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Abstract

The Internet is an evolving ecosystem where a multitude of interconnected networks, or Au-

tonomous Systems (ASes), support global connectivity of end users. By providing economic in-

centives for routing traffic on behalf of other networks, interconnection agreements between ASes

are a cornerstone of the Internet. However, rapid Internet adoption, unrelenting traffic growth, and

increasing demands for quality and performance are challenging to cope with, provoke recurrent

conflicts over the economic settlement of interconnections, and question the capacity of the Inter-

net to provide critical services. Furthermore, with their capital-intensive network infrastructure,

the ASes’ need to recover costs complicates interconnection negotiations and settlements. Over-

coming the limitations and bottlenecks of the evolving Internet ecosystem, requires understanding

the economics of how networks interconnect and how traffic is routed through them.

This thesis studies the economic aspects of the interconnections between ASes, identifies

challenges hampering the future of the Internet, and proposes solutions to resolve them. We begin

by presenting the first analytical and empirical study on remote peering, an emerging type of inter-

connections that relaxes the geographical constraints of ASes and also facilitates interconnections

at a lower cost. Then we introduce Cooperative IP Transit (CIPT) and Transit for Peering (T4P),

two novel interconnection arrangements that reduce traffic delivery costs for the ASes. However,

some of the limitations are inherent to the current Internet architecture. To overcome those con-

straints, we present Route Bazaar, a new Internet architecture that, inspired by the use of the block

chain mechanism and cryptographic tools in cryptocurrencies, provides a contractual framework

for flexible interconnections with rich policies.
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2 Introduction

Underlying the skyrocketing growth of the Internet, there is a complex and evolving ecosys-

tem where a multitude of interconnected networks or Autonomous Systems (ASes) support global

connectivity of end users. While social, cultural, and political factors are central to the Inter-

net [35], this thesis studies the economic aspects of the physical interconnection of the networks

that compose it. To achieve universal end-to-end connectivity, an interdomain protocol, Border

Gateway Protocol (BGP) [92], allows networks to route traffic through intermediary networks.

However, it is rather the economic relationships between ASes than the physical connectivity that

dictate routing in the Internet. As a consequence, actual routes frequently deviate from the short-

est paths making the physical topology of the Internet a weak guesstimate of how the Internet

actually works.

In routing traffic on behalf of other networks, ASes seek compensation for the use of their

resources. In the dynamic Internet ecosystem, ASes deal with potentially untrusted networks and

changing traffic patterns. To cope with this uncertain environment, ASes negotiate interconnec-

tion agreements to secure payments for the use of their infrastructure as well as service conditions

and compensations in case of infringement.

1.1 Background: Internet interconnections

Overcoming the limitations and bottlenecks of the evolving Internet interconnection ecosys-

tem requires understanding the economics of how networks interconnect and how traffic is routed

through them. Two types of interconnection agreements dominate the Internet landscape: Inter-

net Protocol (IP) [155] transit and peering. Only a handful of huge ASes can access the entire

Internet without paying anyone for the reachability. For the vast majority of the other ASes, the

universal connectivity comes at the price of IP transit, or simply transit. Transit is a bilateral

arrangement where the customer pays the provider for connectivity to the global Internet. Transit

providers typically charge customers for the peak of its traffic with prices decreasing in quantity.

Subadditive transit prices reflect the economies of scale present in traffic transport.

Transit costs are a significant part of the overall costs of ASes [60,74,105] because the decline

of transit prices per Mbps is accompanied by the fast growth of transit traffic [186]. The problem

of reducing the transit costs has attracted notable solutions including Internet eXchange Points

(IXPs) [15, 55, 58], IP multicast [18, 28, 54, 82, 83], Content Delivery Networkss (CDNs) [146],

Peer-to-Peer (P2P) localization [49], and traffic smoothing [63,101,114]. One property that these

proposals share is their objective to reduce the amount of traffic that traverses transit links. Intu-

itively, the less traffic of an AS flows through those links, the lower the cost is for the AS.

Settlement-free peering is a cost-effective alternative to transit. If two ASes exchange their

traffic via a transit provider, their payments to the provider significantly exceed the cost of com-

municating the same traffic over a settlement-free peering link. The costs of the peering are mostly

related to the infrastructure and labor of maintaining the physical interconnection, either as a di-

rect link or through an IXP. However the potential of settlement-free peering to reduce the costs
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for both peers does not mean that the ASes will indeed establish and sustain such a relationship.

For instance, the ASes might view each other as competitors and be unwilling to reduce the costs

of the counterpart. Furthermore, the costs of each party depend on the peering-link traffic and AS

sizes. Additionally, political or security related concerns could apply, for instance an AS might

prefer to avoid specific regions or networks that could compromise the integrity of the traffic.

The early commercial Internet was essentially a hierarchy where smaller ASes paid bigger

ASes for the universal Internet reachability via transit links. Subsequent massive emergence of

peering enabled many ASes to exchange their customer traffic over a more economical settlement-

free peering links [56, 78]. The evolution kept increasing the diversity of inter-AS connection

types and introduced partial-transit and paid-peering links [70,191]. In contrast to the full transit,

a partial-transit link offers access to only a fraction of the global Internet address space. With paid

peering, one of the peering ASes pays the other peer for exchanging their customer traffic.

In parallel to the interconnection evolution [57], the types of ASes have evolved as well. Some

ASes run eyeball networks that primarily serve residential users. Other ASes concentrate on pro-

viding Internet access for content providers such as Yahoo or YouTube [70, 125]. While popular

content providers are the major sources of Internet traffic, an eyeball network acts mostly as a

traffic sink. Peering between content and eyeball ASes has been problematic not only because

their traffic flows are unbalanced but also due to the heterogeneity of network types. The diffe-

rences between content and eyeball networks complicate the issue of whether and how much one

network should pay the other for their peering. Because the costs associated with last-mile in-

frastructures are typically high for the eyeball AS (and significantly higher than the infrastructure

costs of the content AS), the eyeball AS can view the high costs as a just cause for demand-

ing a compensation from the content AS. Moreover, since these high costs represent substantial

barriers to entry in the eyeball-network market, the eyeball AS can try leveraging its significant

market power when negotiating a peering agreement with the content AS [70, 125, 140]. On the

other hand, the content AS can be reluctant to compensate the eyeball AS and even perceive such

compensation demands as a violation of network neutrality [127]. The lack of clarity about proper

conditions for eyeball-content peering has led to so-called peering wars [10, 25, 26, 154] which

disrupted the Internet connectivity and ultimately lead to the net-neutrality debate [55].

While the Internet has proven to be extremely scalable, an ever growing traffic volume, in-

creasing demands for quality and performance, and recurrent conflicts over the economic settle-

ment of interconnections arrangements depict a challenging landscape for the future Internet. The

traffic growth is a long-term trend [47, 110], even though the main application fueling the growth

has been changing from web browsing [65] to P2P file sharing [181] to video streaming [152].

The growing popularity of delay-sensitive applications such as video streaming or Voice over

IP (VoIP), together with the growing use of the Internet to provide critical services such as online

banking or health services, puts additional pressure on the Internet structure.



4 Introduction

1.2 Contributions

This thesis dwells on the economic aspects of the ASes’ interconnections challenging the

future of the Internet and how to overcome them. In the context of unrelenting traffic growth and

with most networks dependent on transit providers to attain global Internet reachability, despite

falling transit prices, transit charges are a substantial fraction of the costs for most ASes.

Even though peering allowed networks to reduce their transit costs, peering requires ASes to

be physically colocated. As expanding the costly network infrastructure to colocate with other

ASes is only affordable for ASes with large volumes of traffic, the initial wave of pervasive peer-

ing was lead by large content providers such as Google. In contrast to the ubiquitous presence

of these large ASes, most networks had a narrower IXP presence restricted to their geographical

footprint. Chapter 2 presents the first empirical and analytical study on the emerging phenomenon

of remote peering, which enables ASes to overcome geographical barriers. Remote peering is an

interconnection where a remote network reaches and peers with other networks via an interme-

diary called a remote-peering provider. By buying a remote-peering service, networks can peer

without extending their own infrastructures to a shared location. Because remote peering is not

observable with the typical data used for the understanding of Internet topologies, remote peering

has been largely unnoticed by the academic community despite its wide adoption.

Chapter 3 proposes Cooperative IP Transit (CIPT), a multilateral cooperative interconnection

mechanism that helps ASes to deal with the financial burden of transit costs. CIPT reduces the

price of transit per Mbps: by jointly purchasing the IP transit, two or more ASes reduce the transit

prices per Mbps for each AS involved in the CIPT.

With the specialization of ASes into content providers and eyeball networks, different cost

structures and rising traffic imbalances have resulted in the net neutrality debate and sparked

recurrent conflicts over peering settlements. To alleviate these tensions, Chapter 4 proposes and

evaluates Transit for Peering (T4P), a hybrid bilateral AS relationship that continues the Internet

trend towards more flexible interconnections at lower costs. With a T4P interconnection, one

AS compensates the other AS for their peering by providing this other AS with a partial-transit

service. In comparison to paid peering, T4P is able to reduce the combined transit/peering costs of

an AS. By reducing traffic imbalances at a reduced cost, T4P has a potential to relax the ongoing

tensions between content and eyeball ASes.

While innovations such as CIPT, T4P, and remote peering make the interdomain ecosystem

more flexible, many limitations in the current Internet are inherent to its interconnection frame-

work. Without explicit means for direct coordination among multiple networks, suboptimal rout-

ing and routes oscillation is frequent, and reaction to traffic-demand changes and infrastructure

failures is problematic and slow. To ease these drawbacks, Chapter 5 departs from the current

Internet interconnection framework and proposes instead Route Bazaar, a new Internet architec-

ture inspired in the blockchain mechanism and cryptographic tools employed by cryptocurrencies

mechanisms. Finally, Chapter 6 discusses related work, Chapter 7 considers future research, and

Chapter 8 concludes this thesis.
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6 Remote Peering

While the Internet economic structure is greatly important for security, reliability, and other

aspects of Internet design and operation, the structure remains poorly understood. Whereas

layer-2 protocols deals with linking two neighboring nodes, layer-3 protocols provide end-to-end

connectivity [107]. The Internet economic structure is typically modeled on layer 3 of Internet

protocols, partly because of the ability to infer economic relationships from BGP and IP measure-

ments.

In particular, BGP identifies ASes on announced paths, enabling inference of layer-3 struc-

tures where ASes act as economic entities interconnected by transit or peering relationships [76].

ASes are imperfect proxies of organizations, e.g., multiple ASes can be owned by a single organi-

zation and act as a single unit. Nevertheless, AS-level topologies [40,183] have proved themselves

useful for reasoning about Internet connectivity, routing, and traffic delivery. Despite the useful-

ness, layer-3 models struggle to detect and correctly classify a significant portion of relationships

in the dynamic economic structure.

Internet flattening refers to a validated evolutionary trend where major content providers ex-

pand their networks to directly connect with eyeball networks, that primarily serve residential

users, and thereby reduce the number of intermediaries on end-to-end paths [30, 56, 78]. Flatten-

ing opposes the hierarchical structure characterizing the early commercial Internet, where smaller

networks paid bigger ones for the universal reachability via transit links. The emergence of peer-

ing allowed networks to bypass transit providers, weakening the role of the latter in the Internet

structure.

The flattening trend is commonly conflated with a trend towards more peering. Indeed, direct

interconnections between content and eyeball networks are mostly peering relationships. Further-

more, cost reductions offered by peering serve as economic incentives for content providers to

expand their networks. The peering is typically done at IXPs [1,15,32]. These layer-2 infrastruc-

tures keep growing in the number of their members and amount of peering traffic.

This chapter presents the first empirical and analytical study on an emerging phenomenon of

remote peering that separates the trends of increasing peering and Internet flattening. Remote

Directly 

peering 

network

Remotely 

peering 

network
Remote-peering 

provider

IXP

Looking 

Glass 

server

Ping request

Layer-2 switch

IP router

Figure 2.1: Directly and remotely peering networks, and probing them from an LG server
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peering is an interconnection where a remote network reaches and peers with other networks via

a layer-2 intermediary called a remote-peering provider. By buying a remote-peering service,

networks can peer without extending their own infrastructures to a shared location. While remote

peering enables additional peering, the increase in peering does not flatten the economic structure.

Remote-peering providers include not only new companies, such as IX Reach [99] and Atrato IP

Networks [12], but also traditional transit providers that leverage their traffic-delivery expertise to

act as remote-peering intermediaries. Hence, remote peering means more peering without Internet

flattening.

This chapter reports two measurement studies and a mathematical model that generalizes

the empirical findings. First, we develop a ping-based method that conservatively estimates the

spread of remote peering. We apply the method in 22 IXPs worldwide and detect remote peers

in more than 90% of the studied IXPs, with remote peering by up to 20% of the members at an

IXP. Our second study evaluates how remote peering can affect traffic patterns. Based on ground

truth traffic in a research and education network, we estimate the amount of transit traffic that

this network might offload via remote peering at 65 IXPs. The results show significant offload

potential, around 25% of the traffic in some scenarios. While the measurements reveal dimin-

ishing marginal utility of remote peering at additional IXPs, we generalize this property in the

mathematical model and derive conditions for economic viability of remote peering.

By demonstrating the wide spread and significant traffic offload potential of remote peering,

our results challenge the research community’s reliance on layer-3 topologies in representing the

Internet economic structure. Because remote-peering providers are layer-2 entities, they are in-

visible on layer 3. Oblivious of the layer-2 intermediaries, layer-3 perspectives do not distinguish

between remote peering and direct peering. Thus, layer-3 models fail to expose that remote peer-

ing separates the trends of increasing peering and Internet flattening. Our findings identify a need

to reflect the presence of layer-2 entities in the Internet economic structure.

The wide spread of remote peering has broader implications for Internet research. The pres-

ence of intermediaries that are invisible on layer 3 adds to the security concerns as remote peering

introduces invisible intermediaries that could monitor traffic or deliver it through undesired ge-

ographies. For Internet accountability, it is a challenge to associate an action with the responsible

invisible entity. When a provider offers transit and remote peering, buying both might not yield

reliable multihoming. As a new economic option, remote peering opens a whole new ballgame

for connectivity, routing, and traffic distribution, e.g., via newly enabled IXPs [119]. To sum up,

this chapter makes the following main contributions:

• This chapter reports the first systematic study of remote peering. The work illumi-

nates the emerging phenomenon that many in the research community are unaware of. Even

those who already know about remote peering benefit from our quantification of its wide

spread and significant traffic offload potential.

• Our work reveals separation between the trends of increasing peering and Internet
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flattening. While remote-peering providers enable additional peering, they act as interme-

diaries in the Internet economic structure.

• The results call for a rethink of modeling the Internet economic structure as layer-

3 topologies. There is a need to reflect the increasing presence of layer-2 entities in the

Internet structure.

• The demonstrated prominence of remote peering has broader implications for secu-

rity, accountability, reliability, economics, and other aspects of Internet research.

The rest of this chapter is organized as follows. Section 2.1 provides background on Internet

economic interconnections. Section 2.2 empirically studies the spread of remote peering. Sec-

tion 2.3 estimates a network’s potential to offload transit traffic to remote peering. Section 2.4

analyzes economic viability of remote peering versus transit and direct peering. Section 5.3 dis-

cusses broader implications of our findings. Finally, Section 2.6 sums up the chapter.

2.1 Interconnection landscape

We start by providing relevant background on economic relationships between networks in

the Internet.

2.1.1 Transit

Transit refers to a bilateral interconnection where the customer pays the provider for connec-

tivity to the global Internet. In a common setting, transit traffic is metered at 5-minute intervals

and billed on a monthly basis, with the charge computed by multiplying a per-Mbps price and

the 95th percentile of the 5-minute traffic rates [61, 180]. In the early commercial Internet, traffic

flowed mostly through a hierarchy of transit relationships, with a handful of tier-1 networks at the

top of the hierarchy.

2.1.2 Peering

Peering is an arrangement where two networks exchange traffic directly, rather than through a

transit provider, and thereby reduce their transit costs. The exchange is commonly limited to the

traffic belonging to the peering networks and their customer cones, i.e., their direct and indirect

transit customers. To reduce costs further, peering is typically done at IXPs.

Networks differ in their policies for recognizing another network as a potential peer. The

peering policies are typically classified as open, selective, and restrictive [122, 151]. An open

policy allows the network to peer with every network. A network with a selective policy peers

only if certain conditions are met. A restrictive policy has stringent terms that are difficult to

satisfy.
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Costs of peering and transit have different structures. Peering involves a number of traffic-

independent costs, e.g., IXP membership fees and equipment maintenance expenses at the IXP.

Peering also has traffic-dependent costs, e.g., IXP ports for higher traffic rates are more expen-

sive. Over the years, peering relationships have proven themselves as cost-effective alternatives

to transit.

Partly due to the lower costs, peering has spread widely, with the IXPs growing into major

hubs for Internet traffic. Peering relationships bypass layer-3 transit providers and thus make the

Internet flatter, at least on layer 3.

In this chapter, direct peering at an IXP refers to peering by a network that has IP presence in

the IXP location. If a network is not co-located with the IXP already, the network can establish its

IP presence at the IXP by contracting an IP transport service or extending its own IP infrastructure

to reach the IXP location.

2.1.3 Remote peering

Remote peering constitutes an emerging type of interconnection where an IP network reaches

and peers at a distant IXP via a layer-2 provider [24]. The remote-peering provider delivers traffic

between the layer-2 switching infrastructure of the IXP and remote interface of the customer. On

the customer’s behalf, the remote-peering provider also maintains networking equipment at the

IXP to enable the remote network to peer with other IXP members. Figure 2.1 depicts a typical

setting for the remote-peering relationship.

Remote peering provides a smaller connectivity scope than transit. Instead of global Internet

access, this service limits the connectivity to the reached IXP members and their customer cones.

Technologically, remote peering can be implemented with standard methods, such as those used

in layer-2 MPLS (MultiProtocol Label Switching) VPNs (Virtual Private Networks). The main

innovation of remote peering lies in its economics.

Remote peering has both traffic-dependent and traffic-independent costs. In comparison to

direct peering, the traffic-independent cost is lower, and the traffic-dependent cost is higher: the

remote-peering provider has multiple customers and reduces its per-unit costs due to traffic aggre-

gation and acquisition of IXP resources in bulk. Compared to transit, remote peering has lower

traffic-dependent costs. Thus, from the cost perspective, remote peering represents a trade-off

between direct peering and transit.

IXPs and remote peering are highly symbiotic. IXPs benefit from remote peering because

the latter brings extra traffic to IXPs, enriches geographical diversity of IXP memberships, and

strengthens the position of IXPs in the Internet economic structure. To promote remote peering,

AMS-IX (Amsterdam Internet Exchange), DE-CIX (German Commercial Internet Exchange),

LINX (London Internet Exchange), and many other IXPs establish partnership programs that

incentivize distant networks to peer remotely at the IXP. For example, some IXPs reduce mem-

bership fees for remotely peering networks. AMS-IX started its partnership program around year

2003. According to our personal communications with AMS-IX staff, about one fifth of the
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AMS-IX members were remote peers at the time of our study.

Implications of remote peering for transit providers are mixed. On the one hand, remote

peering gives transit customers alternative means for reaching distant networks. On the other

hand, remote peering is a new business niche where transit providers can leverage their traffic-

delivery expertise.

According to anecdotal evidence, remote peering successfully gains ground and satisfies di-

verse needs in the Internet ecosystem. In this chapter, we focus on usages where remote peering

at IXPs is purchased by distant networks or other IXPs. For example, AMS-IX Hong Kong and

AMS-IX interconnect their infrastructures via remote peering to create additional peering oppor-

tunities for their members [178]. We do not consider an alternative usage where remote peering at

an IXP is bought by a local network to benefit from cost reductions that remote peering provides

even over short distances [43].

2.2 Spread of remote peering

In this section, we report measurements that conservatively estimate the spread of remote

peering in the Internet.

2.2.1 Measurement methodology

Because remote peering is provided on layer 2, conventional layer-3 methods for Internet

topology inference are unsuitable for the detection of remote peering. For instance, traceroute

and BGP data do not reveal IP addresses or ASNs (AS Numbers) of remote-peering providers.

The basic idea of our methodology for detecting a remotely peering network at an IXP is to

measure propagation delay between the network and IXP. Specifically, we use the ping utility to

estimate the minimum RTT (Round-Trip Time) between the IXP location and the IP interface of

the network in the IXP subnet. If the minimum RTT estimate exceeds a threshold, we classify the

network as remotely peering at the IXP.

While our ping-based method is intuitive, the main challenges lie in its careful implementation

and include: identification of probed interfaces, selection of vantage points, adherence to straight

routes, sensitivity to traffic conditions, identification of networks, choice of IXPs, threshold for

remoteness, IXPs with multiple locations, impact of blackholing, and measurement overhead. We

discuss these challenges below.

Identification of probed interfaces: The targets of our ping probes are the IP interfaces of

the IXP members in the IXP subnet. IXP members do not typically announce the IP addresses

of these interfaces via BGP. To determine the IP addresses of the targeted interfaces, we look up

the addresses on the websites of PeeringDB [151], PCH (Packet Clearing House) [150], and IXP

itself.

Selection of vantage points: The ping requests need be launched into the IXP subnet from

within the IXP location so that the requests take the direct route from the IXP location to the
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probed interface. We send the ping requests from LG servers that PCH and RIPE NCC (Réseaux

IP Européens Network Coordination Centre) [164] maintain at IXP locations. Figure 2.1 depicts

our probing of IP network interfaces from an LG server at an IXP.

Adherence to straight routes: With our choice of the vantage points, the ping requests

and ping replies are expected to stay within the IXP subnet. It is important to keep the probe

routes straight because otherwise the RTT measurements might be high even for a directly peering

network. Potential dangers include an unexpected situation where the device of a probed IP

interface replies from one of its other IP interfaces and thereby sends the ping reply through

an indirect route with multiple IP hops. A more realistic danger is that some of our targeted

IP addresses are actually not in the IXP subnet because the respective website information is

incorrect. To protect our method from such dangers, we examine the TTL (Time To Live) field

in the received ping replies. When ping replies stay within the layer-2 subnet, their TTL values

stay at the maximum set by the replying interface [195]. When the path of a ping reply includes

an extra IP hop, the TTL value in the reply decreases. Therefore, we discard the ping replies with

different TTL values than an expected maximum. We refer to this discard rule as a TTL-match

filter. For the expected maximum TTL, our experiments accept two typical values of 64 and

255 hops. Although ping software might set the maximum TTL to other values (e.g., 32 or 128

hops), these alternative settings are relatively infrequent, and ignoring them does not significantly

increase the number of discarded ping replies in our experiments. Also, different ping replies from

the same interface might arrive with different TTL values, e.g., because the replying interface

changes its maximum TTL. Whereas we are interested in a conservative estimate for the extent of

remote peering, we discard all replies from an IP interface if their TTL value changes during the

measurement period. We call this rule a TTL-switch filter.

Sensitivity to traffic conditions: Even if a probe stays within the IXP subnet, RTT might

be high due to congestion. To deal with transient congestion, we repeat the measurements at

different times of the day and different days of the week for each probed IP interface, and record

the minimum RTT observed for the interface during the measurement period. This minimum RTT

serves as a basis for deciding whether the interface is remote. Again to be on the conservative

side, we exclude an IP interface from further consideration if we do not get at least 8 TTL-

accepted ping replies from this interface for each probing Looking Glass (LG) server. We call

this rule a sample-size filter. The limit of 8 replies and other parameter values in our study are

empirically chosen to obtain reliable results while keeping the measurement overhead low. If less

than 4 of the collected ping replies have RTT values within the maximum of 5 ms and 10% of

the minimum RTT, i.e., below RTTmin + max{5 ms, 0.1 · RTTmin}, we apply an RTT-consistent

filter to disregard the interface. For an IXP that has both PCH and RIPE NCC servers, we probe

each IP interface from both LG servers and exclude the interface from further consideration if the

larger of the two respective minimum RTTs is not within the maximum of 5 ms and 10% of the

smaller one. We refer to this rule as an LG-consistent filter.

Identification of networks: To identify the network that owns a probed IP interface, we
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IXP
IXP name

Location Peak Number Number of

acronym City Country
traffic of analyzed
(Tbps) members interfaces

AMS-IX Amsterdam Internet Exchange Amsterdam Netherlands 5.48 638 665

DE-CIX German Commercial Internet Exchange Frankfurt Germany 3.21 463 535

LINX London Internet Exchange London UK 2.60 497 521

HKIX Hong Kong Internet Exchange Hong Kong China 0.48 213 278

NYIIX New York International Internet Exchange New York USA 0.46 132 239

MSK-IX Moscow Internet eXchange Moscow Russia 1.32 367 218

PLIX Polish Internet Exchange Warsaw Poland 0.63 235 207

France-IX France-IX Paris France 0.23 230 201

PTT PTTMetro São Paolo São Paolo Brazil 0.30 482 180

SIX Seattle Internet Exchange Seattle USA 0.53 177 175

LoNAP London Network Access Point London UK 0.10 142 166

JPIX Japan Internet Exchange Tokyo Japan 0.43 131 163

TorIX Toronto Internet Exchange Toronto Canada 0.28 177 161

VIX Vienna Internet Exchange Vienna Austria 0.19 121 134

MIX Milan Internet Exchange Milan Italy 0.16 133 131

TOP-IX Torino Piemonte Internet Exchange Turin Italy 0.05 80 91

Netnod Netnod Internet Exchange Stockholm Sweden 1.34 89 71

KINX Korea Internet Neutral Exchange Seoul South Korea 0.15 46 71

CABASE Argentine Chamber of Internet Buenos Aires Argentina 0.02 101 68

INEX Internet Neutral Exchange Dublin Ireland 0.13 63 66

DIX-IE Distributed Internet Exchange in Edo Tokyo Japan N/A 36 56

TIE Telx Internet Exchange New York USA 0.02 149 54

Table 2.1: Properties of the 22 IXPs in our measurement study on the spread of remote peering

use the network’s ASN. We map the IP addresses to ASNs through a combination of looking up

PeeringDB, using the IXPs’ websites and LG servers, and issuing reverse DNS (Domain Name

System) queries. If the ASN of an IP interface changes during the measurement period, we

exclude the IP interface from further consideration. This exclusion rule is called an ASN-change

filter.

Choice of IXPs: In choosing IXPs, we strive for a global scope surpassing the regional

focuses of prior IXP studies. Our choice is constrained to those IXPs that have at least one

LG server. Under the above constraints, we select and experiment at 22 IXPs in the following

4 continents: Asia, Europe, North America, and South America. After manually crawling the

websites of the IXPs in January 2014, we collect data on their location, peak traffic, and number

of members. Table 2.1 sums up these data. While information at IXP websites is often incomplete,

out of date, or inconsistent in presenting a property (e.g., peak traffic), our measurement method

does not rely on these data. We report this information just to give the reader a rough idea about

the geography and size of the studied IXPs. For each studied IXP, Table 2.1 also includes the

number of analyzed interfaces, i.e., interfaces that stay in our analyzed dataset after applying

all 6 aforementioned filters. Across all the 22 IXPs, we apply the filters in the following order:

sample-size, TTL-switch, TTL-match, RTT-consistent, LG-consistent, and ASN-change. After

the filters discard 20, 82, 20, 100, 28, and 5 interfaces respectively, we have a total of 4,451

analyzed interfaces. The high count of TTL-switch discards is likely due to operating system

changes during our measurements.
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Figure 2.2: Empirical CDF of the analyzed interfaces according to their minimum RTTs

Threshold for remoteness: We classify a network as remotely peering at an IXP if the mini-

mum RTT observed for its IP interface at the IXP exceeds a threshold. Despite the redundancy of

our RTT measurements, the minimum RTT might still include non-propagation delays, e.g., due

to persistent congestion of the IXP subnet or probe processing in the network devices. To mini-

mize the possibility that such extra delays trigger an erroneous classification of a directly peering

network as remote, the threshold should be sufficiently high. Figure 2.2 plots the cumulative di-

stribution of the minimum RTTs for all the 4,451 analyzed interfaces. A majority of the analyzed

interfaces have minimum RTTs distributed almost uniformly between 0.3 and 2 ms. This is a

pattern expected for directly peering networks. The likelihood of a network being a direct peer

declines as the minimum RTT increases. Our manual checks do not detect any directly peering

network with the minimum RTT exceeding 10 ms. Thus, we set the remoteness threshold in our

study to 10 ms. While this relatively high threshold value comes with a failure to recognize some

remotely peering networks as remote peers, the false negatives do not constitute a significant con-

cern because we mostly strive to avoid false positives in estimating the spread of remote peering

conservatively.

IXPs with multiple locations: If an IXP operates interconnected switches in multiple loca-

tions, probes from an LG server at one location to an IP interface at another location might have a

large RTT. The chosen remoteness threshold of 10 ms is sufficiently high to avoid false positives

in cases where all locations of the IXP are in the same metropolitan area. False positives are possi-

ble if the geographic footprint of the IXP is significantly larger, e.g., spans multiple countries. We

do not observe such situations in our experiments. In a more common scenario, two partner IXPs

from different regions, e.g., AMS-IX Hong Kong and AMS-IX, interconnect by buying layer-2

connectivity from a third party. Our methodology correctly classifies such scenarios as remote
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peering.

Impact of blackholing: If a probed interface intentionally blackholes or accidentally fails to

respond to ping requests, the IP interface might be excluded from our analyzed data due to a low

number of ping replies for the interface, as discussed above. In a hypothetical (not observed in

our experiments) scenario where the probed interface forwards the probe to another machine that

sends a ping reply on the interface’s behalf, the ping reply is discarded by our TTL-match filter

and does not affect accuracy of our RTT measurements.

Measurement overhead: While our method relies on probing from public LG servers, it

is important to keep the measurement overhead low. The probes are launched through HTML

(HyperText Markup Language) queries to the servers. The LG servers belonging to RIPE NCC

and PCH react to an HTML query by issuing respectively 3 and 5 ping requests. For any LG

server, we submit at most one HTML query per minute and generally spread the measurements

over 4 months. The maximum number of ping replies received from any probed IP interface is 21

and 54 for respectively RIPE NCC and PCH servers.

We conducted the measurements during the 4 months from October 2013 to January 2014.

2.2.2 Experimental results

Figure 2.3 classifies all 4,451 analyzed interfaces across the 22 IXPs according to the min-

imum RTT measured for each interface. Despite using the high value of 10 ms for the remote-

ness criterion, the classification does not reveal remote interfaces in only two IXPs (DIX-IE and

CABASE), i.e., our conservative estimate finds remote peering in 91% of the studied IXPs. While

the numbers of remote interfaces are large in the 3 biggest IXPs (AMS-IX, DE-CIX, and LINX),

these numbers are also large at smaller IXPs such as France-IX in France, PTT in Brazil, JPIX in

Japan, and TOP-IX in Italy. Hence, our method independently confirms wide presence of remote

peering in the Internet economic structure.

The classification in Figure 2.3 looks at the remote interfaces in greater detail by considering

the following 3 ranges for the minimum RTT: [10 ms; 20 ms), [20 ms; 50 ms), and [50 ms; ∞)

which roughly correspond to intercity, intercountry, and intercontinental distances. We detect the

intercontinental-range peering at 12 IXPs, i.e., a majority of the studied IXPs. For example, Italian

network E4A remotely peers at both TIE and TorIX, based in the USA and Canada respectively.

Brazilian networks comprise most of the remote peers at PTT, the largest among the 21 IXPs of

the PTTMetro project in Brazil. The high fraction of remote interfaces at the Turin-based TOP-

IX likely results from the IXP’s interconnections with VSIX and LyonIX, two other Southern

European IXPs located in Padua and Lyon respectively.

Switching the perspective from the interfaces to the networks that own them, we apply our

network identification method (described in Section 2.2.1) to determine ASNs for 3,242 out of the

4,451 analyzed interfaces. While a network might have interfaces at multiple IXPs, we identify a

total of 1,904 networks. We refer to the number of the studied IXPs where a network peers as an

IXP count of the network. Figure 2.4a presents the distribution of the IXP counts for all the 1,904
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Figure 2.3: Classification of the analyzed interfaces according to their minimum RTTs

identified networks. While a majority of the networks connect to only one IXP, some networks

peer at as many as eighteen IXPs.

285 of the identified networks have a remote interface at a studied IXP. Business services

offered by the remotely peering networks are diverse and include transit (e.g., Türk Telecom),

access (e.g., E4A and Invitel), and hosting (e.g., Trunk Networks). Figure 2.4a also plots the

distribution of the IXP counts for all the 285 remotely peering networks. Both distributions in

Figure 2.4a are qualitatively similar, suggesting that the choice of IXPs for a network to peer is

relatively independent of whether the network peers directly or remotely.

We also examine the remotely peering networks with respect to the minimum RTTs of their

analyzed interfaces. For each IXP count, we consider all the analyzed interfaces of the remotely

peering networks with this IXP count and separate the interfaces into the following 4 categories

according to their minimum RTT: [0 ms; 10 ms), [10 ms; 20 ms), [20 ms; 50 ms), and [50 ms;

∞). Figure 2.4b depicts the fractions of these 4 categories. By definition, the remote peering

networks with the IXP count of 1 have no interfaces with the minimum RTT below 10 ms. As the

IXP count increases, the fraction of the remote interfaces tends to decline because some interfaces

of the remotely peering networks are used for direct peering. E4A exemplifies networks with a

large number of remote interfaces: 6 of its 9 analyzed interfaces are classified as remote.
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Figure 2.4: IXP-count distributions and interface classifications for identified networks

2.2.3 Method validation

While our methodology employs a series of filters and high remoteness threshold to avoid

false positives, this section reports how we validate the method and its conservative estimates of

remote peering.

First, we use ground truth at TorIX, an IXP located in Toronto. TorIX staff confirmed that

their members classified as remotely peering networks in our study are indeed remote peers. In

one case, the TorIX staff initially thought that a network identified as a remote peer by our method
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was rather a local member with a direct peering connection. Nevertheless, a closer examination

showed that throughout our measurement period this local member conducted maintenance of its

Toronto PoP (Point of Presence) and connected to TorIX from its remote PoP via a contracted

layer-2 facility.

Then, we take a network-centric perspective, focus on the E4A and Invitel networks, and

validate our classifications of their interfaces as remote. Based on the measurements, our method

classifies the E4A interfaces at DE-CIX, France-IX, LoNAP, TorIX, and TlE as remote. We

confirm that E4A indeed peers remotely at these 6 IXPs through private conversations as well as

IXPs public information [6, 123]. Our method identifies Invitel as a remote peer at AMS-IX and

DE-CIX, with RTTs of 22 and 18 ms respectively. Our private inquiries indicate that Invitel uses

remote-peering services of Atrato IP Networks to reach and peer at AMS-IX and DE-CIX.

Finally, we receive an independent confirmation that our RTT measurement methodology is

accurate. On our request, the TorIX staff measured minimum RTTs between the TorIX route

server and member interfaces. Their results for our analyzed interfaces closely match our RTT

measurements from the local PCH LG server. The mean and variance of the differences are

respectively 0.3 and 1.6 ms.

2.3 Traffic offload potential

While Section 2.2 demonstrates that remote peering is widespread, we now evaluate how

much transit traffic a network can offload to remote peering. Based on ground truth traffic, we

estimate the traffic offload potential and study its sensitivity to peering policies.

2.3.1 Traffic data

The main basis for our estimation effort is traffic in RedIRIS, the NREN (National Research

and Education Network) in Spain. RedIRIS is connected to GÉANT (backbone for European

NRENs), buys transit from two tier-1 providers, peers with major CDNs (Content Delivery Net-

works), and has memberships at two IXPs: CATNIX in Barcelona and ESpanix in Madrid. In

February 2013, we used NetFlow to collect one month of traffic data at the 5-minute granularity

in the ASBRs (Autonomous System Border Routers) of RedIRIS.

Our interest is limited to the traffic flows on the transit-provider links of RedIRIS. We classify

each such flow as inbound traffic or outbound traffic depending on whether RedIRIS respectively

receives the flow from its transit providers or sends the flow to them. The collected dataset

identifies networks by their ASNs and contains records for 29,570 networks that are origins of the

inbound traffic or destinations of the outbound traffic.

Utilizing the BGP routing tables in the ASBRs, we determine the AS-level path and traffic

rate for each of the traffic flows. While a network can be associated with a traffic flow in the

role of a traffic origin, destination, or intermediary, we classify the traffic flows associated with
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(a) Network contributions to the transit traffic and offload potential
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(b) Time series of the transit traffic and offload potential over the measurement period

Figure 2.5: Contributions by networks to the RedIRIS transit traffic and offload potential in sce-
nario 4

a network as its origin traffic (originated in the network), destination traffic (terminated in the

network), and transient traffic (passing through the network).

To illustrate the contributions of the 29,570 networks to RedIRIS’ transit-provider traffic, we

examine how much traffic each individual network contributes as an origin of the inbound traffic

and destination of the outbound traffic. Figure 2.5a plots the average traffic rates for the respective

inbound and outbound contributions by the individual networks during the measurement period.

The figure ranks the networks in the decreasing order of the contributions. While a few networks

make huge contributions close to the Gbps mark, most networks contribute little. In the range

where the networks are ranked about 20,000 and contribute average traffic rates around 100 bps,

the distributions of the inbound and outbound traffic exhibit a similar change in the qualitative

profile of the decreasing individual contributions, a bend toward a faster decline. Whereas the raw

data exhibit the bend as well, an explanation of the bend is an interesting question for future work.

Figure 2.5b reveals daily and weekly fluctuations in RedIRIS’ transit-provider traffic, which are

especially clear for the inbound traffic.

2.3.2 Offload scenarios

RedIRIS cannot offload all of its transit-provider traffic. The offload potential depends on

the set of IXPs that the network is able to reach via remote peering. Also, the memberships of

the reached IXPs do not include all the networks that contribute to the transit-provider traffic of
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RedIRIS. Finally, not all the members of the reached IXPs are likely to peer with RedIRIS.

For the set of IXPs that RedIRIS might be able to reach, we consider the Euro-IX association

formed, as of February 2013, by 65 IXPs from all the continents [67]. The considered 65 IXPs

are a superset of the 22 IXPs studied in Section 2.2, with the set enlargement made feasible by

removing the constraint of having LG servers in the IXPs. Based on Euro-IX data from February

2013, we limit potential peers of RedIRIS to the members of these 65 IXPs.

We further trim the group of potential peers by excluding the networks that are highly unlikely

to peer with RedIRIS. First, we do not consider the transit providers of RedIRIS as its potential

peers because transit providers typically do not peer with their customers. It is worth noting

that no network sells transit to these two tier-1 providers, and thus no such network needs to be

excluded due to its transitive transit relation with RedIRIS. Second, since RedIRIS already has

memberships in CATNIX and ESpanix, the other members of these two IXPs are disregarded as

candidates for remote peering with RedIRIS. In particular, we exclude all the other tier-1 networks

because they have memberships in ESpanix. Third, due to the cost-effective interconnectivity

that comes with the GÉANT membership, we do not consider the other GÉANT members as

potential peers of RedIRIS. After applying the above three rules, the group of potential remote

peers of RedIRIS reduces to 2,192 networks. Even after eliminating the highly unlikely peers,

there remains a significant uncertainty as to which of the 2,192 networks might actually peer with

RedIRIS.

To deal with the remaining uncertainty about potential peers, we examine a range of peer

groups, i.e., groups of networks that might peer with RedIRIS. Using PeeringDB which reports

peering policies of IXP members [122, 151], we compose the following 4 peer groups so that the

peering policies of their members comprise:

[peer group 1] all open policies;

[peer group 2] all open and top 10 selective policies,

which adds to peer group 1 the 10 networks that have the largest offload potentials among

the networks with selective policies;

[peer group 3] all open and selective policies;

[peer group 4] all policies, i.e., all open, selective, and restrictive policies.

Peer group 4 constitutes our upper bound on the likely peers of RedIRIS. When RedIRIS

reaches all the 65 IXPs, this peer group 4 includes all the aforementioned 2,192 networks. Peer

group 1 represents a lower bound on the networks that might actually peer with RedIRIS. It is

common for such open-policy networks to automatically peer with any interested IXP member

via the IXP route server [165].

For each peer group, we determine the offload potential of RedIRIS by fully shifting to remote

peering the traffic that the networks of this peer group and their customer cones contribute to the

transit-provider traffic of RedIRIS. While RedIRIS is in control of its outbound transit traffic, we
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assume that the networks of the peer group shift the inbound transit traffic of RedIRIS to remote

peering as well.

In addition to studying sensitivity of the offload potential to the peer groups, we also evaluate

its sensitivity to the choice of reached IXPs. Specifically, our evaluation varies the set of reached

IXPs from a single IXP to all the 65 IXPs in the Euro-IX data.

2.3.3 Evaluating the offload potential

This section looks at the networks that contribute to RedIRIS’ transit-provider traffic (as ori-

gins of the inbound traffic or destinations of the outbound traffic) and are able to shift their traffic

contributions to the remote-peering links between RedIRIS and its potential peers. In scenario

4 (all policies), there are 12,238 such networks, including the 2,192 potential peers of RedIRIS.

Separately for the inbound and outbound directions of the transit-provider traffic, Figure 2.5a

plots the average offload potential for each of the 12,238 contributing networks, ranking them

in the decreasing order of the traffic contributions. Remote peering enables RedIRIS to offload

around 27% and 33% of its total inbound and outbound traffic respectively. While the inbound

traffic dominates the outbound traffic during the data collection period, Figure 2.5b also shows

that the peaks of the transit traffic and offload potential consistently coincide, implying that the

offloading can indeed reduce the transit bill which is typically determined by the traffic peak.

Figure 2.6 zooms in on the top 30 potential peers with the largest contributions of the com-

bined inbound and outbound offload traffic, where the contributions include origin, destination,

and transient traffic. The top 30 contributors include Microsoft, Yahoo, and CDNs, suggesting

that content-eyeball traffic greatly contributes to the offload potential. For a majority of the top

contributors, the origin and destination traffic dominates the transient traffic.

Limiting the offload to only one IXP, we now examine the offload potential in each of the

4 scenarios. Figure 2.7 plots the results for the top 10 IXPs under this constraint, with the top

10 ranking according to the full offload potential at an IXP. The top 4 of the IXPs include the

big European trio (AMS-IX, LINX, and DE-CIX) and Terremark from Miami, USA. In either

of the 4 scenarios, the offload potentials at the large European IXPs remain close to each other

because these IXPs have a lot of common members. On the other hand, the peering policies make

a very different impact on the offload potential at Terremark. Terremark’s numerous members

from South and Central America [162] contribute significantly to the RedIRIS transit traffic but

do not have their own presence in Europe.

To evaluate the utility of traffic offload at an additional IXP, we consider a situation where

RedIRIS already realizes its full offload potential at one IXP and decides to peer remotely at an-

other IXP. If the two IXPs have common members that contribute to the RedIRIS transit-provider

traffic, the full realization of the offload potential at the first IXP reduces the amount of traffic

that RedIRIS can offload at the second IXP. For scenario 4 (all peering policies), Figure 2.8 il-

lustrates this effect when AMS-IX, LINX, DE-CIX, and Terremark act as either the first or the

second IXP. When LINX and AMS-IX act as the first and second IXPs respectively, the offload
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Figure 2.6: Origin and destination traffic vs. transient traffic for top contributors to the offload
potential
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Figure 2.7: Offload potential at a single IXP
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Figure 2.8: Full offload potential at an IXP and marginal utility of traffic offload at an additional
IXP

potential remaining at AMS-IX is 0.2 Gbps, which is much lower than the 1.6-Gbps full potential

at AMS-IX. When Terremark acts as the second IXP, the decrease in its offload potential is less

pronounced because Terremark shares only about 50 of its 267 members with either of the three

largest European IXPs.

Generalizing the above, we determine marginal utility of remote peering at multiple extra

IXPs by expanding the peering reach of RedIRIS by one IXP at a time. The expansion is in the

decreasing order of the offload potential remaining at an IXP. For example, the expansion order in

scenario 4 is AMS-IX, Terremark, DE-CIX, CoreSite, . . . For all the 4 scenarios, Figure 2.9 plots

the remaining transit traffic of RedIRIS as a function of the IXPs where RedIRIS peers remotely.

The overall reduction in transit traffic varies from 8% in scenario 1 (all open policies) to 25% in

scenario 4 (all policies). Figure 2.9 shows that the marginal utility of peering at additional IXPs

diminishes exponentially and that peering at a few IXPs enables RedIRIS to realize most of its

total offload potential.

While the previous results are specific to RedIRIS, we now switch the metric from traffic to

the number of reachable IP interfaces and present empirical results suggesting that the property of

diminishing marginal utility of reaching an additional IXP holds in general. Like in the RedIRIS

experiments, we expand a set of IXPs one at a time. The expansion is in the decreasing order of

the number of additional IP interfaces reachable through an IXP. Figure 2.10 plots the number of

IP interfaces reachable only through transit providers as the IXP set expands. With no IXPs in

this set, i.e., without any peering at all, around 2.6 billion IP interfaces are reachable through the

transit hierarchy. When the set includes the first IXP in scenario 4 (all policies), about 1 billion

IP interfaces remain reachable only through transit providers. The marginal utility of including

additional IXPs consistently declines in all 4 scenarios. Note that this perspective of reachable IP

interfaces does not depend on the particulars of RedIRIS or another network. Even though the
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Figure 2.9: Marginal utility of RedIRIS’ remote peering at multiple additional IXPs
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Figure 2.10: General marginal utility (measured in reachable IP interfaces) of reaching multiple
additional IXPs

declining profiles in figures 2.9 and 2.10 are quantitatively different, their qualitative similarity

indicates that diminishing marginal utility of reaching one more IXP is a general property.

2.4 Economic viability

While Section 2.3 showed significant traffic offload potential and diminishing marginal utility

of remote peering at additional IXPs, we now generalize the empirical results in the mathematical

model and derive conditions for economic viability of remote peering versus transit and direct

peering.
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2.4.1 Model

In our model, a network delivers its global traffic via 3 options: (1) transit, (2) expansion of its

own infrastructure for direct peering at n IXPs, and (3) remote peering at m IXPs. The respective

traffic fractions are denoted as t, d, and r:

t+ d+ r = 1. (2.1)

Total cost C of the traffic delivery consists of transit, direct-peering, and remote-peering compo-

nents Ct, Cd, and Cr:

C = Ct + Cd + Cr. (2.2)

While Section 2.3.3 shows diminishing marginal utility of reaching one more IXP, we fit the

RedIRIS data to exponential decay and model the transit traffic fraction as the following function

of the number of IXPs where the network peers either directly or remotely:

t = e−b·(n+m). (2.3)

Equation 2.3 generalizes our empirical results via parameter b that controls how quickly the

transit traffic fraction declines. While b = 0 represents networks that cannot reduce its transit

traffic by peering at distant IXPs, b =∞ enables offload of all transit traffic by reaching a single

IXP. Low values of b are characteristic for networks with mostly global traffic, e.g., Google and

other networks with highly distributed traffic. The results in Figure 2.4a suggest that networks

with high b values are more common. With parameter p denoting the normalized transit price, we

model the transit cost as

Ct = p · t = p · e−b·(n+m). (2.4)

The direct-peering cost depends on both the number of the reached IXPs and traffic delivered

through them:

Cd = g · n+ u · d. (2.5)

While parameter g accounts for membership fees and other traffic-independent costs of the net-

work in the distant IXPs, parameter u reflects traffic-dependent costs.

The remote-peering cost has a similar structure with traffic-independent and traffic-dependent

parts:

Cr = h ·m+ v · r. (2.6)

The per-IXP traffic-independent cost for remote peering is typically lower than for direct

peering:

h < g, (2.7)

and the per-unit traffic-dependent cost for remote peering is larger than for direct peering but
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smaller than for transit:

u < v < p. (2.8)

Combining equalities 2.2, 2.4, 2.5, and 2.6, we express the total traffic-delivery cost of the

network as

C = p · e−b·(n+m) + g · n+ u · d+ h ·m+ v · r. (2.9)

2.4.2 Analysis

Seeking to minimize its total cost, the network might first consider only transit and direct

peering at distant IXPs without purchase of remote peering, i.e., m = 0 and r = 0. Under this

strategy, the total cost is

C = (p− u) · e−b·n + u+ g · n, (2.10)

and the network minimizes the cost by reaching ñ IXPs to offload traffic fraction d̃ via direct

peering:

ñ =
log
(
b·(p−u)

g

)
b

and d̃ = 1− e−b·ñ. (2.11)

Continuing from the above solution, the network might widen its strategy to include remote

peering, with the total cost becoming

C = (p− v) · e−b·(ñ+m)

+ (v − u) · e−b·ñ + g · ñ+ u+ h ·m. (2.12)

The network minimizes the cost in equality 2.12 by remote peering at m̃ extra IXPs:

m̃ =
log
(
g·(p−v)
h·(p−u)

)
b

, (2.13)

Inequality m̃ ≥ 1 means that remote peering at one or more IXPs reduces the total cost. Thus,

we establish the following condition for economical viability of remote peering:

g · (p− v)

h · (p− u)
≥ eb. (2.14)

Our analysis shows that remote peering is more viable economically for networks with lower

b values, i.e., networks carrying global traffic. Networks carrying big volumes of traffic such as

Google or other large content providers do have an incentive to be present in many IXPs. However

the large volumes of traffic carried justify the costs of their physical presence at multiple IXPs.

Large content providers have previously underpinned the observed trend towards a flatter Internet.

Differently, remote peering enables smaller networks with global traffic to benefit from peering

even if the smaller volumes of traffic do not justify the costs of physical peering. Remote peering

gives such networks a cost-effective alternative to the costly expansion of their own network



26 Remote Peering

infrastructures and alters the trend towards a flatter Internet by introducing an intermediary in

peering. For instance, networks such as Invitel, E4A or LinkedIn carry geographically distributed

but not the volumes of traffic that would justify physical peering at a large number of IXPs.

Instead, these networks rely on remote peering providers to extend its presence. For instance E4A

peers at 9 IXPs, at 6 of them remotely.

The economical viability condition contains g/h, i.e., the ratio of the per-IXP traffic-

independent costs for direct and remote peering. In regions such as Africa, h tends to be much

smaller than g because local IXPs offer little opportunities to offload traffic, and transit is expen-

sive [69, 87]. Thus, our analytical model explains why remote peering is economically attractive

for African networks.

2.5 Discussion

The emergence of remote peering exposes that increasing peering and Internet flattening are

separate trends. The two trends are typically conflated because the expansion of content-network

infrastructures bypasses transit providers through physical peering reducing the number of inter-

mediaries in their connections. Complementing direct peering, remote peering enables additional

peering as well. However, this increase in peering involves a remote-peering provider that acts

a middleman. Furthermore, the intermediary that sells the remote-peering service can be a tra-

ditional transit provider. Hence, remote peering increases peering without flattening the Internet

economic structure.

The observed separation of the two trends questions the usage of AS-level topologies for

representing the Internet economic structure. With remote-peering services provided on layer 2,

layer-3 models of the Internet structure omit the remote-peering providers and fail to distinguish

remote peering from direct peering and hence ignore the presence of remote peering provider in-

termediaries. Below, we elaborate on various dangers posed by this omission of the intermediary

economic entities.

While it is common to use AS-level models for reasoning about Internet security, the hidden

presence of layer-2 intermediaries undermines security assurances. The invisible intermediaries

might be unwanted entities, e.g., those associated with problematic governments. The risks in-

clude monitoring or alteration of traffic by the intermediaries and exposure of traffic to other

parties, e.g., by delivering it through undesired geographies.

The reliance on layer-3 models also compromises accountability. Whereas a layer-2 interme-

diary might delay or discard traffic, attribution of responsibility for such performance disruptions

is complicated because the middleman is invisible on layer 3.

Layer-3 topologies can make the Internet structure look more reliable than it is. When a com-

pany employs the same physical infrastructure to provide transit and remote-peering services,

buying both might not translate the redundancy into higher reliability for the multihomed cus-

tomers.
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Because remote peering has different economics than transit and direct peering, the omission

of the layer-2 intermediaries from layer-3 models weakens the economic understanding of the In-

ternet. In developing markets such as Africa, remote peering becomes a cost-effective alternative

for reaching well-connected areas in Europe and North America [87]. Since remote peering has

a smaller connectivity scope than transit, adoption of remote peering necessitates new strategies

for traffic distribution. IXPs greatly benefit from remote peering: existing IXPs gain members,

and new IXPs are enabled by bringing together a critical mass of traffic [119]. Ignoring the

remote-peering providers distorts substantially the Internet economic landscape.

Thus, our results call for alternative models of the Internet structure that explicitly represent

layer-2 entities. The relevant additions include not only remote-peering providers but also other

layer-2 economic entities such as IXPs. With the growing prominence of IXPs and remote-peering

connectivity to them, integrated modeling of the Internet structure on layers 2 and 3 becomes

increasingly important for understanding the Internet.

The refined mapping of the Internet economic structure on layers 2 and 3 will likely require

novel methods for inference of economic entities and their relationships. These methodological

innovations constitute an interesting direction for future work.

2.6 Conclusion

This chapter presented the first empirical and analytical study on remote peering. Using care-

ful measurements of RTTs at 22 IXPs worldwide, our ping-based method exposed wide spread of

remote peering, with remote peering in more than 90% of the examined IXPs and peering on the

intercontinental scale in a majority of them. Based on real traffic in RedIRIS, we also estimated

how much transit traffic the network can offload via remote peering at 65 IXPs. The assessment

showed significant traffic offload potential, around 25% in some cases, and exhibited diminishing

marginal utility of remote peering at additional IXPs. After generalizing this property in the math-

ematical model, we derived conditions for economic viability of remote peering versus transit and

direct peering.

While important in itself as an emerging factor in the Internet ecosystem, remote peering was

showed to have broader implications for Internet research. Remote peering revealed separation

between the trends of increasing peering and Internet flattening which had been commonly con-

flated. With remote peering provided on layer 2, the omission of remote-peering providers from

traditional layer-3 representations of the Internet topology compromises research on Internet se-

curity, accountability, reliability, and economics. We called for refined modeling of the Internet

economic structure on both layers 2 and 3.
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The previous chapter showed how the rapidly evolving Internet ecosystem generates new

types of interconnections, such as remote peering, to cope with new needs and challenges. Con-

tinuing this trend toward greater diversity of Internet interconnections, this chapter proposes a

novel arrangement that address the problem of high transit costs.

The Internet ecosystem involves thousands of ASes linked in a more or less hierarchical man-

ner to support universal connectivity of Internet users. While a small number of ASes can reach

the entire Internet without paying any other network for the reachability, the immense majority of

ASes need to pay transit providers to attain global reachability.

In spite of the steady decline of IP transit prices, the IP transit costs remain high due to

the traffic growth. Over the previous decades a number of solutions have been suggested to

reduce these IP transit costs by reducing the volume of billed transit traffic. Proposed solutions

reduce the transit traffic volume and include settlement-free [30, 56, 78] or paid peering [58],

IXPs [15, 55], IP multicast [18, 28, 54, 82, 83], CDNs [146], P2P localization [49] and traffic

smoothing [63, 101, 114].

This chapter proposes CIPT (Cooperative IP Transit), a different approach to reducing the

cost of IP transit. Instead of altering the traffic that flows through the transit links, CIPT reduces

the price of transit per Mbps: by jointly purchasing the IP transit, two or more ASes reduce the

transit prices per Mbps for each AS involved in the CIPT.

Tuangou1 (group buying) has been highly successful in other domains [117]. While tuangou

succeeds primarily due to subadditivity of prices [37, 38, 186], the benefits of CIPT depend also

on burstable billing [61], different methods to account for bidirectional traffic, and other complex

factors.

To illustrate the CIPT concept, Figure 3.1 plots real traffic profiles of three ASes. If the

ASes form a CIPT and purchase transit jointly, the total cost is smaller than when purchasing

it separately because: (a) Transit billing is burstable, i.e., the buyer is billed for the peak of its

traffic; because the peaks of the traffic of the ASes are not completely coincident, the peak of

the combined traffic is smaller than the sum of the separate peaks; (b) Transit prices are subaddi-

tive, i.e., prices per Mbps decrease as the purchased amount increases. Consequently, the traffic

aggregation enables CIPT to reduce costs of its partners.

The novelty of CIPT in the Internet ecosystem lies in the cooperative essence of the arrange-

ment. While CIPT reduces costs by transit traffic aggregation, the latter is common in the Inter-

net. Most transit providers are transit resellers that profit from lower rates resulting from transit

aggregation. As early as in 1990s, The Little Garden (TLG) [187] pooled traffic of small cus-

tomers together to obtain cheaper transit rates. Government-promoted IXPs also lower transit

costs through national transit traffic aggregation, e.g., in Bahrain [16, 161] and other developing

countries [4, 5]. CIPT is substantially different from previous transit-aggregation schemes in the

following aspects:

1 Tuangou (pronounced ”twangoo”), a term originating in China, loosely translates as group buying,
http://en.wikipedia.org/wiki/Tuangou.
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Figure 3.1: Demand statistics for partners P1 (top), P2 (middle), and P3 (bottom) in the motivating
example: the x-axes are in hours; the y-axes are in Mbps; the filled (green) areas depict the
upstream traffic; the (blue) lines represent the downstream traffic.

• Cooperation of transit buyers;

• Mechanisms for distribution of the benefits of transit aggregation.

Beyond the new application of tuangou in the domain of IP transit, a major contribution of

this chapter lies in its measurement and evaluation methods. Relying on real inter-domain traffic

and transit pricing, this chapter estimates the gains from CIPT. We also propose Shapley value

as a basis for sharing the gains among the CIPT partners so that to provide each partner with a

strong economic incentive for the cooperation. Our evaluation of the aggregate and individual

gains involves collection of the visual traffic statistics from 6 public IXPs with 264 participating

ASes, transformation of the visual images into a numeric format, and public-data validation of

the property that peering and transit traffic have similar temporal profiles. Our analysis suggests

that the expected relative savings of CIPT are in the range of 8-56% for the IXP-wide coalitions;

in absolute terms, each of the partners may expect annualized savings from one thousand US$

for very small ASes to several hundred thousand US$ for the few large ASes. We also show that

much smaller coalitions, with a half a dozen of members, can offer close-to-maximum savings.

The main contributions of this chapter are as follows:

• We propose CIPT, a simple cooperative strategy to reduce costs by purchasing IP
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transit jointly.

• We show that CIPT can be modeled as a cooperative game and that Shapley value

provides an intuitive mechanism for cost sharing in CIPT.

• We use public IXP data to infer the traffic time series for several hundred (mostly

regional and national) ASes and use this information to assess the potential cost benefits of

CIPT.

While our results on the CIPT cost reduction validate the potential of CIPT to become a new

viable element of the Internet ecosystem, the practical viability of CIPT also depends on other

strategic and organizational issues. For example, if two ASes are already engaged in a transit

relationship, they are unlikely to agree on buying IP transit jointly from a third party. Also, the

transit provider can strategically respond to CIPT by charging the coalition at higher prices per

Mbps than the prices offered to an individual AS. On the other hand, big transit providers might

strategically accept CIPT to squeeze out smaller transit providers. By aggregating transit traffic,

CIPT might become an attractive customer for large transit providers bypassing transit resellers.

It is quite possible that CIPT will not grow into the dominant mechanism for IP transit cost

reduction. On the other hand, earlier success in cost reduction via transit aggregation [4,5,16,187]

suggest that CIPT is certainly feasible and can gain a broad presence in the Internet ecosystem,

from small websites in a hosting facility to the level of nation-wide ASes. Data-driven assessment

of all these additional issues lies beyond the scope of this thesis. Similarly, while we propose

Shapley value as a means for cost sharing in CIPT, evaluation of alternative solutions to CIPT

cost sharing is a topic for future work.

3.1 Background and motivation

The geographic location affects significantly the cost of IP transit [135]. The IP transit prices

perMbps per month range usually from $5 to $100 (we use $, US$ or USD to refer to U.S. dollars

throughout the rest of this thesis): the wholesale IP transit is typically priced under $10 perMbps

in most European and North American hubs but can exceed $100 per Mbps in Australia, Latin

America and other remote regions of the Internet [5, 186].

Regardless of the geographic location, IP transit is subject to economies of scale and is priced

subadditively: the prices per Mbps are smaller for larger quantities of IP transit [186]. Table 3.1

presents real (as of January 2011) transit pricing rates of Voxel, a middle-size transit provider in

North America. The table reports the prices for different levels of Committed Data Rate (CDR),

the minimum amount charged by the provider. For example, an AS with IP transit needs of

300 Mbps commits at the 100-Mbps CDR level and pays pro rata $3000 to the transit provider,

but an AS with IP transit needs of 700 Mbps finds it more cost-effective to commit at the 1000-

Mbps CDR level and pays $5000.
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Committed Data Rate, Mbps Price per Mbps per month

10 $25
50 $15

100 $10
1000 $5

10000 $4

Table 3.1: IP transit pricing rates

Burstable billing is another important aspect of IP transit pricing [61, 134]. To calculate

the IP transit cost, the most commonly used method is to calculate the peak usage (typically

through the 95th-percentile rule [61,134]) and then the price function f is applied to the observed

peak to calculate the resulting payment. The peak value is usually calculated separately for the

upstream and downstream directions, and either sum or maximum of the two is used for billing.

We refer to these two pricing models as sum and max models. Intuitively, the max model offers a

larger opportunity for savings in cooperation because two ASes with their traffic peaks in opposite

directions can mutually benefit from the less utilized directions of each other. Consequently,

results for the sum model can be considered as a conservative estimate of CIPT gains (Figure 3.6

in Section 3.4.1.2) confirms this intuition).

To illustrate the potential of CIPT, we consider a simple scenario of three partners2 P1, P2,

and P3 interested in purchasing IP transit from the same provider. We assume the transit pricing

rates as in Table 3.1, 95th-percentile burstable billing, sum model of accounting for bidirectional

traffic, and traffic profiles plotted in Figure 3.1.

If the three partners purchase the IP transit separately, the individual traffic peaks (computed

as the sum of the peaks in both directions) of P1, P2, and P3 are at 379 Mbps, 130 Mbps, and

362 Mbps respectively, and each of the partners commits at the 100-Mbps CDR level. Thus,

partners P1, P2, and P3 pay respectively $3790, $1300, and $3620 with the aggregate transit cost

of $8710.

On the other hand, if P1, P2 and P3 use CIPT to buy the IP transit together, their aggregate

peak traffic is 712 Mbps. By committing at the 1000-Mbps CDR level, the CIPT pays $5000.

Thus, the cooperation reduces the aggregate transit cost of the partners by $3710, or 43%. This

significant cost reduction comes from two different sources:

1. Burstable billing – the 712-Mbps peak of the aggregate traffic is lower than the 871-Mbps

sum of the individual traffic peaks; hence, the aggregate transit cost would decrease even if

the pricing function were additive;

2. Subadditive pricing – the upgrade from the 100-Mbps CDR level to the 1000-Mbps one

provides a lower price perMbps and thereby reduces the aggregate transit cost even further.

2We interchangeably use terms partner and player to refer to any AS, hosting provider or any other entity interested
in purchasing IP transit.
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3.2 Cooperative IP transit

While we have already sketched the main idea of the CIPT, this section provides more details,

describes the concept of cooperative (or coalitional) games, and models CIPT as a cooperative

game.

Cooperative IP Transit (CIPT) refers to any cooperative mechanism in which two or more

subjects purchase the IP transit jointly as a means for cost reduction. The subject interested in

CIPT can be any Internet entity that buys IP transit; such entities include websites and hosting

providers, as well as access, nonprofit, and content ASes.

The main incentive for forming a CIPT coalition is financial: each partner reduces its individ-

ual IP transit bill. The typical IP transit pricing makes it virtually impossible for a set of potential

partners to increase their aggregate transit cost by buying the IP transit jointly. However, CIPT

needs a reasonable mechanism to distribute the aggregate cost savings among all the CIPT part-

ners. Furthermore, the aggregate and individual IP transit costs of the CIPT partners strongly

depend on a number of factors such as the IP transit pricing function, number of partners, their

size, and temporal patterns of their traffic demands.

3.2.1 CIPT as a cooperative game

Formally, a cooperative game is characterized by setN of involved players and a cost function

that maps the partitive3 set of N to a cost value: c : 2N → R. In the context of CIPT, set N is

the set of subjects interested in purchasing IP transit. The cost function maps an arbitrary subset

S ⊂ N to the cost of the IP transit that the coalition of players from S would pay. An important

property of the IP transit model is that the price per Mbps is a non-increasing function of the

peak, due to the subadditive nature of the pricing model.

CIPT is formed by a set of N partners. Each partner i of the CIPT has upstream and down-

stream IP transit traffic demands represented respectively by time series ui(t) and di(t) where

i ∈ {1, 2, . . . , N}, and time t is measured in fixed-size time intervals with a typical interval dura-

tion of 5 minutes. The cost that subject i pays for the transit, without participation in CIPT, is the

function of these demand series:

Ci = F (ui(·), di(·)).

After bundling of N subjects, the aggregate upstream/downstream demands are the sum of the

corresponding individual demands:

u(t) =

N∑
i=1

ui(t) and d(t) =

N∑
i=1

di(t),

3For set N , the partitive set of N is the set of all subsets of N and is usually denoted as 2N .
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and the aggregate cost of the IP transit is

C = F (u(·), d(·)).

The 95th-percentiles of the upstream (peak(up)) and downstream (peak(down)) traffic are cal-

culated, and the peak value used for billing is either the sum or max of these two values, as

described in Section 3.1. The transit cost of the coalition of these N players is then

C = F (u(·), d(·)) = f(peak)

where f is the pricing function decided by the IP transit provider. This pricing function is typically

subadditive, Table 3.1 provides an example of such pricing function.

Additionally, for virtually any real-world subjects interested in purchasing IP transit, the peak

traffic of the union of two subjects is smaller than the sum of the peaks of these two subjects.

In case of measuring the peak as the maximal traffic, this is an obvious consequence of the fact

that the maximum of the sum of two nonnegative functions (over the same domain) is not greater

than the sum of the maximums of these two functions. If the peak is measured through the 95th-

percentile method, there may be some irregular cases4 in which the sum of the 95th-percentiles is

smaller than the 95th-percentile of the union of the traffic of the two subjects. Nevertheless, these

situations are extremely unlikely to happen in regular setups. We demonstrate this in Figure 3.2 by

plotting the cumulative distribution for the ratio of the 95th-percentile of the union to the sum of

the 95th-percentiles across all the pairs of ASes at Budapest Internet Exchange (BIX) in both sum
and max models. BIX and several other IXPs publish traffic statistics that each of their members

(mostly regional ASes) exchanges at the IXP, and this information represents valuable and useful

proxy for estimating the traffic patterns (volume, peak-hour, peak-to-valley ratio, up/downstream

traffic ratio, etc.) for the involved ASes.

Observation 1. The traffic patterns of subjects interested in CIPT are such that for (almost)

all pairs of coalitions S1 and S2 of these subjects, the peak value of the union of the two coalitions

is smaller than the sum of the peak values of these two coalitions.

As we elaborate above, Observation 1 is intuitive and can be empirically validated for avail-

able data of traffic patterns. From now on, we assume that subjects involved in CIPT are such that

this observation is true. In that case, cost function c(·) is indeed subadditive:

c(S1) + c(S2) ≥ c(S1 ∪ S2), for any S1, S2 ⊂ N . (3.1)

Hereby, virtually always the overall IP transit cost of CIPT is strictly smaller than the sum of

4For example, two subjects consuming 100 Mbps 4% of the time each, one in the morning the other over night,
and using 1 Mbps the remaining 96% of the time will have their 95th-percentile equal to 1 Mbps, while their union
would have 95th-percentile equal to 100 Mbps.
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Figure 3.2: The distributions for the ratio of the 95th-percentile of the union to the sum of the
95th-percentiles across all the pairs of ASes at Budapest Internet Exchange

individual IP transit costs of all involved players:

ρ =
C∑N
i=1Ci

< 1.

The relative savings (1 − ρ) of the CIPT are influenced by several factors, with the two domi-

nant being: (1) the subadditivity of the price function and (2) burstable billing through the 95th-

percentile method. Namely, the subadditive pricing leads to savings for the involved players be-

cause prices (per Mbps) are lower for larger quantities. Additionally, with the burstable billing,

when two or more players have non-overlapping peak hours, their coalition would have the peak

value strictly smaller than the sum of the peak values of the involved players. While players that

serve similar user bases have similar temporal usage patterns (e.g., residential networks peak in

evening hours, government/academic networks peak in early afternoon), the networks of differ-

ent types experience their peaks in times that are far apart, which in turns allows for additional

savings in top of bundling and buying-in-bulk.

3.3 Cost sharing in CIPT

A key question in any cooperation scheme created for cost reduction reasons is how to split

the aggregate costs of cooperation. As we saw in Section 3.2.1, CIPT can be abstracted as a
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cooperative game which puts us in a position to use the rich set of analytic tools for solving the

problem of cost sharing. There are many solution concepts for cost sharing in cooperative games,

including the core, kernel, nucleolus, and Shapley value [199]. While other solution concepts

have attractive features, in the context of CIPT we find particularly appealing to use the Shapley

value since it has several distinct important properties, i.e., the Shapley value: (1) exists for any

cooperative game and is uniquely determined, (2) satisfies basic fairness postulates [173, 199],

and (3) is individually rational, i.e., each player in CIPT receives a lower Shapley value cost

than what it would be if it did not participate in CIPT. One potential deficiency of the Shapley

value is that in general it is computationally hard to calculate it exactly. However, state-of-the-art

techniques provide simple and accurate methods for Shapley value approximation, as discussed

in Section 3.3.2.

3.3.1 Shapley value: definition

For a cooperative game defined over set N of N players and each subset (coalition) S ⊂ N ,

let c(S) be the cost of coalition S. Thus, if coalition S of players agrees to cooperate, then c(S)

determines the total cost for this coalition.

For given cooperative game (N , c(·)), the Shapley value is a (unique) vector

(φ1(c), . . . , φN (c)) defined below, for sharing the cost c(N ) that exhibits the coalition of all

players. It is a “fair” cost allocation in that it satisfies four intuitive properties: efficiency, sym-

metry, additivity and null-player; see [173,199] for exact definitions of these properties and more

details. The Shapley value of player i is precisely equal to i’s expected marginal contribution if

the players join the coalition one at a time, in a uniformly random order. Formally it is determined

by:

φi(c) =
1

N !

∑
π∈SN

(c(S(π, i))− c(S(π, i) \ i)) (3.2)

where the sum is taken across all permutations (or arrival orders), π, of set N and S(π, i) is the

set of players arrived in the system not later than i. In other words, player i is responsible for its

marginal contribution c(S(π, i)) − c(S(π, i) \ i) averaged across all N ! arrival orders π. Note

that the Shapley value defined by Equation 3.2 indeed satisfies the efficiency property:∑
i∈N

φi(c) = c(N ).

3.3.2 Estimation of the Shapley value in CIPT

While the Shapley value can be computed in a rather straightforward manner using Equa-

tion 3.2, it is not practically feasible to employ Equation 3.2 for N > 30. A number of methods

have been suggested for accurate estimation of the Shapley value, and in this chapter we use a

simple Monte Carlo method [118] as follows.

Instead of calculating the exact Shapley value as the average cost contribution across all N !
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arrival orders, we estimate the Shapley value as the average cost contribution over set Πk of K

randomly sampled arrival orders:

φ̂i(c) =
1

K

∑
π∈ΠK

(c(S(π, i))− c(S(π, i) \ i)) (3.3)

Parameter K determines the error between the real Shapley value and its estimate: the higher

K the lower the error. So basically, one can control the accuracy of the estimator by increasing

the number of sample permutation orders. We observe in our datasets of traffic demands that the

value of K = 1000 provides errors of under 1% across all the CIPT players, and in the rest of this

chapter we use K = 1000 for the computation of the Shapley value.

3.4 Evaluation

In this section we quantify various factors that impact CIPT by using traffic information from

264 (mainly national and regional) ASes. In Section 3.4.1, we describe the dataset and pricing

model(s). In Section 3.4.2, we evaluate the potential savings of CIPT on country-wide (IXP-wide)

collaborations and show that significant savings could be expected both in relative and absolute

terms. In Section 3.4.3, we augment this analysis by empirically showing that even small single-

digit coalitions can yield close-to-optimal savings, by demonstrating a law of diminishing returns

for the savings as a function of the coalition size. Section 3.4.4 analyzes the per-player savings

and shows somewhat expectable trends that the larger the player is, the larger are its absolute

savings, but the smaller its relative savings are. Finally, in Section 3.4.5, we analyze the effects of

collaboration between geo-diverse players and present an analytical upper bound on the savings

as a function of the time difference in their peak-hour periods.

3.4.1 Dataset description

Although data for the traffic patterns of many ASes is often kept confidential, some public

IXPs report upstream and downstream demand time series for the traffic exchanged by every

member of the IXPs. Those that do it are listed in Table 3.2. This traffic statistics data is typically

given in the form of mrtg images [188], similar to those shown in Figure 3.1. Overall we collected

the information for 264 ASes, with the traffic peak distribution as shown in Figure 3.3. While

the information about the traffic exchanged at the public IXPs is obviously a valuable piece of

information, it is not straightforward how to use this information to estimate the transit usage of

the ASes. In Section 3.4.1.2, we use a small set of ASes that make their detailed traffic information

public, to show that the IXP related traffic is a good proxy for estimating the transit part of the

interdomain traffic, at least for some ASes. Before that, we elaborate on the data collection below.
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Figure 3.3: The distribution of the peak traffic rates across all 264 ASes: median: 560 Mbps;
mean: 2.9 Gbps

IXP members peak average 95th-pct effect subadditive effect
skewness

acronym (# of) (Gbps) (Gbps) sum max sum max
NIX 54 116 76 4.3% 29.1% 95.7% 70.9% 0.76
SIX 52 42 23 15.4% 44.9% 84.6% 55.1% 0.27
IIX 17 2.1 1.38 14.3% 40.6% 85.7% 59.4% 0

FICIX 25 32 19 6.7% 23.1% 93.3% 76.9% 0.48
InterLAN 63 22 11 14.3% 37.8% 85.7% 62.2% 0.12

BIX 53 152 92 3.6% 27.8% 96.4% 72.2% 0.84

Table 3.2: Basic stats on the used IXPs

3.4.1.1 Dataset collection

We started by manually inspecting the webpages of medium-size and large IXPs at [67]. A

majority of these IXPs publish their aggregate traffic statistics, summed across all the members,

but some also make public the detailed traffic statistics of their members. We identified several

IXPs that do so. Table 3.2 lists them. We then crawled the websites of these IXPs and collected
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per-member traffic information. This per-member traffic data is typically given in the form of

visual images, similar to those in Figure 3.1, produced as the outputs of the standard tools for

traffic visualization: mrtg/rrdtool [188]. To convert the information into a numeric form, we

built a piece of software that takes as input a mrtg/rrdtool image and outputs the numeric array

representing the upstream/downstream traffic time series. This operation of transforming the .png
images to numeric data required serious effort in the domain of optical character and function

recognition.

3.4.1.2 From IXP data to IP transit traffic

Most ASes consider the data of their networks as confidential and are reluctant to share it

with third parties. However, some ASes publicly share large amounts of operational information.

In particular, several European ASes serving academic institutions have publicly shared on their

websites detailed pictures of both their network infrastructure and utilization of their networks.

Those that we identified are HEANET (Ireland) [95], SANET (Slovak Republic) [168], CESNET

(Czech Republic) [39], GRNET (Greece) [86]. We inspected the peering and transit traffic for

those four ASes and found that the peering traffic pattern is a good first-order indicator of the

transit traffic. In those 4 ASes, peering corresponds to 35-40% of the total traffic, with the re-

maining 60-65% being transit. Additionally, we observe that peering and transit traffic follow

very similar temporal patterns: their growth and decay periods coincide, they peak at the same

time, have similar peak-to-valley ratios, etc. In some sense, such behavior is not very surpris-

ing: given that the demand is predominantly created by humans, both transit and peering traffic

demand are driven by the same end-user activities.

AS sim(Tup, Pup) sim(Tdown, Pdown)

HEANET 0.988 0.965
SANET 0.996 0.991

Table 3.3: The cosine-similarity between the transit (T) and peering (P) time series (both down-
stream and upstream directions)

The empirical evidence of two academic ASes that publish their network load information,

HEANET and SANET, suggest that γ belongs to [1.5, 2] for medium-size European countries

with one dominant IXP. In Figure 3.4, we depict the peering and transit traffic for both ASes on

Thursday, 13th January 2011. One can observe that the peering and transit traffic profiles are

rather similar. To quantify the similarity of the demand patterns, we use the cosine-similarity

between the corresponding demand time series: X = (x1, . . . , xT ) and Y = (y1, . . . , yT ):

sim(X,Y ) =

∑T
i=1XiYi√∑T

i=1X
2
i

√∑T
i=1 Y

2
i

.

The value of sim(X,Y ) is equal to the cosine of the angle between the vectors X and Y in
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Figure 3.4: The transit and peering traffic in two national ASes: HEANET and SANET

the T -dimensional Euclidian space. Thus sim(X,Y ) = 1 if X = αY for a scalar α; other-

wise sim(X,Y ) < 1. Table 3.3 reports the values of cosine-similarity for the upstream and

downstream time series for the both ASes.

Consequently in our analysis, we approximate the transit traffic of ASes (belonging to cor-

responding IXPs) with their peering traffic (information that is publicly available) multiplied by

a factor γ that determines the relative weight of the transit vs. peering traffic. In Section 3.4.2,

we describe expectable savings of CIPT for γ ∈ [0.5, 4]. However, in Sections 3.4.3 through

3.4.5 (which analyze the cost-sharing, coalition size, and geo-diversity), we fix γ at 1.5, which

corresponds to the transit/peering traffic ratio of 60/40 suggested by our empirical analysis for

medium-size European countries with a single dominant IXP (the case of our 6 IXPs).

While this approximation is rather crude, it nevertheless captures the main features of the
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AS: relative size, peak-hour period, upstream-to-downstream ratio, etc. For example, γ = 0.5

corresponds to the case where the peering traffic amounts to 1/(1 + γ) = 2/3 of all the traffic

of the AS (as in Japan [47] and other localized markets), while γ = 4 corresponds to the case

where 1/(1 + γ) = 20% of the total AS traffic is exchanged at the IXP, and the remaining 80% is

transferred through transit (this situation is common in small markets [5]).

3.4.1.3 Pricing model

In the following evaluation, we use the pricing model (described in Section 3.1) with prices

given in Table 3.1 and upstream/downstream traffic billed with either sum or max model. In

Section 3.4.2, we describe the results of a comparative study of both sum and max models. In

Sections 3.4.3 through 3.4.5, we focus on the sum pricing model (the more conservative one in

terms of cost reduction) for the analysis of cost sharing, coalition size and geo-diversity.

3.4.2 Aggregate savings

In this section, we evaluate the aggregate potential savings of the IP transit costs for the

coalitions consisting of all members within each IXP listed in Table 3.2. Following the discussion

in Section 3.4.1.2, we approximate the IP transit traffic patterns by the traffic exchanged at these

IXPs multiplied by constant γ ∈ [0.5, 4]; this constant represents the ratio between the transit and

peering traffic volumes.

We stress again that the purpose of this evaluation is to shed some light on the potential savings

of CIPT rather than computing accurate bounds of the savings. Such exact saving estimates

strongly depend on various factors and should be calculated on a case-by-case basis.

For each of the 6 studied IXPs, Figure 3.5 reports the expected savings on the IP transit bill,

both relative and absolute, in both the sum and max models. We see that the relative savings are

in the range of 5-70% depending on the relative size of the IXPs and several other factors. These

relative savings are strongly impacted by the size distribution of the involved ASes. Namely,

for those IXPs that have several large ASes that dominate the traffic (and the costs), the relative

savings of CIPT are low because these large ASes already receive the lowest price per Mbps. To

illustrate that this is indeed the case, we define the skewness factor as the fraction of the traffic

generated by the players with the peak traffic greater than 10 Gbps. Table 3.2 shows that the

expected relative savings are considerably higher for the IXPs with a low skewness of under 0.3

(SIX, IIX, and InterLAN).

Remember that the savings of CIPT come from two properties of the IP transit model: price

subadditivity and 95th-percentile billing. To quantify the effects that these two properties have

on the CIPT savings, we identified what the relative savings would be without the subadditivity

of the prices, i.e., if the price per Mbps would be constant independent of the usage level. Such

savings would come exclusively from the reduction in the 95th-percentile, the rest of the savings

would hence correspond to the subadditivity effect. Table 3.2 presents these results in columns
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Figure 3.5: The absolute and relative savings as a function of the ratio between the transit and
IXP traffic volumes

95th-pct effect and subadditive effect respectively. From this table, we can conclude that both

properties (price subadditivity and 95th-percentile billing) influence the total savings.

The decreasing trend of relative savings can be observed in both sum and max pricing mod-

els. The decrease happens because the players with large volumes have smaller opportunities for

large relative savings by CIPT (as they already experience a low price per Mbps). Nevertheless,

the relative savings are bounded from below by the quantity of the 95th-pct effect reported in

Table 3.2 for both sum and max pricing models. Figure 3.6 replots the above findings to directly

demonstrate that the sum model is indeed more conservative than the max model with respect to

the attained CIPT gains.

We conclude this analysis with an observation that the 6 (medium-size European) countries

hosting these IXPs have such traffic locality that around 40% of the traffic stays inside the country

and is exchanged by peering (mainly through the dominant IXP), while the remaining 60% of the

traffic uses IP transit. This corresponds to value γ of 1.5. Using this value of γ, we conclude that

the expected relative savings in IP transit costs for the IXP-wide CIPT coalitions are in the range

of 8-35% (in the sum model) and 32-56% (in the max model).

While we rely on the pricing function of a middle-size transit provider, the pricing function of
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Figure 3.6: Differences in CIPT savings with the max vs. sum models

a larger provider can yield further quantity discounts: if a transit provider attracts large customers,

the provider can offer discounts on larger volumes than alternative smaller transit providers, i.e.,

there are greater economies of scale with a large transit provider than with a smaller one.

On the other hand, regardless of how large the transit provider is, the additional discounts

are finite. Therefore, starting from some huge traffic volume, CIPT cannot benefit from further

discounts. At such traffic volumes, CIPT gains arise due to the 95th-percentile effect rather than

the subadditive effect.

3.4.3 Coalition size

In the previous section, we analyzed the potential savings of coalitions that include all mem-

bers of the corresponding IXPs. While such coalitions offer significant savings in terms of IP

transit costs, coordination of such large coalitions may be cumbersome. In this section, we show

that much smaller coalitions can offer savings comparable to those of the large coalitions. We take

the Slovak Internet eXchange (SIX) with N = 52 members, and for each k ∈ {1, 2, . . . , N} we

analyze the per-player savings from participating in the coalition of k random members of SIX.

The pricing model is sum, and γ is set to 1.5. The results for other IXPs, max pricing model and

other choices of γ are qualitatively similar; hence, we omit them for brevity.

In Figure 3.9, we report the median, 5th-percentile, and 95th-percentile savings, relative to

the savings obtainable from the grand coalition of all N = 52 members. Since analyzing the

statistics across all 252 subsets is infeasible, we report the results obtained by sampling: for



3.4 Evaluation 45

each member i and each coalition size k, we pick random 100 subsets of size k that contain

member i. From Figure 3.9 we can observe the law of diminishing returns: relatively small

coalitions provide savings very close to the savings of the large coalitions, and, by adding more

members to the coalition, the incremental savings are decreasing. In particular, even with as few

as k = 3 members, one can expect savings that are half as large as the savings obtainable by the

coalition of all N = 52 members. With k ≥ 10 members, the median CIPT savings are greater

than 80% of the savings obtainable by the grand coalition.

Note that the savings grow as the coalitions become larger. This is the consequence of the

basic property of the CIPT cooperative game: the cost function is subadditive, as seen in Inequal-

ity 3.1. In other words, by adding a member, the coalition is better off. Also, note that for some

ASes, participating in some smaller coalitions may be more beneficial than participating in the

grand coalition (the relative savings exceed 1).

We stress that the results of this section are for random coalitions. By careful cherry-picking

the most appropriate partners, one can obtain even higher savings, as the 95th-percentile of the

savings in Figure 3.9 suggests. However, such optimization is out of scope for the present thesis.

3.4.4 Per-partner savings

In this section, we look at the per-member savings for each of the involved ASes when it par-

ticipates in the IXP-wide CIPT. Following the reasoning described in Section 3.4.1.2, the γ factor

used for scaling of the transit traffic is set to 1.5, and the pricing model is the more conservative

sum model. As we elaborate in Section 3.3, each member of the coalition is assigned a cost

equal to its Shapley value. The CIPT costs (across all ASes) are depicted in Figure 3.7 against

the original IP transit annual costs. Figure 3.8 shows the absolute annual savings (the difference

between the original IP transit costs and CIPT costs) for all ASes in these 6 IXPs.

We can observe two trends in Figures 3.7 and 3.8. First, the absolute savings typically grow

with the size of the AS. This is a consequence of the fact that having a large AS in a coalition

typically implies lower per Mbps costs which in turn increases the contribution of the AS to

the coalition, as reflected by the computation of the Shapley value in Equation 3.2. Therefore,

a large AS can benefit from joining a coalition because the gains are computed as a total and

then redistributed using the Shapley value, even if such large AS does not obtain a further price

discount, other ASes do generate gains of which the large AS benefits.

In contrast to this increasing trend of the absolute savings, there is another interesting property

of the CIPT cost allocation. Namely, the relative savings of CIPT (the ratio of the absolute

savings of CIPT to the original IP transit costs) typically see a decreasing trend as a function

of the AS size. This feature (decreasing trend of the relative savings) is strongly connected with

the nature of the Shapley value as a cost allocation strategy but arises also because peak time

of the aggregate traffic is predominantly determined by the large ASes. This means that ASes

joining already larger coalitions (those that reached a close-to-minimum price per Mbps) bring

lower relative benefits to the coalitions, consequently implying low relative-gains for these ASes.
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Figure 3.7: The original annual costs versus CIPT costs (Shapley value) across all the ASes from
the 6 IXPs

While the Shapley value computes the expected contribution of an AS regardless of when it joins

the coalition, absolute gains growth exhibits a decreasing trend. Consequently, relative gains

decrease as the AS size grows.

3.4.5 Cooperation between remote subjects

So far, our analysis was concerned with the ASes operating in the same geographic area, and

consequently having close peak hours. In such scenarios, the savings are mainly impacted by the

price subadditivity rather than the burstable billing. In this section, we investigate potential sav-

ings of collaboration between geographically distant players. Because the remote collaboration
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Figure 3.8: The absolute annual savings for all the ASes from the 6 IXPs

involves IP transport costs, it is possible only for large players. Only then the long-distance trans-

port becomes cheap enough to make the CIPT economically viable [186]. Such long-distance

transport to major (cheap) Internet hubs is not uncommon method for AS cost optimization. For

example, each of the four largest IXPs – German Commercial Internet Exchange (DE-CIX), Ams-

terdam Internet Exchange (AMS-IX), London Internet Exchange (LINX), New York International

Internet Exchange (NYIIX) – host ASes from more than 40 different countries.

Additionally, cooperation between very remote subjects (say, more than 6 time zones), may

strongly impact the performance in terms of increased propagation delays. Some delay-sensitive

applications (voice, gaming, etc.) may find such increase in delay unacceptable. Therefore, CIPT

between very remote subjects is reasonable only for the traffic that is not delay sensitive (content,

P2P, etc.) which indeed represents the majority of the Internet traffic [101, 114, 134].

While identifying and separating delay-tolerant traffic from non-delay-tolerant traffic is not

trivial, the respective technical challenges have already been addressed [114, 134]. Even though
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Figure 3.9: Relative (as fraction of the savings obtained in the grand coalition) per-player savings
for smaller coalitions

traffic separation might be viewed as a network-neutrality violation, it might be also regarded as

acceptable for performance reasons [53]. Since our goal is to show the economic attractiveness of

CIPT, we focus on potential gains from CIPT between remote subjects, rather than on its technical

implementation or net-neutrality aspects.

To analyze the potential savings in such a setup, we look at the potential savings of col-

laborations with two partners. Once all the partners are large enough to receive the minimum

per-Mbps price, the coalitions with more than two partners are not bringing large marginal ben-

efits in terms of price reduction. Thus, we here focus on 2-partner coalitions. To assess the

potential savings in such cases, we take all M = 93 ASes from our 6 IXPs with the peak

traffic greater than 1 Gbps and shift each of them for a (uniformly) random number of time

zones. For each of the M(M − 1)/2 pairs, we evaluate the relative savings of the coalition:

1−cost(CIPT (i, j))/(cost(i)+cost(j)) and plot them against the time difference in Figure 3.10.

One can observe the following trend: the further away the two partners are, the greater the oppor-

tunity is for the CIPT savings. In Figure 3.10, we also depict the bound

g(ψ) =
1− | cos ψ2 |

2
, (3.4)

where ψ = time−difference
24 2π is the scaled time difference. We prove the upper bound on the

relative savings in a simple model where the demand curves are modeled as sin-waves (see below).

One can observe that the relative reduction in the 95th-percentile for a coalition of two partners is

in the range of [0, 0.5], in line with the model predictions. However, the expected savings appear

to be larger as the time difference grows, and peak when two ASes are 12 time zones apart. To

explain and quantify this property, we employ a simple trigonometric model where the demand

pattern of the AS is modeled as a sin-wave function. The following proposition characterizes

the expected reduction in the peak traffic from CIPT collaboration between two partners with
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Figure 3.10: Relative savings between large remote subjects coming from the 95th-percentile
subadditivity

non-coinciding peak hours:

Proposition 1. Let two players have demand given by

Di(t) = Ai cos(2π
t−Mi

24
) +Bi, t ∈ [0, 24) hours.

whereBi is the mean traffic intensity, Ai+Bi is the peak traffic intensity, andMi is the peak hour

of partner i. By creating a CIPT coalition between these two partners, the relative reduction in

the peak is equal to:

G12 = 1− B1 +B2 +
√
A2

1 +A2
2 − 2cosψA1A2

B1 +B2 +A1 +A2
≤ g(ψ),

for ψ = M1−M2
24 2π, the scaled time-zone difference, and g(ψ) defined in Equation 3.4.

3.5 Implementation and deployment issues

Section 3.4.4 presented a compelling evidence that CIPT with Shapley-value sharing of transit

costs offers significant benefits to the CIPT partners. While the economic incentives are crucial

for CIPT being viable, the viability is a topic with multiple dimensions. Without pretending to

be comprehensive, this section discusses other aspects of CIPT such as its organizational embod-

iment, physical infrastructure, performance, traffic confidentiality, and interdomain routing.

Organizational embodiment: CIPT is an innovative mechanism for reducing transit costs.

Among other cost-reduction mechanisms, peering is similar to CIPT in its cooperative nature and
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commonly organized as a nonprofit IXP. In our vision for CIPT as an organization, a typical ar-

rangement is also a nonprofit organization. The nonprofit status of a CIPT promotes a valuable

marketplace image of its neutrality and fair treatment for all its partners. In such an organiza-

tion, partnership fees are used only to recover the technical and management overhead costs of

operating the CIPT and expected to be insignificant in comparison to the transit cost reductions

provided by the CIPT. In a future study, we plan to quantify the technical and economic overhead.

While the nonprofit arrangement looks the most suitable, deviations are quite possible and even

likely; as with some existing IXPs, some CIPTs might operate as government or commercial or-

ganizations. Finally, a single AS may choose to participate in multiple CIPTs in order to increase

the provider diversity.

Physical infrastructure: The physical implementation is another issue where CIPTs can

benefit from the IXP experience. For buying IP transit in bulk, a CIPT needs to concentrate traffic

of multiple ASes in one location. The physical infrastructure of any IXP already supports such

concentration for peering purposes. Moreover, some IXPs diversify their service portfolio by

offering access to transit providers. For example, Vancouver Transit Exchange is an IXP that also

hosts transit providers and thereby enables an AS to satisfy its peering and transit needs at the

same location [96]. A CIPT can be implemented as a further diversification of the IXP service

portfolio. By leveraging the physical infrastructure of an existing IXP, the CIPT can keep its

operational costs low.

Performance: A CIPT and its transit provider sign a contract for IP transit. The contract

is expected to be of the same type as existing contracts between an individual AS and its tran-

sit provider. In particular, the contract includes a Service-Level Agreement (SLA) stating the

maximum outage duration, packet delay, jitter, and loss rate for the CIPT traffic. The SLA also

specifies financial compensations by the provider if the latter fails to provide the CIPT with the

agreed performance. In reality, SLA violations are likely to be rare. Whereas the performance

levels of traditional inter-provider SLAs are very similar, having a single SLA for the multiple-

partner CIPT is not problematic. Also, the typical SLA metrics of packet delay, jitter, and loss rate

are such that the traffic of individual CIPT partners can inherit the performance levels of the CIPT

aggregate traffic without any special technical support. Furthermore, the CIPT and its individual

partner can sign a separate bilateral agreement on performance issues.

Traffic confidentiality: While it is feasible to formalize traffic metering and billing for a

CIPT by means of bilateral agreements between the CIPT and each of its individual partners,

the bill of a partner depends on the traffic of the other partners. Some academic ISPs – such as

the aforementioned HEANET, SANET, GRNET and CESNET – reveal their transit and peering

traffic. However, a typical commercial AS tends to be more secretive and does not disclose its

traffic patterns. To alleviate the privacy concerns, a CIPT can keep the traffic profiles of its

partners confidential and incorporate an internal audit system for verifying the correctness of

traffic metering and billing for each partner.
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Interdomain routing: With BGP being a de facto standard protocol for routing between

ASes, we see no technical complications with CIPTs from the interdomain routing perspective.

A CIPT can acquire a separate AS number for inclusion into its BGP path announcements. Alter-

natively, as in the case of some IXPs, the partners of a CIPT can agree to use the individual AS

number of one (typically, prominent) partner in all BGP announcements by the CIPT.

Multihoming and traffic engineering: Both are feasible with CIPT. A CIPT partner can buy

transit outside the CIPT as well. Also, a CIPT can buy transit from multiple providers. While

multihoming might increase costs, CIPT can reduce these costs due to price subadditivity and

burstable billing.

Social impact: The overall social impact of CIPTs appears positive. In particular, CIPTs

are beneficial for narrowing the digital divide between the developed countries and poorer world

which lies on the Internet edges and does not own a transit infrastructure for reaching the Internet

core. In places like Africa, IP transit (and IP transport) is more expensive but the ability to pay

for it is lower. Like with IXPs that have positively affected Africa by exchanging its traffic locally

rather than through North America or Europe, CIPTs can benefit Africa and other developing

regions by making the access to the Internet and its information more affordable [4, 5].

3.6 CIPT: a strategic perspective

In this section, we analyze potential strategic reactions to and within CIPT. While a CIPT

coalition can include members with different market power, more powerful members can try to

gain extra benefits by leveraging their stronger bargaining position against weaker members of

the coalition. Besides, CIPT participation depends on existing or potential transit and peering

relationships. Section 3.6.2 examines such issues related to CIPT formation and participation.

Strategic CIPT issues are also relevant to ASes that are not directly involved in CIPT relation-

ships. Other individual customer ASes can react by forming their own CIPT coalitions. More

interestingly, both the transit provider of the CIPT members and its competitors can adjust their

strategic behaviors in response to the CIPT emergence. Section 3.6.1 studies the reactions of

transit providers.

3.6.1 Transit providers

Whereas transit customers form a CIPT for the simple reason of reducing their costs, the

reaction of transit providers to CIPT is a multifaceted issue. Somewhat counterintuitively, the

transit providers can favor CIPT for a number of reasons.

One potential incentive for an interest of transit providers in CIPT lies in transit traffic elas-

ticity [191]. By decreasing the transit costs of individual buyers, CIPT increases their future

demands. While we had no access to reliable data on transit elasticity, this chapter quantified the

benefits of CIPT conservatively without these extra gains. Also, regardless of whether a transit
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provider is a monopolist, CIPT increases overall demand by turning prospective buyers into ac-

tual customers via aggregation of their individual demands. Moreover, CIPT traffic aggregation

can enable the transit provider to bypass resellers of its transit service and serve small customers

directly through the CIPT. Finally, if the transit provider is not a monopolist, it can adopt CIPT

contracts to attract new customers from its competitors.

Traffic aggregation can allow small customers to pool their traffic together and become at-

tractive customers for transit providers. More generally, direct provisioning of transit to small

customers is sometimes unattractive for big ASes. Instead, mid-size networks resell transit of big

ASes to small customers. By aggregating traffic of multiple small members, a CIPT can reach an

acceptable size for direct transit sales by a big AS. Such outcome can be mutually beneficial for

both the CIPT and transit provider. While this chapter already elaborated on the benefits for the

CIPT members, the transit provider benefits as well by selling the same traffic at higher per-Mbps

prices than through the intermediary. Even though the bypassed intermediary does not find the

CIPT beneficial, the reseller does not have effective means or clear grounds to oppose the direct

relationship between the CIPT and big AS.

Additionally, in situations where the transit market is competitive, a transit provider can try

adopting CIPT to increase its revenues at the expense of its competitors which, in their turn,

can try doing the same. The competition for CIPT contracts drives per-Mbps CIPT prices down.

In Bertrand competition model for homogeneous goods, such competitions converge to the so-

called Bertrand paradox where the competitors offer prices that match their costs, i.e., yield no

profit [189]. In practice, while transit providers are sufficiently heterogeneous (e.g., with respect

to geographic coverage, service quality, and cost structure) to avoid the extreme no-profit out-

come, their actual prices are still likely to be attractive for CIPT coalitions.

In theory, transit providers can also benefit from CIPTs due to a variety of other economic

factors that include transaction efficiency, traffic uncertainty, customer heterogeneity, and pro-

duction postponement [7]. In the current context of IP transit, these factors do not appear to be

strong enablers of CIPT. Thus, we view the traffic aggregation and inter-provider competition as

the two main reasons for the CIPT feasibility from the transit-provider perspective.

3.6.2 Strategic issues within the CIPT coalition

Strategic issues exist within a CIPT coalition as well. One specific issue is CIPT formation,

i.e., which ASes join the coalition. Another interesting issue is CIPT cost sharing, i.e., whether

and how the CIPT members can leverage the Shapley-value cost sharing mechanism for their

individual advantages.

Peering and transit relationships of CIPT members, as well as their position in the transit

hierarchy, are relevant to CIPT formation. Both peering and CIPT are mechanisms for transit-cost

reductions. By reducing transit costs, CIPT can decrease the value of peering. Due to this effect,

ASes with established peering relationships can be reluctant to join CIPTs. For the same reason,

CIPT members can be reluctant to enter peering relationships. This tension between CIPT and
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peering can increase demand for traditional transit and thereby serve as an additional incentive

for transit providers to support CIPT.

As we discuss in Section 3.6.1, CIPT makes a negative impact on bypassed transit resellers.

To compensate for the diminished revenues, a bypassed reseller can itself join a CIPT in order to

minimize the losses.

So far, our analysis considered static situations only. CIPT dynamics broaden the scope of

potential strategic behaviors. For example, if an AS joins a CIPT coalition with a certain traffic

contribution and later communicates at a different rate, the AS traffic change affects the gains

achieved by other CIPT members. To deal with such future traffic uncertainties, CIPT coalitions

can adopt a mechanism that requires each member to commit to an expected traffic level for some

time period.

3.7 Conclusions

In spite of the steady decline of IP transit prices, the IP transit costs remain high due to the

traffic growth. Over the previous decades a number of solutions have been suggested to reduce

these IP transit costs, including settlement-free or paid peering, IP multicast, CDNs, and P2P

localization. In this chapter, we proposed an alternative cost-reduction technique of Cooperative

IP Transit (CIPT) that, in contrast to the existing solutions, does not alter the traffic. Namely, CIPT

utilizes tuangou, or group buying, for IP transit. The savings in CIPT come from two distinct yet

ubiquitous properties of the IP transit pricing model: price subadditivity and burstable billing.

Our data-driven analysis suggested that significant savings can be expected from using CIPT. We

are confident that the potential savings of CIPT, combined with its simplicity, will encourage

many Internet entities to engage in CIPT partnerships.



54 Cooperative IP Transit (CIPT)



Chapter 4

Transit for Peering (T4P)

55



56 Transit for Peering (T4P)

While the previous chapter leveraged the economies of scale in interdomain interconnections

to reduce transit bills of ASes, this chapter goes beyond transit. We study the evolved interconnec-

tion ecosystem where transit co-exists with peering. This chapter examines how the economies

of scale can be leveraged in this diversified ecosystem.

In its early years, the Internet ecosystem was essentially a hierarchy where smaller ASes

paid bigger ASes for the universal Internet reachability via transit links. Subsequent massive

emergence of peering enabled many ASes to exchange their customer traffic over cost-effective

settlement-free peering links, leading to the observed Internet flattening phenomena as described

in Chapter 2. The evolution kept increasing the diversity of inter-AS connection types and in-

troduced partial-transit, paid-peering links [70, 191], and remote peering. In contrast to the full

transit, a partial-transit link offers access to only a fraction of the global Internet address space.

With paid peering, one of the peering ASes pays the other peer for exchanging their customer

traffic.

To a large extent, the driving forces behind the interconnection evolution are economic. For

example, if two ASes exchange their traffic via a transit provider, their payments to the provider

significantly exceed the cost of communicating the same traffic over a settlement-free link. The

costs of the peering are mostly related to the infrastructure and labor of maintaining the physical

interconnection, either as a direct link or through an IXP [15,55,58]. The potential of settlement-

free peering to reduce the costs for both peers does not mean that the ASes will indeed establish

and sustain such a relationship. For instance, the ASes might view each other as competitors and

be unwilling to reduce the costs of the counterpart. Furthermore, the costs of each party depend

on the peering-link traffic and AS sizes. Agreements for settlement-free peering commonly stip-

ulate that the traffic flows in the two directions of the peering link should be balanced within a

certain ratio (e.g., ratio 2:1) and that the geographic scopes of the peering networks should be

similar [56]. Loosening the above requirements, a paid-peering interconnection enables peering

of diverse ASes through monetary payments, e.g., by allowing one AS to send more traffic and

pay the other AS a monetary compensation for the traffic imbalance.

Accompanying the interconnection evolution [57], ASes specialized into providing Internet

access to content (i.e., content networks) or residential users (i.e., eyeball networks) [70, 125].

As previously discussed in Section 1, recurrent conflicts over peering settlements [10,25,26,154]

and the net-neutrality debate [127] resulted from the divergent interests of content and eyeball

networks.

In the one hand, asymmetric traffic patterns intensify the cost recovery need of the eyeball

networks, who bear a capital intensive last-mile infrastructure. On the other hand, the high cost of

the last-mile infrastructure represent a significant barrier of entry, that in turn limits competition in

the eyeball-network market and enhances the market power when negotiating a peering agreement

with the content AS [70, 125, 140].

In this chapter, we propose T4P (Transit for Peering), a new type of hybrid bilateral AS

interconnection that can reduce interdomain traffic costs and strengthen the Internet connectivity.
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Figure 4.1: Different types of interconnection between ASes Y and Z: while double-arrow lines
depict traffic flows, single-arrow lines show monetary flows

In T4P, the link between two ASes Y and Z carries not only peering but also some transit traffic.

In particular, AS Z communicates a portion of its transit traffic not through its transit providers

but over the T4P link and through the transit providers of AS Y. While AS Y effectively becomes

a partial-transit provider for this traffic of AS Z, the partial transit serves as an in-kind traffic-

delivery compensation paid by AS Y to AS Z for the peering. Unlike paid peering, T4P does not

employ monetary payments. In comparison to paid peering, T4P is able to reduce the combined

transit/peering costs of an AS due to the subadditivity of transit billing. This chapter uses real

traffic data to demonstrate the cost-reduction potential of T4P.

The main contributions of the chapter are the following ones:

• We propose T4P, a novel type of hybrid AS interconnections where partial transit

serves as a compensation for peering.

• Using real traffic data available at several IXPs, we quantify the financial incentives



58 Transit for Peering (T4P)

of ASes to adopt T4P.

The rest of the chapter is structured as follows. Section 4.1 provides additional background

and motivation for the studied problem. Section 4.2 presents the concept of T4P in more detail.

Section 4.3 reports the economic model and analyzes the AS incentives for T4P adoption. Finally,

Section 4.4 evaluates T4P using the real IXP data.

4.1 Increasing diversity of interconnections

This section presents the background information on the Internet interconnection evolution

that sets the stage for the T4P proposal.

Transit is the interconnection type that was heavily predominant in the early years of the

commercial Internet. A transit link connects two ASes called a provider and customer. As it

was described in the previous chapter, in transit the customer pays the provider for the traffic

communicated in both directions of the interconnection. In exchange for the monetary payments,

the provider offers the customer access to the global Internet. In a typical transit relationship, the

provider is a larger network with a broader geographic scope. Figure 4.1 a shows two examples

of transit interconnections, with ASes Y and Z acting as customers.

Transit billing, presented in the previous chapter (see Section 3.1) is typically subadditive. In

this section we focus in the max transit billing model: the 95th-percentile traffic rate is calculated

for each of the two link directions and the largest of the two 95th-percentile traffic rates serves

as the billed traffic rate. Then, a subadditive price function is applied to the billed traffic rate

to compute the monetary settlement. With the subadditive billing, larger traffic rates are usually

billed at lower transit prices per Mbps.

Settlement-free peering has emerged as a cost-effective interconnection where two ASes Y

and Z exchange their customer traffic directly without any monetary compensation. Whereas the

peering link carries only traffic of own customers, a vast majority of ASes still needs transit links

to reach the global Internet. Nevertheless, by reducing the traffic on the transit links, settlement-

free peering reduces the transit costs for both ASes Y and Z. Figure 4.1b depicts settlement-free

peering.

Despite its definite potential for cost reduction, settlement-free peering has struggled to fully

accommodate the increasingly diverse population of ASes. In particular, the Internet evolution

produced the two AS types of content and eyeball networks with very different profiles in regard to

the number and sizes of customers, dominant direction of traffic flows, cost structure, and market

power. Eyeball networks receive more traffic than they send, serve more users, incur higher

traffic-delivery costs, and enjoy a stronger bargaining position because vendor lock-in is arguably

easier with residential users than with content-providing customers [70, 125]. These differences

make eyeball ASes hesitant to peer with content ASes on the settlement-free basis. For example,

after content provider Netflix became a customer of Level 3, the traffic imbalance on the peering

link between Level 3 and eyeball-network Comcast increased, and Comcast threatened to de-peer
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(i.e., terminate the peering agreement) with Level 3. Although Level 3 offered to resolve the

conflict by upgrading its communication infrastructure and making its routing more beneficial for

Comcast, the latter rejected the offer and de-peered.

Paid peering is a more flexible interconnection that allows AS Y to monetarily compensate

AS Z for their peering. With respect to the traffic flows, paid and settlement-free peering are

identical. Figure 4.1c illustrates paid peering.

4.2 T4P concept

While Section 4.1 exposed the increasing interconnection diversity as well as economic fac-

tors behind this evolution, our T4P proposal continues the diversification trend to find an econom-

ically viable niche in the evolving Internet ecosystem. T4P is a novel type of hybrid bilateral AS

interconnection between diverse ASes, such as content and eyeball networks. Unlike with paid

peering, the T4P interconnection does not involve any monetary settlement. Instead, T4P employs

in-kind compensations in the form of partial traffic transit. Specifically, AS Y compensates AS Z

for their peering by providing a transit service for some traffic of AS Z. Figure 4.1d depicts the

T4P interconnection between ASes Y and Z.

T4P is fundamentally different from paid peering not only because of eliminating any mone-

tary compensation between ASes Y and Z but also due to changes in the traffic flows. While paid

peering is identical to settlement-free peering in restricting the link between ASes Y and Z to own

customer traffic, the hybrid T4P link combines the peering traffic with transit traffic. Hence, the

T4P interconnection affects both transit routes and traffic rates along these routes.

The subadditive nature of transit billing is the reason why T4P is able to reduce the traffic

costs of both ASes Y and Z in comparison to paid peering. Although the overall transit traffic of

ASes Y and Z does not change with T4P, serving some transit traffic of AS Z through AS Y can

decrease the overall transit costs of the two ASes due to the billing subadditivity.

Whereas the subadditive billing can reduce the combined transit/peering costs of ASes Y

and Z, the attractiveness of T4P vs. paid peering for an individual AS depends on the monetary

settlement in the paid-peering interconnection. In particular, AS Z finds T4P more attractive than

paid peering only if the transit bill reduction for AS Z with T4P is at least as large as the monetary

settlement of paid peering.

4.3 Incentive analysis

In this section, we expand and formalize the incentives of ASes to adopt T4P. While we

envision T4P as a cost-effective interconnection between diverse ASes, paid peering serves as a

natural baseline in our analysis.

The lack of real data on paid-peering settlements makes it problematic for our model to ex-

plicitly represent the monetary compensation paid by AS Y to AS Z in the paid-peering inter-
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connection. Instead of treating the monetary compensation as an explicit parameter, our analysis

relies on the key insight that the combined traffic costs of ASes Y and Z are independent from

this monetary compensation: the compensation paid by AS Y is the same as the compensation

received by AS Z. Hence, the first step of our analysis focuses on the overall economic efficiency

of T4P vs. paid peering for the two ASes together.

Our model accounts for the subadditive billing of transit services. The subadditive billing

method is a positive factor for T4P because adding the partial-transit traffic of AS Z to the own

transit traffic of AS Y reduces the price paid by AS Y per Mbps of the aggregated transit. We

consider the method variant that bills the two directions of a link together by applying function

f to the sum of the 95th-percentile traffic rates in the individual directions. In our model, billing

function f always selects the CDR value that yields the smallest possible per-Mbps price for any

traffic pattern. Using i to denote either AS Y or AS Z, we express transit cost Ci of AS i as

Ci = f (Ai) (4.1)

where Ai represents the billed bidirectional traffic pattern.

To represent the transit costs of ASes Y and Z interconnected with T4P, let T denote the

partial-transit traffic on the T4P link, and Wi be the own transit traffic of AS i on the link with its

normal transit provider. Then, transit costs FY and FZ of ASes Y and Z with the T4P intercon-

nection are

FY = f (WY + T ) and FZ = f (WZ − T ) . (4.2)

With paid peering, transit costs Ni of AS i equal

Ni = f (Wi) . (4.3)

Then, transit cost reduction Ri provided by T4P to AS i is

Ri = Ni − Fi. (4.4)

With the subadditive billing, f is a non-decreasing function. Thus, Equations 4.2, 4.3, and 4.4

imply that T4P does not decrease the transit costs for AS Y (i.e., RY ≤ 0) and does not increase

the transit costs for AS Z (i.e., RZ ≥ 0).

We define aggregate T4P gain G as

G = RY +RZ . (4.5)

Combining Equations 4.2, 4.3, 4.4, and 4.5, we express the aggregate T4P gain as

G = f (WY ) + f (WZ)− f (WY + T )− f (WZ − T ) . (4.6)
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Due to the subadditive billing, the aggregate T4P gain is non-zero in general and depends on

traffic T that AS Z transits through AS Y.

In comparison to paid peering, the overall economic efficiency of T4P for the two ASes to-

gether is better when G > 0. Hence, we have proved the following theorem:

Theorem 1. For the two ASes together, T4P is economically more attractive than paid peering

when

f (WY ) + f (WZ) > f (WY + T ) + f (WZ − T ) . (4.7)

Switching from the aggregate gain to the individual perspectives of ASes Y and Z, one can

think of RZ as a monetary equivalent of the in-kind traffic-delivery compensation provided to

AS Z with T4P. Hence, AS Z favors T4P when RZ is larger than monetary compensation x paid

by AS Y to AS Z in the paid-peering relationship. Even when RZ is strictly greater than x, AS Y

also finds T4P more attractive as long as the transit cost increase (−RY ) of AS Y with T4P is

smaller than x. There is a continuum of such mutually beneficial settings when aggregate gain G

is positive.

4.4 Data-driven evaluation

In Section 4.3, we analyzed AS incentives for adopting T4P. To quantify the economic attrac-

tiveness of the T4P, we evaluate it using real traffic data and real transit pricing. Section 4.4.1

presents our evaluation methodology. Section 4.4.2 illustrates the potential benefits of T4P with

an example. Section 4.4.3 evaluates T4P in more detail.

4.4.1 Evaluation methodology

Similarly to the previous chapter, our evaluation relies on real traffic at the six IXPs presented

in Table 3.4.1.1). Each of the six IXPs in table 3.2 reports peering traffic for its AS members in

the form of network-management images, such as the one in Figure 3.1. Obtained by applying

Optical Character Recognition (OCR) to such images, our numeric data for the peering traffic

serve as a basis for approximating the transit traffic of the member ASes. As in the previous

chapter (see Section 3.4.1.2), we scale up the peering traffic of a member AS with the factor of

1.5 to represent the transit traffic of the AS (real traffic data available at some academic ASes

validate such correspondence between the peering and transit traffic patterns). To evaluate T4P

instances, we consider all possible pairs of ASes at each IXP.

The 95th-percentile billing for transit services utilizes the Voxel prices in Table 3.1 (in Sec-

tion 3.4.1.3 of the previous chapter). Transit providers tend to treat their prices as confidential.

Voxel, a North American AS, is a rare exception and publishes its transit pricing [194]. Table 3.1

sums up the transit prices of Voxel with respect to the CDR chosen by the customer. The tran-

sit payment is calculated as the product of the price per Mbps for the chosen CDR and either

95th-percentile traffic rate or CDR when the latter is larger.
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Table 4.1: Illustrative example of T4P relationships for two ASes at NIX

Interconnection
type

Parameter AS Y AS Z

Paid peering
Billed transit traffic rate, Gbps 7.7 5.6

Transit costs $38K $28K

T4P

Transit traffic rate, Gbps 12.2 1.1

Transit costs $49K $6K

Transit cost reduction −$11K $22K

Maximum compensation
to AS Z

N/A $11K

Maximum compensation
reduction for AS Y

$11K N/A

4.4.2 Illustrative example

In this section, we present an example that illustrates the potential benefits of T4P for a pair of

ASes Y and Z at Neutral Internet eXchange (NIX). The peering traffic of the ASes is imbalanced

with AS Y sending more traffic at the ratio of 4:1.

We examine the T4P instance that maximizes the aggregate T4P gain by shifting 80% of the

transit traffic of AS Z to the T4P link. As shown in table 4.1, T4P decreases the transit costs of

AS Z by $22K but raises the transit costs of AS Y by $11K. Thus, the maximum aggregate T4P

gain attained by T4P is $11K. AS Y can provide up to a $11K compensation to AS Z without

increasing its own overall traffic costs. This amount of G = $11K represents the budget of the

T4P transit-cost benefits that can be distributed between ASes Y and Z in various ways. The other

extreme of this continuum is financially equivalent to settlement-free peering for AS Z: the latter

does not see any changes in its traffic costs but AS Y decreases its overall traffic costs by $11K.

4.4.3 Evaluation results

Now, we take a detailed look at the T4P relationships between all ASes at the six IXPs.

Figure 4.2 shows the distributions of aggregate T4P gain G. Such gains are in addition to those

resulting from peering and arise due to the subadditive billing and the aggregation of transit traffic.

At FICIX, 60% of its AS pairs gain at least $1K, with almost 5% of its AS pairs gaining beyond
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$10K. The percentage of AS pairs with G above $1K is greater than 40% for NIX and InterLAN,

and larger than 20% for Budapest Internet eXchange (BIX) and SIX. Israeli Internet eXchange

(IIX) provides the lowest gains among the 6 IXPs, with less than 5% of its AS pairs gaining more

than $1K. Figure 4.3 focuses on the top 20% of the AS pairs with the biggest G across all 6 IXPs.

Around 150 AS pairs gain a larger G than $5K, and about 45 AS pairs gain more than $10K.

4.5 Conclusion

This chapter proposed and evaluated T4P (Transit for Peering), a new type of hybrid bilateral

AS interconnection. In T4P, one AS compensates the other AS for their peering by providing

this other AS with a partial-transit service. Leveraging the subadditive billing of transit services,

T4P offers economic benefits over paid peering and thereby opens new opportunities for AS

interconnections. We modeled and analyzed T4P relationships with paid peering as the natural

comparison baseline. Then, we evaluated T4P based on the real Voxel transit pricing as well

as real traffic data available at the six European IXPs. Our results confirmed the potential of

T4P to expand and strengthen the Internet connectivity through the more flexible cost-effective

interconnection.
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Whereas the previous chapters looked at solutions within the existing interconnection frame-

work, this chapter first identifies inherent limitations of the current framework and then proposes

a novel Internet architecture to overcome those drawbacks.

While the Internet became synonymous with quick transformation of everyday life, network

interconnection contracts in the Internet of 2015 are established in a very old-fashioned way.

Critical for new interconnections are personal contacts, legal teams, and social venues where

taking care of the participants’ subconscious needs [144] is a key aspect.

The current situation with interconnection contracts reflects stagnant practices that have be-

come entrenched over a period of decades. After the infrastructure privatization in the early

1990s, the Internet came to consist of multiple independent networks or ASes. In the Internet

infrastructure owned by multiple parties, global end-to-end reachability requires interconnection

of individual networks. In the multi-party Internet, delivering the traffic of another network is a

service that has its costs and can be provided with different levels of Quality of Service (QoS).

As private for-profit entities, ASes seek compensation for their traffic delivery services and sign

contacts that include an SLA (see Chapter 3). To establish trust and accountability, the SLA de-

termines the interconnection type, service conditions, compensation arrangements, and penalties

for contractual violations.

During the same transition in the 1990s, the main protocol for interdomain routing changed

from the centralized Exterior Gateway Protocol (EGP) [167] to the distributed BGP [92]. Using

BGP, an AS independently decides which traffic-delivery routes the AS offers to its neighbors.

The AS announces the routes to only those neighbors with whom the AS has bilateral intercon-

nection agreements, even when the available physical connectivity is richer.

While the distributed BGP realization of rigid bilateral contracts has promoted the Internet

growth, the traditional interdomain routing suffers from numerous drawbacks exacerbated by

the rapid Internet evolution. These drawbacks include route instability, convergence slowness,

policy inflexibility, and configuration complexity [193, 202]. Although extensive research efforts

have mitigated some of these issues through protocol improvements, new contract types, and new

interconnection facilities, the foundations of Internet routing remain mostly the same.

While BGP has been the subject of much controversy and has suffered many modifications,

we contend that routing challenges in the Internet are fundamental. We contend that some funda-

mental problems of Internet interdomain routing arise due to its contractual model, rather than its

BGP realization. Furthermore, the bulk of work on interdomain routing focuses on improvements

in protocols, rather than in the contractual system that the protocols realize. In the Internet of

many independent infrastructure providers, efficient end-to-end traffic delivery needs coordina-

tion among multiple ASes who may not trust each other.

The current contractual system deals with the problem of trust by relying on rigid bilateral

contracts between neighboring ASes. However, the transitive trust of the bilateral contracts comes

at the expense of routing flexibility and efficiency. Without explicit means for direct coordination

among multiple networks, the realized routing tends to utilize the Internet communication capa-
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city suboptimally, oscillate needlessly, and react inappropriately to traffic-demand changes and

infrastructure failures.

A potential alternative to this status quo is a centralized system, where a trustworthy entity

determines optimal paths based on AS policies. However, this leads to a few concerns: why

should independent ASes support such a centralized system? What is the incentive for ASes to

sacrifice their routing independence?

This chapter proposes Route Bazaar, a contractual system where ASes and their customers

agree on QoS-aware routes without explicit or implicit trust between the networks. The only

trusted entity in Route Bazaar is a public ledger, which is assumed to be trustworthy in the absence

of large corrupted coalitions. While prior work on cryptocurrencies showed how to construct a

decentralized public ledger without a single trusted component, our use of the ledger enables net-

works to check the previous record of each participant in a route before agreeing on the route.

Because the public ledger of Route Bazaar allows anyone to verify the trustworthiness of a net-

work as a routing provider or customer, the verification mechanism incentivizes honest behavior

by all networks and thereby supports effective interdomain routing in an untrusted environment.

5.1 Background

5.1.1 Routing

Current interdomain routing relies on bilateral contracts between ASes, which typically

establish either transit or peering relationships. In a transit relationship, a customer network pays

a provider for reaching the global Internet. Networks can also bypass transit providers and instead

interconnect directly through a peering relationship. In peering, two networks obtain reachability

to a restricted set of Internet addresses: peers only exchange traffic destined to their own networks

and to networks for which they provide transit.

An AS uses BGP to exchange reachability information with neighbors with which it has bilat-

eral contracts. An AS has limited control over the routes of inbound traffic; for outbound traffic,

when multiple neighbors offer paths to the same destination, the AS can choose the neighbor

through which to forward. Most ASes prefer to send outbound traffic through interconnections

that generate revenue (i.e., through transit customers), and avoid using transit providers if an

alternate path through a customer or peer exists.

BGP is fully decentralized and is thus extremely scalable. However, this scalability comes

at the expense of flexibility and responsiveness. In particular, events such as routing policy

changes, misconfigurations, and infrastructure failures can trigger path oscillations and forward-

ing loops [90], and it is nearly impossible to verify that selected paths conform with global rout-

ing policies [81]. For example, BGP hijacking has in the past been used to redirect YouTube’s

traffic to a fake destination in Pakistan [19, 166], and to redirect Spamhaus’s traffic to a hacker

group [174]; in both of these cases a more global view would have alerted ASes to these problems.
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The rapid growth of the Internet, both in terms of users and traffic volumes, and the increasing

diversity of Internet services have strained the existing routing framework. To cope with these

challenges, new types of interconnection contracts have emerged (e.g., partial transit [191], paid

peering [57] and remote peering [36]), IXPs (switching facilities to reduce the costs of peering)

have mushroomed, and BGP has slowly evolved.

However, many of the limitations of Internet routing stem from two root causes. First, con-

tracts must be explicitly negotiated by humans before two ASes can exchange traffic. Thus, in

stark contrast to the dynamic nature of the Internet itself, interconnection negotiations are car-

ried out at human-time scales (sometimes via social events for engineers as mentioned earlier).

Second, these contracts are applied recursively: traffic that an AS sends to its neighbor is then

governed by the contracts of that neighbor. The local (and thus recursive) routing decisions made

by BGP are globally suboptimal due to limited visibility [124].

5.1.2 Cryptocurrencies

Cryptocurrencies, like Bitcoin [141], are secure, decentralized, anonymous digital curren-

cies. These currencies are often built on a public ledger, commonly referred to as a block chain.

The public ledger records transactions and enables checking of the account balance for each user.

Cryptocurrencies have been adopted to new non-monetary uses [45,73,77] that leverage the public

ledger as a decentralized and hard-to-corrupt log.

The public ledger needs to be resilient (i.e., incorruptible) even in the presence of untrusted

participants. Bitcoin’s public ledger is therefore built using a consensus algorithm that is capable

of solving the Byzantine consensus problem [13]. Byzantine consensus is impossible to solve

in asynchronous systems in general and requires at least two thirds of participants be honest.

Moreover, it assumes that the set of participants is well known. Bitcoin solves this latter problem

(that of limiting who can participate) by requiring each participant in the consensus algorithm

to solve a puzzle before voting, and attach a proof-of-work [137] to each vote. Generating this

proof requires the participant to solve a sufficiently hard algorithmic problem. Since generating

this proof requires computational resources, it ensures that the number of votes a malicious user

can generate is in proportion to the computing power they control. Since voting multiple times is

hard, a malicious user needs to instead convince a majority of participants to affect the result of

the consensus algorithm. The lack of aligned interests among malicious parties therefore allows

all users to trust the values stored in the block chain.

5.2 Route Bazaar

In this section, we present Route Bazaar, a novel system for flexible Internet connectivity.

Inspired by cryptocurrencies, Route Bazaar uses a decentralized public ledger to allow mutually

distrustful ASes and customers to establish dynamic, end-to-end QoS-aware paths as overlays

on the existing Internet. In Route Bazaar, the information contained in the public ledger allows
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Provider Pathlet Destination Price Latency SLO Throughput SLO

AS1 f48d4c4 AS2 $50 5 ms (99.9%) 3 Gbps (99.9%)

AS1 d7228c5 AS3 $45 5 ms (99.9%) 3 Gbps (99.9%)

AS2 97dbd13 AS9 $10 10 ms (99.9%) 1 Gbps (99.9%)

AS3 ca22b8a AS9 $20 8 ms (99.9%) 2 Gbps (99.9%)

Table 5.1: Pathlet advertisements in the public ledger.

each participant to verify any participant’s conformance with previous path agreements, while

simultaneously keeping the path agreements private. By relying on a public ledger, Route Bazaar

establishes trust among participants which can compute the likelihood that another participant will

honor a path agreement. Route Bazaar uses standard cryptographic tools to ensure privacy and

existing techniques to establish overlays; our innovation lies in creating a trustworthy environment

for the announcement, selection, and verification of end-to-end paths. In what follows, we assume

that all communications with the public ledger are carried out through authenticated and encrypted

channels, i.e., entities cannot impersonate each other. Several existing protocols (e.g., TLS [59])

can be used to meet this requirement.

In Route Bazaar, a provider is an AS that advertises connectivity over a pathlet (i.e., a path

fragment [80]). A path is formed by composing pathlets leading from a source to a destination. A

customer in Route Bazaar is an entity paying for the end-to-end connectivity provided by a path.

A customer may not be an AS, and might be either the source or destination of the path.

An important aim for Route Bazaar’s design is to minimize the amount of information leaked

about end-to-end paths and customer policies. Our design limits public information to the min-

imum required to support flexible routing via multilateral contracts. First, providers advertise

pathlets using the public ledger. Then, customers compose end-to-end paths by combining the

advertised pathlets. Finally, providers confirm or reject the agreement. We envision that these de-

cisions are made dynamically by automated agents acting on behalf of customers and providers.

Participants can hence enforce sophisticated contractual and routing policies. For instance, Route

Bazaar allows these policies to exploit the historical records about forwarding performance (to

choose providers) and likelihood of payment (to accept a customer) that are maintained in the

public ledger. When all participants agree on a path, the public ledger records an agreement

between the customer and each provider participating in the path.

As the traffic is forwarded along a computed path, the source, destination and each provider

record machine-readable forwarding proofs in the public ledger. These proofs can then be used

to verify that each provider delivered the desired level of service. Customers also record proofs

showing that they have paid providers in the public ledger. The public ledger therefore allows

potential customers and providers to compare previous performance and payment history when

deciding whether or not to trust each other.
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Provider Tag Latency SLO Throughput SLO

AS1 encm(f48d4c4) 5 ms (99.9%) 1 Gbps (99.9%)

AS2 encm(97dbd13) 10 ms (99.9%) 1 Gbps (99.9%)

Table 5.2: Pathlet commitments table in the public ledger. encm(x) here represents the value
output by a PRF with key m and value x.

5.2.1 Routing

Providers advertise pathlets in the public ledger (Table 5.1). Each pathlet advertisement spec-

ifies a tag (used to refer to the pathlet), the source, destination, price and Service Level Objective

(SLO) for throughput and latency. For ease of exposition, here we assume that the pathlet provider

is also the source, however Route Bazaar supports pathlets where the source and provider differ.

A customer composes an end-to-end path between a source and destination by choosing from

the set of advertised pathlets. The customer can enforce routing policies by filtering out policy-

incompatible pathlets. For example, a customer can exclude pathlets advertised by providers who

have previously not met their SLOs. Before a path can be used, each provider must agree to

route traffic along the path; a provider can thus disallow the use of policy-incompatible paths.

For example, a provider might deny service to customers who are unlikely to pay, or reject paths

involving untrusted providers. Policies are enforced by automated agents, who act on behalf of

providers and customers (and are hence aware of their policies) and can exploit the information

contained in the public ledger to judge other participants.

Once the customer and all pathlet providers have agreed on a path, the participants use a

symmetric key generated via key agreement (e.g., Elliptic Curve Diffie-Hellman (ECDH) [22])

and the pathlets’ tags as input to a cryptographic pseudorandom function (PRF) to generate an

anonymous tag that is valid for only this specific path. Each provider then publishes a pathlet

agreement which includes this encrypted tag, the provider’s identity and the SLO offered by the

pathlet to a pathlet commitments table (Table 5.2) in the public ledger. We use path agreement to

refer to the collection of all pathlet agreements that allow routing along a path. The customer and

providers also agree on a second key that is used to generate an anonymized payment tag (again

derived from the pathlet tag) and prices that are used to record a set of payment agreements

(Table 5.3) between the customer and providers.

This mechanism can accommodate a variety of end-to-end routing models including multi-

path routing [197], source routing [158], opportunistic routing [158] and route repositories [29].

Route Bazaar also allows customers to outsource path computation to trusted third parties, i.e.,

routing as a service [112]. Finally, Route Bazaar supports contractual flexibility, e.g., it can ac-

commodate both cases where the sender pays for connectivity and cases where the receiver pays

for connectivity.

To illustrate how customers can use Route Bazaar to form an end-to-end path, consider a

case where Alice wants to route traffic from a source in AS1 to a destination in AS9. Alice uses
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Customer Pathlet Payment

Alice encn(f48d4c4) encn($50)

Alice encn(97dbd13) encn($10)

Table 5.3: Payment commitments in the public ledger. encn(x) here represents the value output
by a PRF with key n and value x.

Pathlet Packet Hash Timestamp Throughput

encm(source|A6) 50 0a9f136 420 ms 1.2 Gbps

encm(f48d4c4) 50 0a9f136 424 ms 1.2 Gbps

encm(97dbd13) 50 0a9f136 433 ms 1.1 Gbps

encm(destination|A9) 50 0a9f136 433 ms 1.1 Gbps

Table 5.4: Forwarding proofs in the public ledger. encm(x) here represents the value output by a
PRF with key m and value x.

the pathlet announcements in Table 5.1 to find two possible paths that provide this connectivity:

AS1-AS2-AS9 and AS1-AS3-AS9. While the path through AS2 is cheaper ($60 vs $65), the

path through AS3 offers better latency (13ms vs 15ms). In this example, Alice’s policy favors the

cheapest path1, and she therefore decides to route along path AS1-AS2-AS9. If AS1 and AS2

agree to form a path, the three (Alice and both ASes) use ECDH to compute keys m and n. AS1

and AS2 use a PRF with keym to generate anonymized tags, and then update the pathlet commit-

ments table in the public ledger (Table 5.2). Similarly, Alice uses key n to compute anonymized

payment tags, and encrypt prices, and updates the payment commitment table (Table 5.3).

Note that while in the previous example, Route Bazaar allows Alice to exclude paths going

through AS3, this is not generally possible in BGP, where all traffic originating at AS1 and des-

tined to AS9 follows the same path (which might in fact go through AS3). Route Bazaar thus

provides Alice with additional routing flexibility, allowing her to choose paths based on a richer

set of policies.

5.2.2 Forwarding

Once an end-to-end path has been agreed, providers update the data plane as required. Route

Bazaar provides the mechanisms to form and agree on paths as well as to verify that forwarding

conforms with the agreed paths. To verify path conformance, Route Bazaar generates forwarding

proofs that are recorded in the public ledger. Customers, providers and intermediate ASes along

a path use existing techniques for traffic sampling at routers to periodically generate a forwarding

proof. The forwarding proof for a pathlet includes the path-specific anonymized forwarding tag

(a pathlet might be used by several paths), a sample of the traffic, the timestamp indicating when

the sample was captured, and the throughput averaged over the time since the last sample. In

our current design, we envision that each provider sets up Generic Route Encapsulation (GRE)
1Alice could have decided using other policies, e.g., prior history if available, or any other reasons.
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Pathlet Paid

encn(f48d4c4) Yes

encn(97dbd13) Yes

Table 5.5: Payment proofs in the public ledger. encn(x) here represents the value output by a
PRF with key n and value x.

tunnels [91] across each pathlet (to ensure in-order packet transit) and samples a particular packet

(e.g., the 50th packet in Table 5.4). The hash of this packet is used as a traffic sample for the

forwarding proof.

Note that the inclusion of timestamps allows participants to compute the latency reported by a

pathlet’s ingress and egress neighbors. Furthermore, the participants in a path (i.e., the customer,

source, destination and pathlet providers) can use their path key to discover bottlenecks in the

path by observing where a (sampled) packet was dropped. To preserve the anonymity of a path,

this information is not available to non-participants.

When a path’s agreement concludes2, each provider is paid by the customer, and the provider

registers a payment conformation in the public ledger (Table 5.5). The payment proof includes

the pathlet’s anonymized payment tag and a field indicating whether the payment was made.

Alternately, the customer can record its unwillingness to pay in the public ledger, indicating that

appropriate connectivity was not provided.

The payment proofs in the public ledger enable anyone to check customers’ payment history.

These records can also be used for offline arbitration of payment disputes. During such arbitration,

the entities involved in the contract can present the arbitrator with a deanonymized version of the

forwarding and payment proofs.

In the example above, the participants, i.e., the source in AS1, pathlet providers AS1 and AS2,

and the destination in AS9, sample every 50th packet and publish forwarding proofs as shown in

Table 5.4. These ASes rely on NTP (Network Time Protocol) for clock synchronization to ensure

reported times are comparable. Once the path agreement has concluded, Alice pays AS1 and

AS2, and they record her payment in the public ledger as shown in Table 5.5.

5.2.3 Privacy

The privacy offered by Route Bazaar is comparable to BGP. Similar to BGP, Route Bazaar

reveals available paths (as all possible path compositions). This information is identical to what

is available in public repositories, e.g., CAIDA [52]. Furthermore, Route Bazaar does not require

providers or customers to reveal routing preferences and policies.

However, unlike existing interdomain routing solutions, Route Bazaar also reveals

anonymized forwarding and payment proofs. If deanonymized (e.g., due to a compromised par-

ticipant) these proofs expose the precise paths used by customers and the volume of transferred

2In our current design, path agreements are for a fixed volume of traffic.
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traffic. Similar information can be revealed today by sufficiently powerful adversaries (e.g., gov-

ernments or large ASes). Existing mechanisms, e.g., Tor [62] and Unblock [169], for anonymiz-

ing source and destination addresses can be used on top of Route Bazaar to provide stronger

anonymity.

Finally, the forwarding commitments table in Route Bazaar leaks information about which

pathlets are popular, and the amount of overall traffic transmitted across a pathlet. Similarly, the

payments commitment table leaks information about the number of agreements made by each

customer. Route Bazaar can be extended to anonymize this information, so that contracts are

established and verified out-of-band, with Route Bazaar merely serving as a record of past per-

formance. Studying this extension and its properties is left to future work.

5.3 Discussion

Performance Overhead. Route Bazaar imposes minimal overhead on the data plane, requiring

only that routers periodically sample traffic. This feature is commonly supported in most routers

(to aid in debugging), and Route Bazaar does not require the samples to be transmitted in real-

time. The communication overhead imposed by requiring ASes to record forwarding proofs with

the public ledger is relatively small and can be controlled by adjusting the sampling rate. Fur-

thermore, our current design also requires the use of GRE tunnels, these are supported by most

existing interdomain routers.

Because decision making in Route Bazaar is not local, routers merely forward traffic and

are not responsible for control-plane decisions. Instead, control-plane decisions can be done

externally by computers, or at cloud computing facilities. The operations required to access and

update Route Bazaar today is comparable to what is performed by a modern web browser when

connecting to a website over HTTPS [163]. The primary computation overhead during path

computations is therefore a function of the policy complexity, and Route Bazaar’s control plane

therefore imposes modest performance overheads.

Sybil Attacks. Participants can circumvent the trust mechanisms of the public ledger by creating

pseudonymous identities, i.e., they can perform a Sybil attack [64]. While ASes and large organi-

zations (who are the main participants in Route Bazaar) are unlikely to jeopardize their reputation

by forging their identities, Route Bazaar can protect against Sybil attacks by adopting existing

solutions, e.g., SybilGuard [203].

Rich routing policies. Route Bazaar can further enrich its supported routing policies, e.g., by

linking pathlet prices to the customers’ requested traffic volume, payment history, or other condi-

tions. To attract customers, the pathlets can also expose specific salient features of the provided

connectivity, e.g., its Software Defined Network (SDN) implementation. While Route Bazaar

separates routing from forwarding, the main challenge in enriching the routing policies is not

their storage or processing but their expression in a machine-readable language.

Backward compatibility. Because Route Bazaar can operate on top of today’s Internet, it is
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backward compatible with traditional bilateral contracts and BGP routing. Still, Route Bazaar

diversifies contractual options, e.g., by enabling IXP members to exchange traffic not only through

traditional peering agreements but also with contracts formed dynamically via the public ledger.

5.4 Conclusions

The current Internet relies on explicitly negotiated bilateral agreements that are recursively

applied via BGP, leading to rigid functionality and suboptimal routing behavior. In this chapter,

we propose Route Bazaar, an alternative that learns from cryptocurrencies to solve the decentral-

ized trust problem inherent in connectivity contracts. Route Bazaar forms contracts for end-to-end

Internet connectivity orders of magnitude faster and supports highly flexible routing.
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The previous chapters already mentioned the essential background information. This chapter

takes a broader look at related work.

6.1 Cost reduction techniques

A perennial challenge for ASes has been the unrelenting traffic growth [47, 110] character-

istic for the Internet since its inception. Complicating things further, the main application re-

sponsible for this growth has been changing from web browsing [65] to P2P file sharing [181]

to video streaming [152]. To reduce the transit costs of this skyrocketing traffic, a large number

of approaches have emerged. The existing approaches for reducing the transit costs include AS

peering, IXPs, IP multicast, CDNs, P2P localization, and traffic smoothing.

Peering [15, 56, 120] enables two ASes to exchange their traffic directly, rather than through

a transit provider at a higher cost. IXPs facilitate peering [1, 15, 32, 42, 43] by providing a com-

mon infrastructure for the traffic exchange. To disseminate data to multiple receivers, IP multi-

cast [18, 28, 54, 82, 83] duplicates packets in IP routers and thereby reduces transit traffic. While

IP multicast requires router support from transit providers, CDNs [94, 100, 116, 146, 156, 182]

and P2P systems duplicate data on the application level. Whereas a single company controls a

CDN, a P2P system [149] consists of independent hosts, and P2P localization [49,113,201] strives

to reduce transit traffic without undermining the system performance. Even if the transit traffic

preserves its volume but is redistributed within the billing period to peak at a lower value, the

transit costs decrease due to the burstable billing [61]. An AS can do such traffic smoothing [101]

with rate limiting [134] or in-network storage for delay-tolerant traffic [114]. Remote peering

(Chapter 2) is an emerging approach to deal with high transit costs that allows distant networks

to interconnect at the main Internet hubs.

6.2 Cost sharing

CIPT (Chapter 3) and T4P (Chapter 4) are two novel interconnection types that leverage the

economies of scale in traffic delivery in general and IP transit in particular. While CIPT reduces

the transit costs without altering traffic, T4P reduces the transit costs by redistributing the traffic

over the transit links of the two ASes involved.

We view CIPT as a coalition and use the Shapley value [173] for sharing CIPT costs.

Shair [97] and [33] are cooperative systems that enables phone users to share the committed

but unused minutes and broadband capacity, respectively. Cooperative approaches have also

been studied for cost sharing in IP multicast [11, 72] and interdomain routing [132, 175, 176].

The game-theoretic analyses of the Shapley-value mechanism [11, 72, 139] highlight its group-

strategyproofness and other salient properties but identify its high computational complexity. De-

spite the computational complexity, various proposals of traffic billing between ASes [126, 127],

incentives in P2P systems [138], and charging individual users by access ASes [180] rely on the



6.3 Internet structure 77

Shapley value. Our evaluation of CIPTs uses the Monte Carlo method to estimate the Shapley

value accurately at a reduced computational cost [118].

6.3 Internet structure

Remote peering, CIPT, and T4P should be viewed in the context of the evolving Internet

ecosystem. With the traffic rising, ASes stablish peering interconnections and bypass transit

providers to reduce transit costs. The Internet has hence developed from a fundamentally hier-

archical net and flattened due to the pervasive peering [56, 78, 121]. In parallel to the growing

diversity of ASes [70], new forms of interconnections have emerged, e.g., partial transit [191],

paid peering [57], and remote peering [36]. While previous research studies only mention remote

peering [1, 43, 87, 159, 178], we are the first to closely examine this emerging type of network in-

terconnection. Our results show wide spread, significant traffic offload potential, and conditions

for economic viability of remote peering.

While resource allocation and corresponding cost recovery in a distributed environment is

a complex matter in general [48], the Internet structural evolution complicated the situation

even further. Although tussles affected the Internet from its early days [51], the growing di-

versity together with the widespread peering resulted in frequent disagreements over peering

cost allocations. Traffic imbalances [143] in peering relationships led to demands of monetary

compensations [58] and to a large set of techniques for minimizing costs and maximizing rev-

enues [20, 145, 180]. The tensions were specially acute between networks that primarily connect

residential users and those networks that connect content providers. Such rifts caused so-called

peering wars [10, 25, 26, 154]. These tussles resulted in heated debates about network neutral-

ity and the role of paid peering in it [53, 55, 75, 88, 125, 129, 184, 200, 205]. Instead of allowing

content provides to subsidize the access of users to the Internet [128], or imposing a fee based on

the different revenue or cost structure as in [125,140], T4P exploits the different cost structure of

heterogeneous ASes and succeeds in reducing overall costs without monetary payments.

The Internet structure is highly important for understanding these tussles as well as network

accountability [8], multihoming [3], routing security [79], traffic delivery economics [20, 21],

Internet governance [178] and various problems in content delivery via overlay systems [31, 66,

94,100,104,130,138,182,204]. However, understanding the Internet structure is a complex task.

For instance, while the arguments that the Internet structure becomes flatter are multifaceted [57,

78, 110], remote peering reveals separation between the trends of increasing peering and Internet

flattening. Also, while analyses of interconnection options are typically restricted to networks

that share a location [41, 172], remote peering enables distant networks to peer over a layer-2

intermediary. While the layer-3 level topologies are known to be inaccurate [147, 198], remote

peering stresses the need for more realistic topologies.
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6.4 Measurement methods

To complicate things further, real interdomain data is difficult to obtain. Because network

operators do not publicly disclose connectivity of their networks, the research community relies

on measurements and inference to characterize the Internet structure [89]. A prominent means for

the topology discovery is the traceroute tool that exposes routers on IP delivery paths [40,44]. For

example, iPlane [131] and Hubble [103] use traceroute to generate and maintain annotated Inter-

net maps. Paris traceroute enhances traceroute with the ability to discover multiple paths [14]. A

complementary approach is to utilize BGP traces [9, 76, 93, 179, 183].

Chapter 2 uses active probing in the data plane to understand the role of remote peering in the

Internet structure. Delay measurements are common in Internet studies, e.g., to study the evolu-

tion of Internet delay properties [115] or Internet penetration into developing regions [69,87]. We

use delay measurements to investigate how geography affects peering of networks and real traffic

data from RedIRIS [160] to evaluate the potential impact of remote peering at the network level.

To evaluate CIPT and T4P, Chapters 3 and 4 take a different approach and approximate transit

traffic by using the peering traffic data obtained by transforming mrtg images published by six

IXPs.

6.5 Routing architectures

The lack of path diversity [50, 190], slow convergence of routing protocols at both the in-

tradomain [23, 185] and interdomain level [68, 85, 108, 109, 133, 148], and the routing table

growth [27,98,136] undermine the scalability of Internet routing [202] and threaten the ability of

the Internet architecture to support future innovations.

Both researchers and practitioners grew increasingly concerned and frustrated with these and

other rigidities inherent to the Internet architecture and proposed alternative frameworks. Route

Bazaar belongs to the recent body of work on novel Internet architectures that overcome funda-

mental shortcomings of the current Internet.

Pathlet routing [80], ICING [142, 170] and Platypus [157] are the proposals most closely re-

lated to Route Bazaar. Similarly to segment routing [171], Pathlet routing proposes a mechanism

where the source can construct paths by composing path segments called pathlets. Route Bazaar

builds on the concept of composable pathlets, but also provides a discovery mechanism. ICING

and Platypus provide different mechanisms for verification of path validity. These mechanisms

can be used to provide proofs in Route Bazaar. As opposed to such schemes, the use of the public

ledger allows Route Bazaar to be used by untrusted networks without any data-plane modifica-

tions.

Similar to SDN, Route Bazaar also decouples the control and data planes. Previous works,

including RCP [71] and 4D [84], suggested such separation for interdomain routing. As opposed

to these proposals, Route Bazaar allows networks to retain private control of their control plane
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and policies. Route Bazaar also enables previous proposals such as routing as a service [111],

opportunistic routing [158], multipath routing [197], and route repositories [29].

Finally, Kadupul [177] proposes a cryptocurrency-based mechanism to enable the routing

of delay-sensitive traffic in wireless mesh networks. Kadupul relies on a proof-of-work mecha-

nism implemented with time-locked puzzles to incentivize nodes to forward traffic. Unlike Route

Bazaar, Kadupul does not attempt to provide mechanisms for path-discovery and cannot be easily

extended to account for QoS.
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We see two general directions for future work. First, while previous chapters examined re-

mote peering, CIPT, T4P, and Route Bazaar, a further analysis of these proposals is worthwhile.

Second, whereas this thesis studied the economic aspects of Internet engineering at the intercon-

nection level, these issues are intertwined with other social, cultural, and political factors that

need to be considered. The given chapter discusses these two general directions for potential

extensions to our prior research.

Remote peering challenged the reliance on layer-3 methods and data to infer the economic

structure of the Internet. Future research will strive to improve topological studies of the Internet

and refine the identification of remote peers. By integrating both layer-2 and layer-3 perspectives,

we will provide a more realistic understanding of the interconnection structure of the Internet.

Geolocation can refine our identification of remote peers as well as clarify the regional patterns

of interconnections and content hosting [2]. However geolocation of remote peers is not straight-

forward. Aggravating the general lack of accuracy of standard IP geolocation databases [153],

such databases fail to identify the actual location of remotely peering networks. Instead, the IP

interface of a remote AS in the IXP subnet appears colocated with such IXP. Triangulation tech-

niques combining topological and delay data [102] constitute a promising technique to reveal the

real location of remote peers.

CIPT proposed a transit-cost reduction mechanism and our future research will look at its

implementation and implications. While this thesis envisioned a simple organizational arrange-

ment where the Shapley-value mechanism redistributes CIPT gains, future work will quantify the

overhead created by CIPT and explore alternative solutions for distribution of CIPT gains. We

will examine whether CIPT can help to reduce the costs of transit in developing countries. Re-

gions located far away from the main hubs of the Internet typically face high transit prices [69].

To make things worse, predominant consumption of non-local content increases the transit costs

further. Despite the emergence of IXPs in developing countries [4], the low volumes of local traf-

fic decrease the potential benefit of peering [87]. By aggregating transit traffic, CIPT can improve

Internet access in the poorly connected areas.

T4P can alleviate the causes leading to peering wars and net-neutrality debates. Net-neutrality

is a complex issue [53] with multi-dimensional implications. Regional specifics such as popula-

tion density, existing laws and infrastructure crucially impact the formulation of the issue. As the

Internet evolves, changing traffic patterns or lower costs of the last-mile infrastructure, might re-

duce the tensions between content and eyeball networks. As online video games, live-streaming,

social media, the Internet of Things (IoT), and cloud storage services gain popularity, the asym-

metry between eyeball and content networks might decrease. New technologies might reduce

last-mile costs and increase competition in the network-eyeball interconnection market. Our fu-

ture work will study the causes and arguments around the net-neutrality debate. We will also

evaluate the extent to which T4P can ease the tensions and whether regulatory solutions are re-

quired.

Route Bazaar is an outline of a novel Internet architecture and certainly deserves further
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research elaborating on its design and implementation. This thesis presented a mechanism for

verification of contracted paths in this new architecture. Future work will develop the rest of

the architectural elements, such as the distributed ledger, and integrate this mechanism in it. An

incentive structure and cryptographic tools to implement the architecture will be also part of our

future work. For backwards compatibility, we will design Route Bazaar as an overlay on the top

of the current Internet architecture.

While the aforementioned extensions of this thesis dwell in the realm of the economic and

technical aspects of the Internet, the emergence of the Internet affects many other areas and is

part of a historical process where social, political, and cultural factors are also fundamental [35].

These issues must be taken into account to have a holistic understanding of the Internet evolution

and its implications. For instance, social and cultural aspects determine to a great extent traffic

flows: e.g., whereas Japan consumes mostly local content, most African countries consume con-

tent created and located abroad [2, 69, 87]. This lack of local content leads to a vicious circle of

inadequate incentives for infrastructure deployment, Internet provision improvement, and local

content creation and hosting. Accordingly, the resulting Internet access inequality has a complex

mix of factors [46] that requires interdisciplinary studies [34, 196].

Also, the change in the applications fueling the traffic growth have social, cultural, and po-

litical underpinnings and implications. As these applications shifted from web browsing, to P2P

file sharing, video streaming and more recently to online video games, live-streaming, social me-

dia, and cloud storage, the traffic patterns and costs changed, and new agents emerged. This

dynamism challenges the current Internet architecture. Exploring how the bottom-up approach of

the Internet governance [178] can match this dynamism is also a multi-dimensional endeavor that

spans several disciplines. We look forward to integrating these views in future research.
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This thesis analyzes how networks interconnect in the current Internet and which limitations

its interconnection framework has. In doing so, the thesis looks at the evolution of the Internet

economic structure and investigates four different but related topics: remote peering, CIPT, T4P,

and Route Bazaar.

The early Internet was a publicly owned infrastructure with a relatively small number of con-

nected networks and end users. Since its inception in the 1960s, the Internet has developed into

a massive decentralized ecosystem providing end-to-end connectivity for a multitude of diverse

users and services. As the traffic grew, the ASes’ attempt to curb rising transit costs transformed

the Internet. Evolving from a predominantly hierarchical structure where few networks provided

universal connectivity, the Internet became a flatter structure with direct peering connections by-

passing transit providers. Because expanding the network infrastructure to connect through peer-

ing links was financially burdensome, large content providers pioneered this trend.

Remote peering emerged as a cost-efficient solution where an AS peers with distant networks

without having to bear the costs of physical presence at a common location. In revealing the

spread of remote peering, this thesis exposed a long-term trend of the Internet ecosystem towards

more flexible interconnections. At the same time, by unveiling the wide adoption of remote

peering, we demonstrated the shortcomings of the typical layer-3 modeling of the Internet.

With more and more networks joining the Internet, interdomain interconnections struggled

with increasingly heterogeneous interconnection needs and unrelenting traffic growth. CIPT and

T4P are two novel interconnection types that continue the trend of interconnection diversification.

CIPT presents an alternative way to reduce transit costs. While most interdomain intercon-

nections are bilateral, CIPT is a multilateral and cooperative approach that reduces transit costs

for all the ASes involved. CIPT savings result from two properties of the IP transit model: price

subadditivity and burstable billing. To redistribute the savings fairly we use the game-theoretic

concept of Shapley value. By benefiting all the ASes participating in a CIPT, this interconnection

can appeal to ASes of many different types.

T4P is a mechanism that leverages the heterogeneity of networks to reduce the intercon-

nection costs. The difficulties to satisfy the frequently diverging needs for the plethora of actors

comprising the Internet, triggered recurrent economic conflicts over the settlement of interconnec-

tions. In particular, the highly asymmetric traffic patterns between eyeball and content networks

sparked disputes about whether one network should compensate the other for their peering. This

conflict provoked frequent peering disruptions and ultimately resulted in the network neutrality

debate. T4P alleviates the pressures leading to this conundrum: by redistributing the traffic of

two ASes over their respective transit links, T4P reduces the overall interconnection costs of the

two networks. The cost reduction can then be shared or allocated to the network demanding a

compensation for the peering.

While remote peering, CIPT, and T4P strengthen Internet connectivity and reduce frictions

and financial burdens, some of the limitations of the Internet are inherent to its current architec-

ture. The flexibility of the current Internet architecture is limited by the very same features that
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enabled its scalability: distributed routing via local decision making (BGP) and rigid intercon-

nection contracts.

Route Bazaar takes a radical departure to overcome the drawbacks of the current Internet ar-

chitecture. Inspired by the use of block chains and cryptographic tools in cryptocurrencies, Route

Bazaar proposes a new Internet architecture that provides flexible interconnections, supports rich

interconnection policies, and accommodates automatic multilateral contract establishment, termi-

nation and enforcement.

This thesis sheds light on the continuing Internet evolution with respect to the interconnection

diversification and overall structure changes. While remote peering is a phenomenon that has been

massively emerging in the Internet over the past decade, CIPT and T4P are two novel intercon-

nection types that continue the diversification trend toward more flexible interconnections. Route

Bazaar goes one step further and tackles the inherent limitations of the current interconnection

framework by replacing it with a novel Internet architecture. However remote peering, CIPT, T4P,

and Route Bazaar do not exhaust the possibilities for addressing the challenges faced by the Inter-

net. For instance, novel interconnections might appear, and SDN-enabled routing [17,106,192] or

new technologies (e.g., 5G) might ease some of the existing drawbacks. At the same time, some

current challenges might fade away while new ones emerge. As the Internet evolution keeps

changing the applications responsible for the traffic growth, the Internet economic structure will

likely evolve to adapt to it. For example, online video games, live-streaming, social media, IoT,

and cloud storage services can reduce the asymmetry between eyeball and content networks. As

new challenges appear, and the Internet evolves to cope with them, new techniques to understand

those changes and new solutions to address the bottlenecks will be necessary. While the chal-

lenges are many and have political, social, cultural, and economic aspects, this thesis contributed

to the understanding of the current Internet economic structure and proposed solutions to allevi-

ate the existing drawbacks. Looking into political, social and cultural aspects will be necessary to

address the new and existing challenges.
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[42] N. Chatzis, G. Smaragdakis, J. Böttger, T. Krenc, A. Feldmann, and W. Willinger. On the

Benefits of Using a Large IXP as an Internet Vantage Point. In Proceedings of IMC, 2013.

[43] N. Chatzis, G. Smaragdakis, A. Feldmann, and W. Willinger. There Is More to IXPs than

Meets the Eye. CCR, 43(5):19–28, 2013.

[44] K. Chen, D. R. Choffnes, R. Potharaju, Y. Chen, F. E. Bustamante, D. Pei, and Y. Zhao.

Where the Sidewalk Ends: Extending the Internet AS Graph Using Traceroutes from P2P

Users. In Proceedings of CoNEXT, 2009.

http://www.ces.net/


92 REFERENCES

[45] L. Chen and K. Chen. BitBill: Scalable, Robust, Verifiable Peer-to-Peer Billing for Cloud

Computing. In Proceedings of HotCloud, 2014.

[46] M. Chinn and R. Fairlie. The Determinants of the Global Digital Divide: a Cross-country

Analysis of Computer and Internet Penetration. Oxford Economic Papers, 59(1):16, 2007.

[47] K. Cho, K. Fukuda, H. Esaki, and A. Kato. The Impact and Implications of the Growth in

Residential User-to-user Traffic. CCR, 36(4):207–218, 2006.

[48] S.-W. Cho and A. Goel. Pricing for Fairness: Distributed Resource Allocation for Multiple

Objectives. Algorithmica, 57(4):873–892, 2010.

[49] D. R. Choffnes and F. E. Bustamante. Taming the Torrent: A Practical Approach to Re-

ducing Cross-ISP Traffic in Peer-to-peer Systems. In Proceedings of SIGCOMM, 2008.

[50] J. Choi, J. H. Park, P.-c. Cheng, D. Kim, and L. Zhang. Understanding BGP Next-hop

Diversity. In Proceedings of Global Internet Symposium, 2011.

[51] D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in Cyberspace: Defining

Tomorrow’s Internet. ToN, 13(3):462–475, 2005.

[52] Cooperative Association for Internet Data Analysis (CAIDA). http://www.caida.

org/.

[53] J. Crowcroft. Net Neutrality: the Technical Side of the Debate: a White Paper. CCR,

37(1):49–56, 2007.

[54] S. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford Univer-

sity, 1991.

[55] A. Dhamdhere and C. Dovrolis. Can ISPs Be Profitable Without Violating Network Neu-

trality? In Proceedings of NetEcon, 2008.

[56] A. Dhamdhere and C. Dovrolis. The Internet is Flat: Modeling the Transition from a

Transit Hierarchy to a Peering Mesh. In Proceedings of CoNEXT, 2010.

[57] A. Dhamdhere and C. Dovrolis. Twelve Years in the Evolution of the Internet Ecosystem.

ToN, 19(5):1420–1433, 2011.

[58] A. Dhamdhere, C. Dovrolis, and P. Francois. A Value-based Framework for Internet Peer-

ing Agreements. In Proceedings of ITC, 2010.

[59] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2, RFC

5246, 2008.

[60] Internet Traffic and Economics. DigiWorld Summit, 2010.

http://www.caida.org/
http://www.caida.org/


REFERENCES 93

[61] X. Dimitropoulos, P. Hurley, A. Kind, and M. Stoecklin. On the 95-percentile Billing

Method. PAM, 2009.

[62] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the Second-generation Onion Router.

Technical report, DTIC Document, 2004.

[63] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Mahajan, and S. Saroiu. Glasnost:

Enabling End Users to Detect Traffic Differentiation. In Proceedings of NSDI, 2010.

[64] J. R. Douceur. The Sybil Attack. In IPTPS, 2002.

[65] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C. Mogul. Rate of Change and other

Metrics: a Live Study of the World Wide Web. In USENIX, 1997.

[66] Z. Duan, Z.-L. Zhang, and Y. T. Hou. Service Overlay Networks: SLAs, QoS, and Band-

width Provisioning. ToN, 11(6):870–883, 2003.

[67] Euro-IX. https://www.euro-ix.net.

[68] A. Fabrikant, U. Syed, and J. Rexford. There’s Something about MRAI: Timing Diversity

Can Exponentially Worsen BGP Convergence. In Proceedings of INFOCOM, 2011.

[69] R. Fanou, P. Francois, and E. Aben. On the Diversity of Interdomain Routing in Africa. In

Proceedings of PAM, 2015.

[70] P. Faratin, D. Clark, P. Gilmore, S. Bauer, A. Berger, and W. Lehr. Complexity of Internet

Interconnections: Technology, Incentives and Implications for Policy. In Proceedings of

TPRC, 2007.

[71] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. Van Der Merwe. The Case for

Separating Routing from Routers. In Proceedings of FDNA, 2004.

[72] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the Cost of Multicast Trans-

missions. Journal of Computer and System Sciences, 63(1):21–41, 2001.

[73] Filecoin. http://filecoin.io/.

[74] B. Fletcher. Internet Transit Sales: 2005-10. http://www.renesys.com/blog/

2010/10/internet-transit-sales-2005-10.shtml, 2010.

[75] R. M. Frieden. Network Neutrality or Bias? Handicapping the Odds for a Tiered and

Branded Internet. Hastings Comm. & Ent. LJ, 29:171, 2006.

[76] L. Gao. On Inferring Autonomous System Relationships in the Internet. ToN, 9(6):733–

745, 2001.

https://www.euro-ix.net
http://filecoin.io/
http://www.renesys.com/blog/2010/10/internet-transit-sales-2005-10.shtml
http://www.renesys.com/blog/2010/10/internet-transit-sales-2005-10.shtml


94 REFERENCES

[77] M. Ghosh, M. Richardson, B. Ford, and R. Jansen. A TorPath to TorCoin: Proof-of-

Bandwidth Altcoins for Compensating Relays. In Proceedings of HotPETs, 2014.

[78] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. The Flattening Internet Topology: Natural Evolu-

tion, Unsightly Barnacles or Contrived Collapse? In Proceedings of PAM, 2008.

[79] P. Gill, M. Schapira, and S. Goldberg. Let the Market Drive Deployment: A Strategy for

Transitioning to BGP Security. In Proceedings of SIGCOMM, 2011.

[80] P. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet Routing. CCR, 39:111–122,

2009.

[81] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford. How Secure are Secure Interdomain

Routing Protocols? In SIGCOMM, 2010.

[82] S. Gorinsky, S. Jain, H. Vin, and Y. Zhang. Design of Multicast Protocols Robust Against

Inflated Subscription. ToN, 14(2):249–262, 2006.

[83] S. Gorinsky, S. Jain, and H. M. Vin. Multicast Congestion Control with Distrusted Re-

ceivers. In Networked Group Communication, pages 19–26. Citeseer, 2002.

[84] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan,

and H. Zhang. A Clean Slate 4D Approach to Network Control and Management. 2005.

[85] T. G. Griffin and B. J. Premore. An Experimental Analysis of BGP Convergence Time. In

Proceedings of ICNP, 2001.

[86] GRNET. http://mon.grnet.gr/.

[87] A. Gupta, M. Calder, N. Feamster, M. Chetty, E. Calandro, and E. Katz-Bassett. Peering

at the Internet’s Frontier: A First Look at ISP Interconnectivity in Africa. In Proceedings

of PAM, 2014.

[88] L. Gyarmati, N. Laoutaris, K. Sdrolias, P. Rodriguez, and C. Courcoubetis. From Adver-

tising Profits to Bandwidth Prices: A Quantitative Methodology for Negotiating Premium

Peering. PER, 42(3):29–32, 2014.

[89] H. Haddadi, M. Rio, G. Iannaccone, A. Moore, and R. Mortier. Network Topologies:

Inference, Modeling, and Generation. Communications Surveys & Tutorials, 2008.

[90] A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel. NetReview: Detecting when

Interdomain Routing Goes Wrong. In NSDI, 2009.

[91] S. Hanks, T. Li, D. Farinacci, and P. Traina. Generic Routing Encapsulation (GRE), RFC

1701, 1994.

http://mon.grnet.gr/


REFERENCES 95

[92] S. Hares, Y. Rekhter, and T. Li. A Border Gateway Protocol 4 (BGP-4), RFC 4271, 2006.

[93] S. Hasan and S. Gorinsky. Obscure Giants: Detecting the Provider-free ASes. In Proceed-

ings of Networking, 2012.

[94] S. Hasan, S. Gorinsky, C. Dovrolis, and R. Sitaraman. Trade-offs in Optimizing the Cache

Deployments of CDNs. In Proceedings of INFOCOM, 2014.

[95] HEANET. http://www.hea.net/.

[96] M. Hrybyk. The Transit Exchange-A New Model for Open, Competitive Network Services.

In Proceedings of PTC, 2007.

[97] P. Hui, R. Mortier, K. Xu, J. Crowcroft, and V. O. Li. Sharing Airtime with Shair Avoids

Wasting Time and Money. In Proceedings of HotMobile, 2009.

[98] G. Huston. Analyzing the Internet’s BGP Routing Table. The Internet Protocol Journal,

4(1):2–15, 2001.

[99] IX Reach. http://www.ixreach.com.
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