we compared
our solution with the best known algorithms based on signal
strength measurements that showed an average error of 6-
7 m but with only one static target device. To the best of our
knowledge, there are no other works that have tested WiFi
positioning systems in industrial-like environments.

3 CONTEXT-AWARE RESOURCE ALLOCATION

In this work we transmit communication and location data
using the same WiFi infrastructure. For localizing the de-
vices, we deploy our legacy WiFi positioning system [3].
The system uses ToF measurements collected from a set of
APs to localize a mobile device. Let us refer to Figure 1. Each
AP performs ToF measurements, which consists of sending
802.11 Probe Response messages which are ACKed by the
mobile device after the propagation time tp. Timestamps
are measured at the AP side at the end of Probe Response
transmission and ACK reception. From these timestamps,
the distance is estimated as:

d =
tMEAS � tACK � �T

2
� c; (1)
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Figure 1. High level representation of WiFi positioning of a mobile device with ToF measurements.

where c is the speed of signal propagation which is close to
the speed of light in air, tMEAS indicates the time between
the end of the Probe transmission and the reception of ACK,
tACK the duration of the ACK (known from the standard),
and �T is the implementation of the Short Interframe Space
(SIFS) of the standard. As studied in [15], this value must
be estimated, conducting measurements (only once) at a
known distance. Once distance measurements have been
collected, the Central Location Unit (CLU) is responsible of
positioning the target device. Details on the implementation
of our positioning system can be found in [3]. The system
may in the future also leverage the more recent Fine Time
Measurement (FTM) of the 802.11-2016 standard. However,
because our objective in this work is the experimental eval-
uation of context-aware resource2 allocation in industrial
environment, we exploit the facilities of the w.iLab.2 Wishful
testbed, which will be detailed in Section 5.

The environment under study is affected by strong
blockage due to metallic reflecting surfaces [5]. In this en-
vironment, a high number of reflections is encountered and
often there is blockage in the direct link between the AP and
the target device. The presence of metallic blockage causes
link outages and poor link performance. This condition
is stronger than in traditional indoor environments where
the wireless signal can still pass through the object with
refraction.

In order to characterize the environment under study,
we infer the number of dominant paths (clusters) k in our
industrial-like scenario. It has been shown that in typical
environments the number of dominant paths is up to 5 [16].
However, the industrial environment causes a larger num-
ber of reflections due to metallic structure. This is confirmed
by our experimental observations, and we illustrate this
problem in Fig. 2. The identification of the number of
clusters is performed using the lowest Akaike Information
Criterion [17]. We find that setting a maximum number of
clusters equal to k = 8 helps increase the accuracy of the de-
vice location estimation. Furthermore, we analyze for each
cluster the mean of the positioning error and the variance
over all estimated positions shown in Fig. 2. Table 1 shows
the obtained numerical results, highlighting the importance
of using a number of clusters equal to 8. For k=8, we achieve
the minimum positioning error and we keep a value of the
variance close to the minimum.

2. Note that the term resource indicates a transmitted packet.

k=1 k=3 k=5 k=8
mean of positioning error [m] 10.1 7.86 5.32 5.02

variance of estimated positions [m2] 0.39 1.51 1.16 0.84
Table 1

Mean of the positioning error and variance of the estimated positions
for different number of clusters.
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Figure 2. The environment under study is affected by strong blockage. In
this environment, a high number of reflections is encountered and often
there exists a blockage in the direct link between the AP and the mobile.
Clustering measurements assuming that each link may have multiple
reflections helps increase the accuracy in the positioning of the mobile
device (true position indicated with a cross). Using a maximum value of
cluster equals to 8 per link allows us to achieve the best performance in
terms of positioning accuracy.

Once the positioning system is laid out, we use location
data to elaborate mechanisms to allocate the network re-
sources more efficiently [18]. An illustration of the concept
is presented in Fig. 3, where we consider a system where
the network has access to the estimated UE location for
allocating the wireless network resources in time and space.
Furthermore, we assume that the location of metallic objects
in the environment is known, for instance through access to
the map of the environment.

The overall objective is that each AP avoids to transmit
communication data to a UE if it can anticipate though location
data that the UE is behind a metallic blockage. In fact, the link
would be totally disrupted in these conditions, or it could
reach the receiver only through several bounces through
the industrial environment which will inevitably make the
signal much weaker. We use the same infrastructure both
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Figure 3. The scenario under study in this work considers network re-
source allocation performed by the AP. We leverage context information
to allocate resources to mobile nodes.

for communication and localization, and we assume that
UEs that do not receive communication data from an AP
because of blockage is still reachable from some other AP in
the network. In order to make decisions for allocating the
network resources, in the ideal case of perfect knowledge
of location position, each AP should “draw a line” between
itself and the UE, and verify if there exists metallic blockage
in-between. Since noise and obstacles affect the positioning
system itself, the only line between the AP and the estimated
UE location does not ensure that the UE is affected by
blockage. For this reason, it is convenient to map position
information, including the error, into angular information, as
presented in the next Section.

4 ANGLE ERROR MODEL AND BLOCKAGE DETEC-
TION

Let us refer to Fig. 4, where the angle error � is the angle
observed by the AP between the real position P of the UE
and its estimated position P̂ . The presence and absence
of obstacles from the AP to the UE can be inferred from
two parameters: angle � and ranging from the AP to the
estimated position P̂ . As the position estimate P̂ has an
uncertainty that depends on the precision of the measure-
ment, we derive a statistical model of the angle error from
the estimated location P̂ , the spatial geometric information,
and the desired confidence level p that the true position P is
inside a given spatial area. In our scenario, the position P̂ is
estimated with WiFi ToF from a set of APs deployed in the
area. While each AP could also deploy multiple antennas for
Angle of Arrival (AoA) measurements, the latter approach
is less effective in a harsh environment as the industrial
scenario where the AP performing the measurements may
have a metallic blockage to the UE. In addition, we will see
that our method uses distance measurements to infer if the
UE is behind a blockage or not. This capability is inherent
to systems performing distance measurements. Therefore,
we rely of multiple APs deployed in the area, and estimate
the UE location exploiting the APs with better connectivity
to the target device. Once the position is derived, the angle
can be derived as performed by our model introduced in
the next Section. The model that we present will be used in
Section 4.4 to detect if the link between the selected AP and
the UE is affected by blockage.

4.1 From user position error to angle error
Let us refer to Fig. 4 where we consider a scenario with a
fixed AP and a mobile UE. We assume a 2D Cartesian coor-
dinate system. Extension to the 3D case is straightforward.

Figure 4. Mapping user position error to angle error.

The AP position is known and equal to pAP 2 R2�1. Given
x̂ = x+ ex and ŷ =y + ey , the UE’s real and estimated posi-
tions are pUE = P (x; y) 2 R2�1 and p̂UE = P̂ (x̂; ŷ) 2 R2�1,
respectively. The terms ex and ey represent the location
errors on the x- and y-axis, respectively.

Let us also define d̂ = kpAP � p̂UEk as the estimated
distance from the AP to the UE, and e =

p
ex2 + ey2 as

the UE position error. We draw the circle of radius e and
centered in p̂UE , and we then consider the triangle of
vertices pAP , p̂UE and the intersection between the line that
is tangent to the circle and crosses pAP . We then introduce
the angular region of width 2�, given by

� = sin�1(e=d̂) : (2)

Let us now define p 2 [0; 1) as the level of confidence of
the position error. A location error ep can be defined, which
maps, in turn, to an angle error:

�p = sin�1(ep=d̂) ; (3)

which holds for ep � d̂, i.e., �p � �
2 . For a given confidence

level p, the UE is located anywhere in the circle (inside or
in the border). Furthermore, from Eq. 3, a low p reduces the
width of the angular region, but it increases the probability
that the link detection fails.

4.2 Closed-form expression of CDF of location angle
error

We derive a closed-form expression of the Cumulative
Distribion Function (CDF) of the location angle error. We
aim to derive a function of parameters that can be esti-
mated by the positioning infrastructure and of the desired
confidence level. Let us consider ranges with normal dis-
tribution. We can then assume that the position error is
a bi-variate normal distribution, where the statistical pro-
cesses ex over the x-axis and ey over the y-axis have no
correlation, and that ex and ey have zero mean. We also
define dRMS =

p
�x2 + �y2 as the distance root-mean-

square error, where �2
x and �2

y , are the variance of ex and ey ,
respectively. Assuming that the sources of error in the x- and
y-axes have the same statistical distribution, the statistical
processes ex and ey have identical normal distributions with
� = �x = �y . It follows that dRMS =

p
2�2. We can then
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resort to the error modulus e =
q
e2
x + e2

y to describe the
position error, modeled as a Rayleigh CDF:

FE(e) = Pr(E � e) = 1� e� e2

2σ2 = 1� e� e2

dRMS2 : (4)

The dRMS is often referred to as “63% error distance”,
meaning that 63% of errors fall within a circle of radius
dRMS, i.e., Pr(E � dRMS) � 0:63 [19].

The CDF of the distance error in Eq. 4 can be mapped to
the location angle error CDF as follows:

F�(�) = Pr(� � �) = Pr(sin�1(E=d̂) � �)
= Pr(E � d̂ sin �) = FE(d̂ sin �) ;

(5)

which based on Eq. 4 can be expressed as:

F�(�) =

8<:1� e�
(

d̂
dRMS sin �

)2

� � �
2

1 � > �
2 :

(6)

We remark that the angular error in Eq. 6 is not a Rayleigh
function because of the trigonometric function sin. Further-
more, the function is non-continuous in � = �

2 .
Computing F�1

� (�), we can derive a closed-form expres-
sion of the location angle error �p as a function of geometric
parameters and the desired confidence level p 2 [0; 1):

�p = sin�1

�
dRMS

d̂

q
� ln (1� p)

�
: (7)

We can remove the dependence on dRMS by resorting
to the Horizontal Dilution of Precision (HDOP), used in
geomatics engineering to measure the multiplicative effect
of the geometry of the APs on the positioning accuracy
based on the (known) AP coordinates [20], [21].

For the formal definition of HDOP, we denote

PAP =
�
pAP

1 pAP
2 : : : pAP

N

�
2 R3�N

the matrix containing the AP coordinates. We can then de-
fine the matrix A containing the unit vectors of the direction
between each AP and the UE:

A =

26664
(pAP

1 � p̂UE)=kpAP
1 � p̂UEk �1

(pAP
2 � p̂UE)=kpAP

2 � p̂UEk �1
...

...
(pAP
N � p̂UE)=kpAP

N � p̂UEk �1

37775 (8)

and formulate the matrix Q = (ATA)�1 2 R4�4. The
HDOP can be then computed as:

HDOP =
p

Q11 + Q22 : (9)

For instance, when the visible APs are in the same line
as the UE or close (as it would occur measuring the distance
from multiple antennas in the same AP), the geometry is
unfavorable for positioning and the HDOP value is high. In
contrast, in the ideal case of perfect spatial geometry (for
instance APs distributed in the corners of a square), the
HDOP is close to one for most of UE locations. Using the
HDOP, the dRMS can be expressed as follows [19]:

dRMS = HDOP � �d̂ ; (10)

where �d̂ is the standard deviation of the estimated dis-
tances for a specific location. Substituting Eq. 10 into Eq. 3

and computing F�1
� (�), we can derive the following closed-

form expression of the angle error �p:

�p = sin�1

�
HDOP �

�d̂
d̂

q
� ln (1� p)

�
: (11)

The model in Eq. 11 also shows that a low HDOP allows
us to reduce the error in the estimation of the angle �p. In
other terms, a correct deployment of the APs is important to
achieve good performance in the angle estimation.

4.3 Estimation process of the angle error
From the above analysis, the estimation process of the angle
error �p for a given confidence value p with respect to an
AP, APn, operates as follows:

� Estimate the UE position p̂UE;
� Compute the estimated distance d̂ = kpAP

n � p̂UEk,
where PAP =

�
pAP

1 pAP
2 : : : pAP

N

�
2 R2�N is the

matrix containing the AP coordinates, and �d̂ the
standard deviation over the observation period.

� Calculate the HDOP based on PAP and p̂UE accord-
ing to Eq. 8;

� Derive �p based on Eq. 11.

Algorithm 1: Link State Estimation

Input: p, PAP, p̂UE, position of metallic obstacles
Phase I: Angle error estimation process
Output: �p

1 Estimate UE position p̂UE via WiFi-based
localization.

2 Compute the estimated distance d̂ = kpAP
n � p̂UEk

and �d̂ the standard deviation over the observation
period.

3 Calculate the HDOP based on PAP and p̂UE

according to Eq. 9;
4 �p = sin�1

�
HDOP � �d̂

d̂

p
� ln (1� p)

�
5 �p = 2�p

Phase II: Blockage Detection
Output: H1; H2

6 if the position of a metallic obstacle falls within the
angular portion �p then

7 Calculate dob as the distance between the AP and
the metallic object

8 if d̂ > dob then
9 H1 = 0, H2 = 1

10 else
11 H1 = 1, H2 = 0

12 else
13 H1 = 1, H2 = 0

4.4 Blockage Detection
Algorithm 1 outlines the criterion we introduce to infer
the link state. Knowing the real position of the metallic
obstacles, let us define the hypotheses H1 and H2 as:(

H1 : “Non-blockage”
H2 : “Blockage”
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(a) Example I

(b) Example II

Figure 5. Impact of the choice of two different levels of confidence for the
estimated position on the blockage management. In the first example
shown in Fig. 5(a), choosing θ0.1 (p = 0.1) leaves out the blockage
(yellow box), causing false negative detection of blockage. A larger
confidence level, as p = 0.6, results in a larger angular region, which
includes the real UE position and hence the metallic obstacle. In the
second example shown in Fig. 5(b), the opposite holds where a large
confidence level results in false positive detection of blockage.

The test is as follows. Accept H2 (H2 = 1) if both
conditions below are fulfilled:

� The position of a metallic obstacle falls within the
angular portion 2�p;

� The estimated distance d̂ = kpAP � p̂UEk is higher
than the radius from the AP to the metallic object.

Stay with H1 (H1 = 1) otherwise. Given the strong link
quality degradation in presence of metallic blockage, we
allocate the wireless network resources for those links that
satisfies the hypothesis H1 only.

Two examples of the impact of the choice of the desired
confidence level p are shown in Fig. 5. In fact, as shown in
the first example of Fig.5(a), choosing a low p = 0:1 reduces
the width of the angular region, but it may not be sufficient
to detect the blockage (false negative detection of blockage).
In contrast, a larger confidence level, as p = 0:6, results in
a larger angular region, which includes the real UE position
and hence the metallic obstacle. In the other case shown in
Fig. 5(b) the opposite holds, and a large confidence level
results in false positive detection of blockage.

5 SYSTEM ARCHITECTURE

We integrate our location-aware network resource allocation
(cf. Section 3) in the WISHFUL architecture [4] in order to

investigate how location information can help MAC pro-
tocols. WiSHFUL integrates multiple experimentation plat-
forms for which a software architecture devised to simplify
MAC or PHY protocol prototyping was already available. In
this work we leverage the Wireless MAC Processor (WMP)
platform [22]. The WMP platform was developed exposing
an Application Programming Interface (API) for controlling
the driver, by enabling the possibility to specify the con-
figuration parameters of the WiFi chipset in a declarative
language.

Algorithm 2: Location-aware resource allocation
Option 1: TDMA
Input:

�!
H1;TDMA NUMBER OF SLOT

Output: Resource allocation for each UE
NUE = length(

�!
H1)

for i = 0 to NUE � 1 do
if
�!
H1(i) = 1 then

Assign slots to UEi over the total available
TDMA NUMBER OF SLOT based on the
desired throughput - fairness trade-off

Option 2: CSMA/CA
Input:

�!
H1

NUE = length(
�!
H1)

for j = 0 to NUE � 1 do
if
�!
H1(j) = 1 then

Push packet for UEj in the AP buffer

5.1 Mechanism for resources allocation

In order to allocate MAC resources based on context aware-
ness, we leverage the local, global and hierarchical control
programs of the WiSHFUL control framework and imple-
ment logic in both global and local control program that
use the WMP platform. The WMP implements both the
standard 802.11 CSMA/CA as well as TDMA access pro-
tocol or radio programs. For both protocols, communication
occurs in the unlicensed 2.4 GHz band to unmodified target
devices.

Algorithm 2 outlines the whole location-aware wire-
less resource allocation protocol. Concerning the TDMA
protocol, we use as input data

�!
H1, the vector result of

blockage detection for all UEs associated to the AP, and
the parameter TDMA NUMBER OF SLOT. Doing so, the
length of

�!
H1 corresponds to the number of the total UEs,

NUE . For each associated UE, we check its hypothesis H1

value and we allocate the wireless network resources only
if H1=1. The allocation of wireless resources depends on the
applied network strategy based on the desired throughput
- fairness trade - off. In the example of Fig. 6, we just show
the most simple strategy, where all the available slots are
equally distributed between all the active UEs. Regarding
the CSMA/CA protocol, we push packets in the AP buffer
for UEs that satisfy the hypothesis H1 only.
TDMA. In the TDMA radio program, slots are defined as
time intervals wherein packet flows can transmit through
the traditional Distributed coordination function (DCF)
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scheme of 802.11. We enhance the TDMA mechanism to
allow for finer scheduling decisions, as explained next. We
divide the channel access in periodic frames, and each frame
in time slots. To avoid transmission collisions, all nodes are
tightly synchronized to the same reference time provided
from the AP by the Time Synchronization Function (TSF).
We activate each radio program after an explicit signaling
from the control program used to transmit parameters to
configure channel access scheme. The TDMA radio program
has three main parameters:

� TDMA SUPER FRAME SIZE - Duration of periodic
frames used for slot allocations in �s;

� TDMA NUMBER OF SLOT - Number of slots in-
cluded in a super frame;

� TDMA ALLOCATED MASK SLOT - Pattern of
used slots in frame;

Fig. 6 shows an example of 3 TDMA frames where two
stations are active and each frame has 5 slots. For instance,
in the first frame, the TDMA ALLOCATED MASK SLOT
parameter of the UE1 is configured to use the slots 1, 2
and 3 (pattern:”11100”), while the UE2 is configured to use
the slots 4 and 5 (pattern:”00011”). The logic for activating
the TDMA protocol and setting the relative mask pattern is
embedded into the experiment control program.
CSMA/CA. In the CSMA/CA radio program, the channel
access is not divided by periodic frames and each resource is
allocated singularly, without waiting for periodic frames. In
fact, in CSMA/CA, as soon as the node receives a packet to
be sent, it checks if the channel is clear. If this is the case, the
packet is sent, otherwise the node waits for a random period
of time until the channel is clear and it can then transmit
the packet. At the AP side, all the packets are pushed in a
buffer, ready to be sent to some specific UE. In CSMA/CA
Allocation of Fig. 6, we can see three different moments
where the buffer is accumulating packets just for reachable
UEs.

6 TESTBEDS

We perform experiments in the Testbed I that can be con-
sidered representative of an industrial indoor environment.
A picture of the testbed is shown in Fig. 7(a). Testbed I
presents open spaces surrounded by metal obstacles where
radio communication has notorious difficulties. One of the
key aspects is the fact that metallic objects create a strong
blockage component. In Fig. 7(b) we show a scenario of the
industrial testbed, where yellow squares indicate metallic
objects. Additional metallic objects are tubes presented in
the area (c.f. Fig. 7(a)). All APs use Alixes boards and UEs
are all robots based on the Turtlebot II Robotic platforms.
For further performance assessments, we also deploy and
test our positioning system in another testbed (Testbed II).
The latter is an office environment covering a total area of
300 m2, where concrete walls separate the office from the
open area, and significant multipath is present. The map of
the proposed scenario is shown in Fig. 8.

7 EVALUATION

In this section, we experimentally evaluate the angular error
model and the criterion for blockage detection introduced

in Section 4.4. We then evaluate the exploitation of context
awareness with CSMA/CA and TDMA MAC resource allo-
cation in Section 7.2.

7.1 Angular error model and blockage detection
After introducing the location angle error model in Section 4
and the criterion for blockage detection in Section 4.4, we
use our data sets collected from WiFi localization measure-
ments to analyze the performance and the validity of our
proposed solutions.

7.1.1 Angle Error Model
We use the data set of Testbed II in order to analyze and val-
idate the location angle error model introduced in Section 4.
More specifically, for the study we use the following inputs:

i) the estimated AP-UE distance d̂ from real experi-
ments

ii) the standard deviation �d̂ over the observation pe-
riod

iii) HDOP computed based on the known position of the
five APs.

Fig. 9 shows the CDFs of the angle error at UE1 and UE9

locations using the model in Eq. 11. The CDFs shown in
Fig. 9 confirm their dependence on d̂ (c.f. Eq. 6): the larger d̂,
the smaller the angle � required to achieve a desired level of
confidence. The results in Fig. 9 can be used to obtain �p. In
fact, by selecting on the y-axis a desired level of confidence
p for the position estimate, we can obtain the corresponding
�p on the x-axis.

In order to assess the validity of this approach, we then
compare the theoretical values computed using Eq. 11 (as in
Fig. 9) with the experimental distribution of �p. Using this
data set, we then compute the normalized median of the
angle error between the experimental and the theoretical
outputs across all UE positions with respect to the exper-
imental results, and we show the results in Fig. 10. For a
p level higher than 0.1, we observe that our location angle
error model matches very well the experimental findings.
In absolute terms, our statistical model provides a median
location angle error of 1:44� with p = 0:1 and 2:21� with
p = 0:4 with respect to the measured one. This shows that
multipath is efficiently handled by our positioning system,
and it does not affect significantly the validity of the model.

7.1.2 Blockage Detection
We use the data set of Testbed I to analyze the proposed
criterion for blockage detection, formerly introduced in Sec-
tion 4.4. For this study, we use the closed-form expression
of the angle error presented in Eq. 11, and experimentally
evaluate the impact of the choice of the confidence level
p. The objective of the study is to understand the relation
between the confidence level p and the percentage of false
negative detection of blockage. The latter is shown in Fig. 11
for all confidence levels p. We can observe that reducing the
level p, and so the width of the angular region, we increase
the probability to have false positive detection of blockage.
In contrast, increasing the level p, we include the metallic
obstacle within a larger angular region, decreasing the prob-
ability to have false blockage detection. More specifically,
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Figure 6. WMP access scheme with resources (P) allocation.

(a) Illustration of the environment under study.
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(b) Scenario I.

Figure 7. Testbed I: industrial environment. Yellow boxes correspond to
metallic blockage.

a confidence level p = 0.7 is the best choice for blockage
detection in Testbed I. For this reason, we use this value for
the dynamic allocation of MAC resources in the next section.

7.2 Resource allocation
In this section we evaluate the exploitation of context
awareness for CSMA/CA and TDMA resource allocation
for mobile nodes deployed in Testbed I.

7.2.1 CSMA/CA
As first scenario for the evaluation of the exploitation of con-
text awareness, we consider a MAC based on CSMA/CA,

Figure 8. Testbed II: office environment.

where two robots are moving with respect to the AP. This
scenario is shown in Fig. 12(a), where the red circle indicates
the position of the AP, the green crosses the initial positions
of the mobile robots (UEs in the figure) and the blue lines
their trajectories. For these mobility tests, the robots are
moving along the trajectories on a straight line path at a
speed of approximately 0.5 m/s. The latter is kept constant
except for the turning points of 90� in the pathway. We have
considered this simple mobility model to avoid physical
collisions of the mobile robots with blocking metals. Starting
from the initial positions, each UE requests access to the
802.11 network and then a reliable link is established. Once
they move along their trajectories, the link quality decreases
due to the presence of huge metallic obstacles (yellow boxes
on the map), drastically reducing the network throughput.
We avoid this degradation applying the method presented
in Sec. 4.4, in order to allocate the wireless network re-
sources for those links that accept the hypothesis H1.

In order to measure the network throughput we use
the well known tool Iperf and we show the results in


