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AI-based Autonomous Control, Management, and
Orchestration in 5G: from Standards to Algorithms
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Abstract—While the application of Artificial Intelligence (AI)
to 5G networks has raised a strong interest, standard solutions
to bring AI into 5G systems are still in their infancy and have a
long way to go before they can be used to build an operational
system. In this paper, we contribute to bridging the gap between
standards and a working solution, by defining a framework
that brings together the relevant standard specifications and
complements them with additional building blocks. We populate
this framework with concrete AI-based algorithms that serve
different purposes towards developing a fully operational sys-
tem. We evaluate the performance resulting from applying our
framework to control, management and orchestration functions,
showing the benefits that AI can bring to 5G systems.

INTRODUCTION

Network control, management, and orchestration entail the
dynamic placement, configuration, and resource provisioning
of Virtual Network Functions (VNFs) within the Network
Function Virtualization (NFV) infrastructure. The complexity
of these operations exceeds substantially that of equivalent
tasks in legacy 4G LTE networks. There, the relatively limited
amount of variables in one-size-fits-all core and radio access
network domains accommodates management models that
mainly rely on expert monitoring and intervention. Instead,
the traditional human-based approach is hardly viable in vir-
tualized 5G networks where the coexistence of heterogeneous
mobile services, diversified network requirements, and tenant-
defined management policies create a need for specialized
and time-varying infrastructure deployments. This calls, in
turn, for automated solutions in the control, management, and
orchestration of the network.

Artificial Intelligence (AI) is a natural choice to support the
emerging need for autonomous network operation and man-
agement. 3GPP and other Standard Developing Organizations
(SDOs) have started delineating the road for the integration
of AI into the mobile network architecture. Such a process
starts with an efficient collection of data in the network
infrastructure and knowledge inference from these data, which
are paramount to effective AI-assisted decision-making. In this
sense, SDOs are pushing efforts towards defining AI-based
Data Analytics frameworks that are suitable for autonomous
and efficient control, management and orchestration of mobile
networks. For instance, 3GPP has incorporated the following
modules into its standardized architecture: (i) Network Data
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Analytics Function (NWDAF) [1], and (ii) Management Data
Analytics Function (MDAF) [2]. Other organizations, such
as the O-RAN alliance, envision similar entities in their
architectures [3]. ETSI has also defined comparable assisting
elements within the Industry Specification Groups (ISGs) on
Experiential Networked Intelligence (ENI) and Zero touch
network & Service Management (ZSM) [4]. Furthermore,
open-source initiatives such as ONAP [5] are also including
data analytics into their architecture.

All these ongoing efforts are, however, at an early stage.
The frameworks they propose and the solution designs they
foster are preliminary and mainly aim at introducing several
key building blocks at a very high level of abstraction. They
are still far from detailed, full-blown network data analytics
that are ready for deployment.

In this context, the goal of this paper is to complement
and support ongoing standardization activities by (i) propos-
ing a comprehensive framework that leverages data analytics
for network control, management and orchestration, bringing
together the corresponding efforts at relevant initiatives such
as 3GPP, ETSI and O-RAN; and (ii) populating the proposed
framework with practical algorithms that build on AI and
machine learning (ML) solutions.

AI-DRIVEN DATA ANALYTICS FRAMEWORK

Figure 1 depicts the network data analytics framework we
propose. The framework design encompasses the Management
and Orchestration plane as well as the Control plane function-
alities, as AI can indeed improve the performance at all levels.
Within each plane, we take as reference architecture the one
proposed by 3GPP, integrating it with an ETSI NFV MANO
architecture and expanding it with O-RAN modules.

Management and Orchestration plane

In the Management and Orchestration plane, the MDAF
module is responsible for the so-called Management Data
Analytics Service (MDAS) for all network slice instances, sub-
instances and network functions hosted within the network
infrastructure. This involves the centralized collection of net-
work data for subsequent publishing to other network manage-
ment and orchestration modules. In the proposed framework,
we specifically employ this service to collect mobile data
traffic loads generated in the radio access domain by the
individual slices; in particular, the MDAS [2] comprises the
load level at both Network Function (NF) and network slice
levels, provided as a periodic notification and expressed either
in absolute terms or relative to the provisioned capacity. As
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Fig. 1: Proposed framework with standard functions (from
3GPP, ETSI and O-RAN) and the new AI-based algorithms
(AI-LTF, AI-MTF and AI-STF).

a result, the MDAF allows building historical databases of
the network demands for each base station and slice. These
data are then exposed to the AI-based prediction algorithms
for (i) long-term forecasting (AI-LTF), and (ii) mid-term
forecasting (AI-MTF).

The AI-LTF algorithm aims at assisting the VNF place-
ment decisions taken by the orchestration system. To this
end, AI-LTF leverages the network demand history to predict
the future aggregate load across the different infrastructure
locations. Then, the NFV Orchestrator (NFVO) compares
such a prediction against the current available capacity in
each infrastructure location and anticipates potential overload
conditions. The NFVO can react, e.g., by moving VNFs out of
the congested infrastructure (while meeting the requirements
of the corresponding network slice). The AI-LTF algorithm
operates on long timescales, typically in the order of hours:
indeed, VNFs repositioning is quite a drastic action that
involves substantial overhead, and consequently it is only
performed infrequently and as an answer to substantial traffic
fluctuations.

The second algorithm, AI-MTF, has a different purpose:
it fuels the resource scaling decisions taken by the VNF
Manager (VNFM). The VNFM has an interface with the Vir-
tual Infrastructure Managers (VIMs) to monitor the resource
usage of the VNFs of each slice, and it also leverages data
collected and published by the MDAF to determine the level
of unsatisfied demand and the amount of unused resources.
Based on all this information, the AI-MTF algorithm assists
the orchestration framework on the decision (i) to provide

more resources to the VNFs of a slice when the predicted load
exceeds the current resources, an operation typically referred
to as upscaling, or (ii) to downscale resources to save cost
when VNFs are leaving a significant fraction of the resources
unused. Such decisions must be taken over faster timescales
than those affecting the VNF placement, and generally occur
over intervals in the order of tens of minutes, which is the
typical frequency for the execution of new VNF instances
involving up- and downscaling.

Note that AI-LTF and AI-MTF only take as input the load
history from MDAF and do not interact between themselves or
with any other module. The forecasts of AI-LTF and AI-MTF
are fed into the NFVO and VNFM engines, which may instead
also leverage information obtained from other modules to take
their decisions.

Control plane

On the control plane, the NWDAF module is responsible
for collecting data on the load level of a NF or a network
slice [1], playing a very similar role to that of the MDAF in
the management domain. In our framework, these data are fed
to the AI-based short-term forecasting algorithm (AI-STF),
which predicts the future traffic load. The forecast is leveraged
by the Policy Control Function (PCF) module, which provides
a unified policy framework to govern the network behavior.
PCF can use the forecast provided by AI-STF to optimize its
policies, such as (i) the QoS parameters (for those services
that can be provided at different QoS levels), (ii) the access
and mobility policies, or (iii) the UE Route Selection Policy
(URSP). In contrast to the previous modules, these updates
are performed at rather fast timescales, down to hundreds of
milliseconds.

While the NWDAF module has been designed for the
network core, a similar approach can be applied to the radio
access network (RAN). Although 3GPP has not yet proposed
modules equivalent to NWDAF in the RAN, other initiatives
such as the O-RAN alliance have taken this path. In the
ORAN architecture [3], the Radio Network Information Base
(RNIB) collects load information of flows or flow aggregates at
the RAN level, the RAN Intelligent Controller (RIC) enables
near real-time control of RAN elements/resources, and the
RAN resource orchestrator handles the overall resources at the
base station level. In this case, the AI-STF forecasts can be
leveraged by the RIC to perform the optimization of the radio
resources at a fine time granularity (in the order of hundreds
of ms) and by the RAN resource orchestration to update the
resource and bandwidth allocation at larger timescales (up to
the order of minutes).

AI-BASED ALGORITHMS DESIGN

The above framework introduces three new AI-based algo-
rithms: AI-LTF, AI-MTF and AI-STF. The three algorithms
follow the same design guidelines, as all of them aim at
providing network capacity forecasts. The main difference
between them is that they work at different granularity in terms
of traffic volume (at global, slice, or flow levels) and timescale
(intervals of hours, tens of minutes, minutes or shorter). In
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the following, we present the unified design of these three
algorithms.

Capacity forecasting

In contrast to the majority of the literature in the area
of forecasting, our algorithm design addresses an original
problem of ‘capacity forecasting’. Capacity forecasting goes
beyond the typical estimation of future demands that is tar-
geted by most traffic predictors. Indeed, predictors in the
literature almost exclusively aim at matching the temporal
behavior of traffic as closely as possible, giving the same
weight to positive and negative errors [6]. While this approach
produces forecasts that reduce as much as possible the error
between the future and the anticipated demand, it is unsafe in a
capacity allocation context where the metric of interest is the
cost incurred by an operator when deploying the resources,
rather than the error between the real and the forecasted
demand. In this case, underestimating future demands causes
SLA violations that have a monetary penalty much higher than
the cost resulting from overprovisioning the resources, as long
as the level of overdimensioning is not excessive.

In contrast to the above legacy approaches, the aim of ca-
pacity forecasting is to find the level of capacity that suffices to
meet the expected load at (almost) all times, even if this comes
at the price of requiring a certain level of overprovisioning. To
perform such capacity forecasting, we rely on AI techniques,
which have been repeatedly shown to outperform traditional
statistical models in mobile traffic prediction tasks that are
kin to the capacity forecasting problem at hand [6], [7]. In
particular, our design takes advantage of recent advances in
supervised learning via Deep Neural Network (DNN) archi-
tectures, which –unlike other approaches– are well suited to
cope with the high dimensionality of the mobile data traffic,
the complex spatial and temporal correlations it entails [8], and
the non-linear metric of interest that characterizes our problem.

Algorithm design overview

Our algorithm design builds on recent proposals that prop-
erly model the monetary costs incurred by the mobile network
operator [9]. It is based on the following workflow. First,
current and past mobile traffic information, collected at the
desired level of granularity, is properly formatted into an
input suitable for feeding the prediction algorithm. This input
is fed to a DNN architecture that processes input features
to provide an output value: the capacity forecast. During
the training phase, the output is used to evaluate a loss
function that quantifies the error with respect to the ground
truth (i.e., the label), accounting for the costs of resource
overprovisioning (i.e., allocating more capacity than needed)
and underprovisioning (i.e., allotting insufficient capacity to
meet the demand).

More precisely, time is divided into slots and data on the
actual traffic load is collected by MDAF, NWDAF and RNIB
for each slot. Such load refers to the total load (for the
AI-LTF algorithm), the load of individual slices (for the
AI-MTF algorithm) and the load of flows or flow aggregates
(for the AI-STF algorithm). Base stations are associated to

datacenters such that a datacenter serves the aggregated load
of all its associated bases stations. Our framework aims at al-
locating the required capacity at each datacenter or associated
network functions.

Our goal is to compute a constant capacity to be allocated in
the network datacenters over a future time horizon Th, based
on knowledge of the previous Tp traffic snapshots. The time
horizon models typical situations where the resource reconfig-
uration frequency is limited (e.g., by the NFV technology) and
the operator must decide in advance the amount of resources
that will stay assigned to a slice until the next reallocation
takes place. As discussed before, AI-STF, AI-MTF and
AI-LTF target short, intermediate and long time horizons,
respectively.

To perform capacity forecasting, we leverage a DNN com-
posed of suitably designed encoding and decoding phases,
which operate over an interval Th. The neural network ar-
chitecture is general enough that it can be trained to solve
the capacity forecast problem for (i) traffic loads with diverse
demand patterns, (ii) any datacenter, and (iii) any time horizon
Th. This allows leveraging the same DNN design to implement
all three algorithms. The design consists of the following three
components:

• Encoder: the historical mobile data traffic provided as
input is high dimensional, as it comprises a large number
of base stations as well as several network slices or
flows. The encoder projects this complex input space into
a latent low dimensional representation, which is then
analyzed to produce the needed prediction.

• Decoder: the decoder performs the actual forecast. The
decoder structure reflects the kind of output values that
shall be used to assist our framework, including the traffic
granularity (i.e., the datacenter and the traffic volume
level) and the time horizon.

• Loss function: the supervised learning strategy we adopt
requires that the algorithm can assess the goodness of
the outcome. To this end, we employ a dedicated loss
function to measure the quality of the capacity forecast
and steer the system during the training phase.

In the remainder of this section, we detail the implementa-
tion of the above three components. While the three algorithms
considered in this paper (AI-LTF, AI-MTF, and AI-STF)
share the same encoder structure, they output the forecasts over
different time horizons, which has an impact on the decoder
and the loss function computation.

Encoder and decoder structure
The neural network architecture used by the proposed

algorithms is summarized in Figure 2, and is composed of
an encoder-decoder sequence. The internal structures of the
encoder and decoder are inspired by recent breakthroughs in
deep learning for image and video processing [10]. Their
design stems from the intuition that subsequent snapshots
of the spatial distribution of the network data traffic can be
assimilated to frames in a video.

The encoder is composed of a stack of three three-
dimensional Convolutional Neural Network (3D-CNN) lay-
ers [10]. Convolutional Neural Networks (CNNs) are a kind
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Fig. 2: Neural network encoder-decoder structure.

of deep learning structure specialized to infer local patterns in
the feature space of a matrix input. Two-dimensional CNNs
(2D-CNNs) have been extensively utilized in image processing
to complete complex tasks on pixel matrices such as face
recognition or image quality assessment. 3D-CNNs extend 2D-
CNNs to address the case were the features to be learned are
spatiotemporal in nature, which adds the time dimension to
the problem and transforms the input into a 3D-tensor.

Since mobile network traffic exhibits correlated patterns in
space and time, we design an encoder that employs 3D-CNN
layers. We use a 3×3×3 kernel for the first 3D-CNN layer and
a 6×6×6 kernel for the second and third layers. This limits the
portion of input analyzed by each neuron to small regions – a
strategy known to perform well when the input has strong local
correlations. We employ ReLU activation functions, which
grant good performance and fast learning [11].

The decoder uses Multi-Layer Perceptrons (MLPs) [12],
a class of fully-connected neural layers where every neuron
of one layer is connected to every neuron of the next layer.
MLPs are able to learn global patterns in the input feature
space, which allows forecasting the target capacity leveraging
the local features extracted by the encoder. For the decoder
activation functions, we employ ReLU in all MLP layers
except for the last one, where a linear activation function
returns real-valued outputs. The last linear layer is capable
of performing multiple capacity forecasts in parallel (e.g., for
different slices or different datacenters).

For the training procedure, we employ the popular Adam
optimizer, a Stochastic Gradient Descent (SGD) method with
fast convergence properties [13]. This trains the neural network
model by evaluating at each iteration the loss function resulting
from the forecast and the ground truth, and back-propagating
it to tune the model parameters to minimize such loss.

Loss function design

The loss function drives the learning process and is thus
critical to the quality of the forecasting. To this end, it is
essential to ensure consistency between the target metric for
forecasting and the employed loss function. In mobile network
management, the relevant metric to assess the quality of the
capacity allocation is the cost incurred by the operator, referred
to as Operator Monetary Cost (OMC). This metric captures
the costs resulting from (i) forecasting a lower value than
the actual offered load (which leads to the provisioning of

insufficient resources), and (ii) predicting a higher value than
the actual one (which leads to allocating more resources than
those needed to meet the demand).

General-purpose loss functions like MSE or MAE are
clearly inappropriate to optimize the OMC. Indeed, these loss
functions weigh equally all errors independent of whether the
forecasting falls above or below the real value, and hence
cannot learn the actual impact of different types of errors.
Instead, a customized loss function is required to determine
the actual penalty caused by a prediction error. In particular,
by setting the loss function equal to the penalty inflicted by a
given error in terms of OMC, the neural network is trained to
minimize the metric of interest. In line with this, we design
the loss function as follows:

• A constant penalty β is associated to each time slot where
the allocated resources are lower than those needed in
reality, leading to an SLA violation. Such penalty value
can be customized to the desired behavior, e.g., higher
values may be used for cases where reliability is needed,
such as for URLLC network slices; instead, lower values
can be applied for slices with more relaxed requirements.

• A monotonically increasing cost is attributed to resource
overprovisioning, with a fixed rate of γ per overpro-
visioned byte. The more the resources (unnecessarily)
provisioned, the higher the deployment cost for the oper-
ator. This reflects the deployment expenditure associated
with excess allocated capacity, which we assume that
grows linearly with the amount of unused capacity. The
linear scaling factor γ is configurable and represents the
monetary cost of the excess resource allocation.

The configuration of the two cost models above can, in
fact, be controlled by a single parameter α defined as the
ratio between β and γ. Intuitively, α represents the amount of
overprovisioned capacity that the operator is willing to deploy
to avoid committing an SLA violation. Operators can use α
as a knob to steer the operational point of the system towards
higher expenses in resource deployments but reduced chances
of SLA violations, or vice-versa.

The resulting loss function is flexible enough to accom-
modate different infrastructure locations (e.g., deploying re-
sources at the network edge has a higher cost than at the
core), resource types (e.g., radio resources are sensibly more
expensive than CPU resources) and SLA strategies (e.g., slices
providing critical services may entail higher violation fees).
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PERFORMANCE EVALUATION

We evaluate the proposed framework with real-world data
traffic recorded in the mobile network of a major European
operator, providing coverage to a large metropolitan region.
Our dataset includes information about the exchanged traffic
of the most popular services, which we classify into seven
categories (streaming, social network, web, cloud, gaming,
messaging and miscellaneous). It includes per-service traffic
information provided as an aggregate over 5-minute intervals
at 470 base stations. The data spans 11 weeks, of which we
use 8 weeks for training, 2 for validation, and one for testing.

For the sole purpose of evaluating our algorithms with real
traffic, we assume that each service category is assigned a
dedicated slice, and adopt the methodology proposed in [14] to
build a network topology model that associates network traffic
to NFs and datacenters. Our topology comprises different net-
work levels ranging from the edge (the lowest level) to a fully
centralized node (the highest level), such that higher network
level nodes aggregate more traffic and serve a larger load. We
refer to the highest level node as ‘core network datacenter’
and the lowest level ones as ‘edge network datacenters’.

Unless otherwise stated, we fix Tp = 6 (which means that
the forecasting modules are fed with data of the previous 30
minutes of traffic) and configure α = 1 (implying that one
SLA violation has the same monetary cost as provisioning an
excess capacity sufficient to cover the traffic peak).

AI-LTF: Long-term forecasting for VNF placement

The long-term forecasting capabilities provided by the
AI-LTF algorithm are useful to make decisions about the
suitable placement of the VNFs serving one or more slices.
To evaluate its performance, we consider a scenario where a
datacenter with processing capacity C serves the seven slices
and assume that the computational demand of a given slice is
proportional to the amount of transmitted bytes.

In this case study, we set Th = 8 hours to account for the
fact that VNF placement decisions are typically taken with a
coarse time granularity of hours due to the limitation of the
underlying NFV technology. We focus on an edge network
datacenter and employ AI-LTF to support the VNF placement
decisions taken by the NFVO module by anticipating the
overall traffic load at the target datacenter. Then, the NFVO
can decide at every Th how many slices are served by the
datacenter of capacity C, and which slices shall instead be
placed elsewhere.

Figure 3 depicts the result obtained with AI-LTF against
that obtained with an oracle algorithm that assists the NFVO
with the knowledge of the real future demand (such an oracle
algorithm is unfeasible in practice but provides an optimal
benchmark to assess AI-LTF’s performance). We observe that
AI-LTF follows quite closely the oracle. The overall usage
of the deployed infrastructure remains high at all times. The
algorithm only moves more slices than needed away from
the datacenter on very limited occasions. In rare cases, it
places more slices than it should in the datacenter, leading
to an overload situation that results in computational outages
for the served slices; however, even when this happens, the
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Fig. 3: VNF placement of slices at one target datacenter. Oc-
cupation ratio (top) and number of admitted slices (bottom) for
each 8-hour orchestration period. The algorithm implemented
by the AI-LTF module is compared against an optimal but
unfeasible oracle solution with perfect knowledge of the future
traffic load.

actual overload levels are negligible. These results confirm
that AI-LTF is a promising solution to assist effective VNF
placement decisions.

AI-MTF: mid-term forecasting for NFVI scaling

Once the VNFs serving various slices are placed at a
given datacenter, it is possible to dynamically reallocate the
resources assigned to each slice within the capacity C of
the datacenter by scaling up or down the resources assigned
to each slice. The time dynamics involved in such up- and
downscaling are faster than those analyzed in the previous
experiment for the VNF placement. Indeed, resource provi-
sioning within the same datacenter (which involves booting
up a VNF and setting up the data plane) can be performed at
timescales of tens of minutes.

The AI-MTF algorithm can support such resource up- and
downscaling process. We investigate its performance in a
case study where the resources allotted to the slice serving
streaming traffic at a core network datacenter are scaled every
30 minutes. Results, shown in Figure 4, confirm that the
proposed algorithm yields remarkable accuracy. The allocated
capacity to the slice is scaled up and down to match closely
the demand generated by the service. As highlighted in
the bottom plot, the capacity allocated in excess is quite
small, which implies that limited resources are wasted due
to overprovisioning. Furthermore, the algorithm almost never
incurs underprovisioning, and thus it always serves the offered
demand and avoids violating the slice SLA.

AI-STF: short term forecasting for QoS policies

The optimization of policies and resource allocations for
individual flows or aggregates at different levels (PCF, RIC,
RAN resource orchestration) can be performed at shorter
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timescales than those considered before. In particular, depend-
ing on the specific operation, these updates can be performed
within intervals of a few minutes or less.

The AI-STF module is intended to back up this kind of
high-pace network management tasks. We provide an example
of application in Figure 5 for the case of resource allocation,
analyzing the network resources assigned to streaming flows
in an edge network datacenter based on the prediction returned
by AI-STF over time periods of Th = 5 minutes (which is the
finest time granularity available in our dataset). Specifically,
the figure shows the distribution of the ratio of allocated
resources to the demand, where a value below 1 denotes that
the capacity forecast is not sufficient to satisfy the demand,
while values above 1 mean that we allocated more capacity
than needed.

We observe that AI-STF is effective in provisioning suf-
ficient resources to serve the aggregate demand for streaming
flows while avoiding wasting too many resources in overpro-
visioning. We also observe that the parameter α can be tuned
to choose the desired trade-off between resource overprovi-
sioning and SLA violations. Larger α values, corresponding
to higher penalties for SLA violations, reduce significantly
the probability of underprovisioning, obviously at the cost of
increasing the amount of resources wasted in overprovisioning.

Overall performance

We next evaluate the overall performance of the three
algorithms when jointly running in a complete 5G system.
We consider the total load generated by the seven service cat-
egories at a core network datacenter where AI-LTF targets the
aggregate load at the datacenter, while AI-MTF and AI-STF
focus on the individual allocation for each service category.
The results, given in Table I, show (i) the percentage of
unserviced demand, and (ii) the cost gains provided by our AI-
based algorithms over a traditional forecasting technique [15].
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Fig. 5: Distribution of the ratio of the allocated capacity with
AI-STF over the aggregate demand of the streaming flows at
a target edge network datacenter. Different curves correspond
to diverse α ratios of the monetary penalty of SLA to the cost
of overprovisioning. The integral of the curve for values of
the abscissa below 1 corresponds to the probability of SLA
violation.

The results on unserviced demand confirm the effectiveness
of α in controlling the level of reliability at the expense
of a larger resource deployment. Indeed, when selecting a
sufficiently large α, we can achieve practically zero outages,
which may be suitable to support, e.g., URLLC services. Even
for low values of α, the overall unserviced traffic remains
reasonably low (below 1%). As expected, accuracy increases
when the predicted time horizon is shorter (which explains
why AI-STF outperforms AI-MTF for all α’s and AI-MTF
outperforms AI-LTF for α = 0.5 and α = 1) as well as when
the traffic aggregate is larger (which explains why AI-LTF
outperforms AI-LTF and AI-STF for α = 2).

The results on cost gains show the advantage of our ap-
proach over a traditional forecasting technique for time series,
namely a seasonal autoregressive integrated moving average
(ARIMA) model [15]. In order to better align the seasonal
ARIMA model with the requirements of the capacity fore-
casting problem, we augment it with a fixed overprovisioning
on top of the predicted traffic; in line with benchmarks in the
literature, we set an overprovisioning of 5% of the estimated
peak traffic [9]. The results confirm that our algorithms attain
much smaller operator monetary costs than the traditional
technique, with gains of up to 80%.

CONCLUSIONS

In this paper, we presented some of the challenges and
opportunities that AI offers in the context of 5G networks.
By defining a framework that joins contributions from various
initiatives and populating it with AI-based algorithms serving
different purposes, we showed how standards can be leveraged
to deploy AI-based 5G systems. Our performance evaluation
results illustrate the benefits of a proper integration of AI
into 5G. Importantly, this work also provides a basis to apply
AI to other functions within the 5G system beyond the ones
addressed in the paper.
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TABLE I: Unserviced demand and cost gains for AI-LTF, AI-MTF, and AI-STF and the overall system, for different α
values. The percentage of unserviced demand is given by the amount of traffic exceeding the capacity forecasted by AI-LTF,
AI-MTF, and AI-STF. Cost gains are computed as the difference between the costs of the traditional and the AI-based
approaches over the cost of the traditional approach. The cost of the overall system is computed as the sum of the costs of
the three algorithms.

Unserviced demand (%) Cost gains (%)
α = 0.5 α = 1 α = 2 α = 0.5 α = 1 α = 2

AI-LTF 0.53 % 0.43 % 0 % 37.85% 56.28% 80.52%
AI-MTF 0.09 % 0.08 % 2.4e-3 % 21.77% 64.4% 82.15%
AI-STF 8.5e-3 % 4.8e-4 % 3.4e-5 % 23.33% 66.44% 81.43%
Overall system 0.63 % 0.51 % 2.4e-3 % 31.04% 60.58% 81.09%
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