
Electrosense+:
Crowdsourcing Radio Spectrum Decoding using IoT Receivers

Roberto Calvo-Palominoa, Héctor Cordobésa, Markus Engelc, Markus Fuchsc, Pratiksha Jaind,
Marc Liechtid, Sreeraj Rajendranb, Matthias Schäferc, Bertold Van den Berghb, Sofie Pollinb,

Domenico Giustinianoa, Vincent Lenderse

aIMDEA Networks Institute, Madrid, Spain
bDepartment ESAT, KU Leuven, Belgium

cSeRo Systems, Germany
dTrivo Systems, Bern, Switzerland

earmasuisse, Thun, Switzerland

Abstract

Web spectrum monitoring systems based on crowdsourcing have recently gained popularity.
These systems are however limited to applications of interest for governamental organizations
or telecom providers, and only provide aggregated information about spectrum statistics. The
result is that there is a lack of interest for layman users to participate, which limits its widespread
deployment. We present Electrosense+ which addresses this challenge and creates a general-
purpose and open platform for spectrum monitoring using low-cost, embedded, and software-
defined spectrum IoT sensors. Electrosense+ allows users to remotely decode specific parts of
the radio spectrum. It builds on the centralized architecture of its predecessor, Electrosense, for
controlling and monitoring the spectrum IoT sensors, but implements a real-time and peer-to-peer
communication system for scalable spectrum data decoding. We propose different mechanisms
to incentivize the participation of users for deploying new sensors and keep them operational in
the Electrosense network. As a reward for the user, we propose an incentive accounting system
based on virtual tokens to encourage the participants to host IoT sensors. We present the new
Electrosense+ system architecture and evaluate its performance at decoding various wireless sig-
nals, including FM radio, AM radio, ADS-B, AIS, LTE, and ACARS.

Keywords: Radio Spectrum, Signal Decoding, Crowdsourcing

1. Introduction

The idea of web-based distributed radio applications has recently gained interest such as Web-
SDR1, LiveATC2 and ElectroSense [1], motivated by the diversity in space of the spectrum and
the wide range of services benefiting from it. Multiple crowdsourcing initiatives have been pro-
posed using various spectrum sensors ranging from low-end hardware [2–6] to expensive spec-
trum analysers [7, 8]. These initiatives monitor the electro-magnetic spectrum in a distributed
way and provide applications that target specific communities.

1http://www.websdr.org/
2https://www.liveatc.net/

Elsevier Computer Networks- Final author copy May 11, 2020

Some of the major initiatives for analyzing the entire wireless electromagnetic spectrum are
Electrosense [1], Microsoft Spectrum Observatory [9], Google TV White Space [10], IBM Hori-
zon [11] and SpecNet [3]. Other initiatives focus instead on more specific monitoring appli-
cations over a limited frequency range, such as remote radio monitoring stations in OpenWe-
bRX [12], KiwiSDR [13] and WebSDR, live air traffic control (ATC) broadcasts from air traffic
control towers in LiveATC or aircraft monitoring systems such as OpenSky [14]. Airspy [15]
provides a sensor client-server architecture to operate SDRs remotely, but it relies on the compu-
tational power of the client-side to decode the signals, and high network bandwidth to send I/Q
data stream to the client.

All the above initiatives have severe drawbacks, such as limited use cases (e.g., focus only
on FM radio decoding or spectrum analysis), lack of interest for layman users to host a sensor
(dynamic spectrum access and anomaly detection do not attract the large audience), require ex-
pensive SDRs or dedicated hardware (such as the Microsoft Observatory), poor scalability and
complicated process to run measurement campaigns or access the data (sensors are busy), or high
network requirements for sending I/Q data to the client.

Our vision is that people are the primary operators of spectrum sensors. We aim at empow-
ering people implementing a global spectrum monitoring system which let them connect to any
spectrum sensor in the network and decode any publicly decodable radio spectrum part, such
as broadcast and control messages, in real time through the Internet. In our system, spectrum
analysis, or applications such as dynamic spectrum access and anomaly detection become sec-
ondary tasks, being active only if the sensor is not used by people. The overarching goal is to
support low-cost and software-defined IoT (Internet-of-Things) [16] spectrum sensing devices
and to provide incentives for people to participate and host those sensors at their homes or orga-
nizations, enhancing the mission of building a crowdsourcing spectrum monitoring system.

Our contributions are:

� We propose a novel radio spectrum decoding architecture where the primary operators are
the users. The architecture provides a transparent system to decoding the spectrum on the
embedded sensors, and makes use of real-time peer-to-peer communication to send the
information already decoded to the users.

� We implement the decoding process on the spectrum sensors in an efficient way alleviat-
ing the processing load in the client, reducing the network bandwidth used, and adding a
security-privacy layer since no raw data (I/Q) is sent to the users.

� We introduce an incentive for sensors’ owners to be part of the radio crowdsourcing commu-
nity based on tokens. We propose a user rewarding system which also regulates the sensor
usage rights in a fair manner for all users.

� We evaluate the architecture proposed in real scenarios with 6 different decoders: FM/AM
radio, ADS-B, AIS, LTE, and ACARS. We compare our solution proposed in this work with
the existing related projects.

� We release Electrosense+ website publicly. Sensing module executed on the IoT sensor and
the API3 are released as open source to facilitate the integration of future decoders4.

3https://electrosense.org/api-spec
4https://github.com/electrosense/es-sensor

2

2. Design Goals

Past web-based spectrum monitoring initiatives are either application-specific [12, 17] or do
not scale well for remote signal decoding [1]. Scalability is challenged by the large data vol-
umes needed for wideband spectrum monitoring, much higher than needed by typical IoT ap-
plications. But, even with a larger bottleneck, we experienced that motivating users to deploy
sensors and keep their sensors operational is the main hurdle for the wide-spread deployment
of crowdsourced spectrum monitoring. The main reason is that the most interesting services for
stakeholders that need to monitor the spectrum, such as governmental organizations and telecom
providers, are orthogonal to the interests of the vast majority of users.

In this work, we propose a novel radio monitoring architecture that addresses the main limita-
tions of previous systems:
General purpose decoding. The system architecture allows to decode any public decodable
wireless technologies that is within range of the deployed sensors. As the spectrum is used by
many different wireless technologies and new technologies are emerging constantly, we support
the integration of open source spectrum decoders developed by the community. The system
architecture thus defines open interfaces and APIs to allow easy integration of various decoder
types.
Peer-to-peer architecture. As the system is expected to support a large number of concurrent
users and spectrum data is very large in nature, a centralized approach is unfeasible as it would
cause a data deluge to the backend or large latency from the sensor to the consumer. In order to
support real-time applications and scale well, Electrosense+ supports peer-to-peer communica-
tion between the spectrum sensors and the users.
Sensor owners incentive. Since in crowdsourcing initiatives, people are expected to acquire and
run a spectrum sensor node on their own, good incentives are needed to foster participation. This
includes rewards for hosting a spectrum sensor but also to provide valuable spectrum services
that they will get in return. In Electrosense+, spectrum services are provided to the users in the
form of spectrum apps and sensor owners receive tokens for the time their sensors are online and
used by the community.
Security & privacy. Spectrum data can contain private information and there should be lim-
itations on some specific frequencies about the information type that users can listen to. For
example, the system should not allow users to listen to private voice or other text conversations.
It can instead decode broadcast and control messages. To this end, Electrosense+ does not trans-
mit raw I/Q data to the users but only aggregated spectrum data and filtered decoded data. That
way, Electrosense+ keeps full control over the data that users will receive by enforcing strict
integration policies on which decoders are allowed to run on the sensors and data is filtered.

3. Architecture

The Electrosense+ architecture is depicted in Figure 1. The main system components are the
sensor, the client, and the backend. While these components were all present in the original
Electrosense design, the novelty is to enable direct peer-to-peer connections between the sensor
and clients in order to provide direct decoding services (apps) for users, and to account for the
usage patterns in order to reward sensor operators. In this section, we focus on the new required
architectural components for these enhancements while we refer to [1] for a description of the
original Electrosense design. Electrosense+ is fully backward compatible with previous versions
of the system.

3

USER/CLIENT

BROWSER

DBCONTROLLER

BACKEND
APPS

OPEN API
SENSOR

SIGNALING

SERVER
STUN

LDAP

COLLECTOR

BACKEND

Control/Data
channel

Audio
channel
(SRTP)

Connection
init (1)

Connection init request (2)
Campaign

configuration
sensor availability

PSD data

Decoding campaign (3)

Figure 1: Full overview Electrosense+ architecture

3.1. Signaling and Controlling

The sensors are managed by the Electrosense+ backend over secure messaging via the
MQTT [18] protocol. The client-sensor connection is handled over the WebRTC protocol suite.
WebRTC [19] is used in well-known applications such as Google Hangouts and Facebook Mes-
senger providing real-time communication (RTC) capabilities integrated in web browsers without
using dedicate plugins for this task. At an initial communication state, client and sensor need to
exchange meta-data to coordinate the communication using the signaling server. The Session
Traversal Utilities for NAT (STUN) server allows to find the public IP address of the client and
sensor in order to provide a direct connection between them, even if they are located behind
firewalls or Network Address Translators (NAT).

When a client wants to connect to a sensor, it signals a request through the signaling server and
establishes a direct connection to the sensor (without passing through the Electrosense+ back-
end). Then, two different channels are created: control/data channel and Audio channel (as
Figure 1 shows). The control/data channel is a bi-directional channel used to send the spectrum
information and data decoded from the sensor to the client, and to command the sensing parame-
ters from the client to the sensor (frequency, gain, etc.). The Audio channel is exclusively used to
stream audio in real time from the sensor to the client using Secure Real Time Protocol (SRTP).
This peer-to-peer communication minimizes the network delays between the client and sensor,
providing a fast and scalable access the data from the sensor node.

When there are no users that are connected to a particular sensor, the sensor is instructed by the
controller to sweep the spectrum or launch a specific campaign. As soon as a client connects to a
sensor the peer-to-peer communication is established. Then, the client gets access to the sensing
parameters (frequency, gain, etc.). Clients can remotely tune to any radio frequency and thus
influence which decoder is activated in the sensor, e.g., if the RTL-SDR is tuned to the FM radio

4

Antenna
RF

Front-end
Embedded

board

(a) IoT sensor: Raspberry Pi and RTL-SDR v3 (b) RF converter to enable 0-6 GHz range.

Figure 2: Electrosense+ IoT spectrum sensor.

band, the FM decoder will be active. If the client tunes to a frequency which has no associated
decoder on the sensor node, the client only sees a real-time waterfall diagram of the PSD (Power
Spectral Density) data at the selected frequency band.

3.2. Sensor Node
The software of the sensor node is designed to run on low-cost embedded computing plat-

forms. Figure 2(a) shows the current hardware configuration of the Electrosense sensor which
makes use of a Raspberry Pi device for the signal processing and RTL-SDR v3 [20] as radio front-
end. The RTL-SDR v3 contains a Temperature Compensated Crystal Oscillator (TCXO) that
provides an excellent short-term oscillation frequency stability in changing-temperature environ-
ments [21] allowing a better decoding performance. The sensors can measure the RF spectrum
ranging from 0 MHz up to 6 GHz using an optional down-converter [1] shown in Figure 2(b).

The Electrosense+ sensor architecture supports two signal processing pipelines in parallel as
Figure 3 shows: the spectrum analysis (PSD) pipeline and a decoding pipeline. Both pipelines
are reading the same I/Q data streaming from the RTL-SDR, but they process the data in a
different way. The spectrum analysis pipeline computes an aggregated PSD signal representation
using the Welch method with implementation based on the Fast Fourier Transform (FFT). PSD
data are then sent both to the backend and directly to the connected client. In particular:

� The PSD data is sent from IoT spectrum sensors to the backend. The PSD data is stored for
historical inspection of the spectrum and to understand the evolution of spectrum activities
over time. This PSD data is accessible by every Electrosense’s user through the API [1].

� At the connected client, the PSD data is useful for the user to visually analyze the spectrum
in the frequency domain in real time, and to identify parts of the spectrum with ongoing
transmissions. Although visualization of PSD data through the backend is also possible,
direct connection from the IoT sensor to the client allows for smaller latencies.

The decoding pipeline is used to locally demodulate and decode the signals at the sensor. We
implement data decoding in the sensor node as it largely reduces the amount of data sent to the
user. In addition, it avoids security and privacy concerns as no I/Q data is sent directly to the users

5

