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Abstract—Cloud applications are exposed to workloads whose
intensity can change unpredictably over time. Hence, the ability
to quickly scale the amount of computing resources provisioned to
applications is essential to minimize costs while providing reliable
services. In this context, containers are deemed to be a promising
technology to enable fast elasticity in resource allocation schemes.

In this paper, we propose and experimentally test an efficient
container-based cloud computing provisioning system. First, we
address the container deployment problem and discuss how to
manage container provisioning and scaling. Second, we devise a
resource management mechanism leveraging on both admission
control and auto-scaling techniques. We propose to drive auto-
scaling decisions through a Q-Learning algorithm, which is
agnostic to the specific computing environment, and proceeds
based only on the load of the physical processors assigned to a
container. We evaluate our solution in two experimental setups,
and show that it yields significant advantages when compared to
popular container managers such as Kubernetes.

Index Terms—Autoscaling, Provisioning, Q-Learning, Con-
tainer, Docker, Kubernetes

I. INTRODUCTION

The adoption of containers is growing at a rapid pace.
This is mainly due to their comparatively simpler management
with respect to virtual machines (VMs), and to the efficient
resource utilization they enable. Moreover, the performance of
containers is comparable to that of native computing platforms
in terms of throughput and CPU utilization whereas VMs typ-
ically impose non-negligible overhead [1], [2]. Characteristics
such as quick deployment, short boot time [2], easy network
management and the use of layered, small-sized container
images have encouraged container adoption in global systems
like the Google Cloud Platform and Amazon Web Services
(AWS) [3].

The features mentioned above make it possible to achieve
rapid elasticity (the ability to quickly scale the amount of
allocated resources according to workload intensity) using
containers. Managing container deployments in cloud environ-
ments is still an open issue that mainly involves provisioning
and scaling strategies.

The performance of a container depends not only on how
many CPU threads it uses but also on which core of the CPU
these threads are executed. It is also contingent on the level of
contention by other applications on the same CPU. In order to
make the cost calculation transparent to the user, such inter-
dependencies must be avoided and the relationship between the
quality of service delivered and the amount of used resources

needs to be clarified. Existing container provisioning platforms
delegate the CPU scheduling to the operating system. Given
that current operating systems are not hyper-threading aware,
interference among running containers cannot be completely
avoided, and load is typically distributed sub-optimally across
CPU threads. This results in unpredictable service times.

Containers are currently managed using software platforms
such as HPA by Kubernetes or Docker Swarm, which offer
reliability by default [4]. However, some limitations exist
regarding performance guarantees and adaptability to rapid
changes in the operating environment. For instance, currently
adopted solutions favor over-provisioning policies over rapid
elasticity involving system adaptation. Capacity allocations
are statically sized to serve peak loads, so resources remain
underutilized most of the time. We however argue that over-
provisioning is neither efficient nor strictly needed. We show
that automatic scaling is a better option provided that contain-
ers can be mapped onto hardware resources to avoid resource
access conflicts.

The objective of our work is two-fold: (i) to design mecha-
nisms that make access to computing resources simple and ef-
fective for container provisioning engines and, (ii) to validate
an adaptive scaling strategy based on reinforcement learning,
which optimizes throughput and costs without sacrificing the
application’s response time.

We implement core pinning to ensure that a CPU core is
reserved for a container, thereby forestalling contention side-
effects due to hyper-threading. This approach also simplifies
pricing models by making the cost of a container proportional
to that of a CPU core. With regard to provisioning, we show
that scaling the number of containers allotted to an application
yields better performance than scaling the amount of resources
allotted to a single container. Scaling the number of containers
makes service time predictable, and thus provides the technical
basis for, e.g., the stipulation of Service Level Agreements
(SLAs) between service providers and customers.

Moreover, we implement an automatic scaling system that
predicts the required amount of resources and proactively
makes scaling decisions in order to maximize the application
workload processing throughput and minimize the infras-
tructure allocation costs. Our automatic scaling subsystem
is a Q-Learning agent. Since it is based on a model-free
reinforcement learning technique, this agent can learn the
operating environment autonomously and adapt its scaling



policies without manual intervention.
The rest of the paper is structured as follows. In Section II,

we discuss the challenges involved in container provisioning
and propose our self-scaling provisioning solution in Sec-
tion III. We describe our experimental testbed in Section IV.
We present and analyze our experimental results in Section V.
In Section VI, we review the literature on container provision-
ing and draw final conclusions in Section VII.

II. CONTAINER PROVISIONING

In this section we explain how to avoid interference (i.e.,
contention in accessing shared computing resources) among
running containers and explain how we operate to make
service time predictable.

A Linux container is a group of isolated processes running
on the host machine without any resource virtualization. A
container can be granted an arbitrary amount of resources on
the host machine: the amount of actually available resources
depends both on the host capacity and on the resources allotted
to other containers. For this reason, containers running on the
same host will interfere with each other.

The use of hyper-threaded CPUs results in additional inter-
ference. Each CPU comprises multiple cores, each of which
can run two threads. These threads share the hardware for
the execution phase. Hyper-threading leads to a performance
improvement for each core since it minimizes the impact
of cache-miss interruptions. Unfortunately, such an architec-
ture may also yield unpredictable performance, depending on
which thread is used to run a process [5], [6]. In fact, as
different threads in the same core share part of the architecture
[7], execution performance is affected by other processes in
the same core.

The solution to these problems is the use of resource
limitation in conjunction with core pinning, as demonstrated
in [8]. Concretely, this means that we dedicate one or more
(entire) cores of a CPU to a given container for its exclusive
use. This configuration curtails any interference with other
processes and eliminates the interference related to L1 caching
mechanisms since each process stably runs on the same core.
CPU core pinning also leads to efficient resource isolation [9],
improved throughput and improved power utilization [10].

In Linux, both resource limitation and core pinning can be
achieved by leveraging the cgroup feature. Using this feature
requires the specification of the threads to be used for each
container. To avoid disparity in hyper-threaded architectures,
we select threads belonging to the same core. For the Linux
distribution we use in our test-bed, this involves consulting the
cpuinfo file.

Core pinning also clearly delineates the number of resources
used as containers are mapped onto a known number of
allocated cores. Therefore, following [11], the cost of running
a container over k time intervals can be computed as:

Cost(k) = α

k∑
n=1

Cn,n−1 · (tn − tn−1), (1)
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Fig. 1. Vertical vs. horizontal scaling: two containers running on distinct
cores provide more predictable performance than one container running on
two cores.

where Cn,n−1 is the number of cores dedicated to the container
during the interval [tn−1, tn], and α is a configurable cost
scaling parameter chosen by the Cloud provider.

As regards scaling, two strategies are possible: vertical
scaling and horizontal scaling. The former entails the addition
or removal of cores from a running container while the lat-
ter involves instantiating new containers or decommissioning
active ones without adjusting their resource allocations. If
vertical scaling is used such that multiple cores are assigned
to a container, even with CPU core pinning on hyper-threaded
cores, Linux’s completely fair scheduler (CFS) might assign
all processes to some cores leaving the rest in an idle state.
This is because these schedulers are hyper-threading unaware
and may introduce interference among competing processes
on the same container. Horizontal scaling, instead, allows
fine-grained resource management and prevents intra-container
interference. This effect is exemplified in Fig. 1 where the time
per iteration of the double 256-bit bitcoin hash computation
is shown for multiple such requests over a time period.
The response times exhibited by two containers running on
independent cores is markedly predictable compared to one
container with two cores.

In the next section we employ core pinning to spawn
containers using different cores. In particular we allocate one
core for each container.

III. AUTOMATIC PROVISIONING SYSTEM

Here we exploit the container-provisioning approach to
build a system capable of optimizing resource utilization. Our
system scales the number of allocated containers to align
with the varying demand in order to minimize costs while
maintaining a high level of service. As a result of employing
core pinning as explained in Section II, scaling decisions do
not affect response time. A schematic diagram of our system is
shown in Fig. 2. It comprises three components: Load Balancer
(LB), Admission Controller (AC) and Auto-Scaler (AS). As
suggested in [12], the LB component directs an admitted
request to the active container reporting the most recent and
lowest utilization rate. The AC component leverages CPU
utilization statistics from the cgroup file-system to decide
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Fig. 2. Proposed container auto-scaling architecture.

whether an incoming request should be handled. The AS
spawns new containers or removes active ones as appropriate,
depending on demand.

We now delve into our design of the AC and AS compo-
nents. Our LB implementation is inherited from [12].

A. Admission controller

To remain profitable, cloud providers need to limit the
amount of resources they allocate to each tenant while still
offering the sufficient amount required to honor SLAs. When
resources are constrained in this way, an AC is necessary
to limit accepted requests, thus keeping the service time
predictable and reducing SLA violations.

Considering the iterative double 256-bit bitcoin hashing al-
gorithm as an exemplary cloud application, the behaviour of a
container (with a dedicated CPU core) is shown in Fig. 3. Each
request triggers a different number of iterations. The response
time, normalized by the number of iterations, is shown to be
independent of the particular request’s characteristics.

The plot in Fig. 3 also shows that the relationship between
the amount of allotted resources and SLA terms of service
(such as the minimum response time) is not necessarily
linear. In particular, there exists a discrepancy between CPU
utilization (as reported by the operating system) and the
actual occupied capacity of the core due to the use of hyper-
threading [5]. This disparity is because the operating system
considers two threads of the same core as two independent
cores. Bearing this in mind and using the operating system
metrics, a container exhibits a tri-stable CPU behavior: 0%
CPU resource utilization when idle, 50% while continuously
busy on a single core, 100% when continuously hyper-
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Fig. 3. Relationship between CPU utilization and service time. When the
reported utilization is 6 50%, the iteration time is predictable.
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Fig. 4. Short-Term Memory Q-Learning mechanism used for the auto-scaler,
cf. [13]. This schematic shows a scale out operation where in the epoch given
by the interval [t, t + 1), action a increases the number of containers from
N to N + 1 and the state transitions from s(t) to s(t+1).

threading on the same physical core. The latter case points to
saturation and unpredictable service times. The service time
remains predictable only when a single thread (50% of a
hyper-threaded core) is busy, as shown in Fig. 3. The above
suggests that new requests should be admitted only when the
container is not busy (0% utilization).

We finally remark that transients have a non-negligible
impact on the correctness of admission decisions. Specifically,
an admission error may occur in two cases: (i) a request
was just assigned to the container, but the reported CPU
usage value is still close to 0%, triggering the admission
of an (otherwise undesirable) additional request; and (ii) the
container just finished serving a request, but the reported CPU
usage value is still close to 50%, triggering the rejection of
a request that should have been be admitted. These transients
in reported CPU utilization are typically short-lived such that
the inter-arrival time of requests, even at peak time, is much
longer in comparison. However, in order to further reduce the
likelihood of the first event, a new request is admitted if the
reported value is 6 25%. In practice, this solution also reduces
the likelihood of the second case.

B. Auto-scaler

The purpose of the AS is to allocate the minimum number
of containers that is commensurate to the demand while still
minimizing the number of dropped requests as reported by
the empirical blocking probability. The scaling mechanism we
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Fig. 5. Traffic profile observed during the Docker experiments. Traffic rates
are taken over two-minute windows. The red line is the moving average over
30 samples.

employ is similar to the Q-Learning paradigm used in [13] as
shown in Fig. 4.

We designate the permissible scaling actions as: −n (re-
move n containers), +n (add n containers) and 0 (maintain the
existing number of containers). For n = 1, we can therefore
describe the action space as follows:

A =


[−1; 0;+1] if 1 < Nt < M ;

[0; +1] if Nt = 1;

[−1; 0] if Nt =M ;

(2)

where Nt is the current number of active containers and M
is the maximum number of containers that can be allocated.

The state space is described by the triplet set of the number
of containers, and the utilization in the previous and current
epoch. We quantize the latter two components of the state
space into nine levels, from 0% to 45% in steps of 5%. The last
level encompasses the range from 45% to 100% utilization.
The latter detail is required because the admission control
function ensures that utilization never exceeds 50%. Fine-
grained quantization of the state space is unnecessary as the
action space is restricted to 3 discrete actions (cf. 2). Higher
levels of quantization would increase the training time (owing
to the curse of dimensionality) with little benefit to the quality
of scaling policies learned.

The reward function (Rsqlr), as presented in [13], consists
of a penalty for blocking (Rblk) and another based on the
number of containers provisioned (Rres):

Rsqlr = Rblk +Rres

Rblk =

{
Rmin, if P 6 Papt

θ (Papt − P ) , if P > Papt,

Rres = β(1−Nt)

(3)

where P is the actual blocking rate, Papt the acceptable level
of outage as per the SLA, Rmin is a small positive reward
assigned to the agent when it keeps within the acceptable limits
of service outage due to blocking, θ is the weight given to
outage exceeding the acceptable level and β is the weighted
cost incurred by the provider in deploying containers to handle
client requests.

Compared to this approach given in [13], we simplify the
mechanism in order to expedite learning. In particular, we set

5 10 15 20
0

10

20

30

Training time (days)

%
C
o
n
ve
rg
en
ce

Fig. 6. Convergence evaluated at the end of a training day. High entropy in
request inter-arrival times means that the scaler rarely visits the same states
on subsequent days.
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Fig. 7. Scaling decisions taken by Auto-Scaler algorithm during the Docker
experiment at 20% of convergence (using β = 0.02).

θ = 1 so that only β is adjusted. The ratio of the two influences
the policies learned.

IV. EXPERIMENT SETUP

We implement our provisioning scheme using Docker con-
tainers on a Dell T640 server with 20 hyper-threaded cores
running Ubuntu 18.04. In order to expedite learning, we
choose n = 1 (cf. (2)) which effectively reduces the size
of the action space. We implement CPU pinning and limit
the maximum number of containers, M (cf. (2)), that can be
provisioned to 9. This ensures that server capacity is never
exceeded and that the host processes run on an independent
core. The AC and LB functions are implemented as python
applications and run on the host core.

The server is connected to client PCs in an isolated LAN
via a high-speed switch. Bash scripts on the client PCs spawn
requests to the server with varying frequency at different hours
of the day to mimic peak and off-peak periods of typical real-
world traffic profiles.

A 24-hour cycle is split into hourly periods as shown in
Fig. 5. Each period has inter-arrival times following a discrete
distribution λ v U(0, λmax). By varying λmax we create a
suitable peak/off-peak profile. The use of a uniform distribu-
tion ensures high entropy in order to evaluate the robustness
of the schemes in challenging conditions. As mentioned in
Section III-A, we deploy the double 256-bit bitcoin hashing
algorithm as our cloud application. Each admitted request
triggers a different number of iterations, which makes it
possible to mimic the diverse complexity of cloud applications.
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Fig. 8. The blocking rate observed over the time during Docker experiments
in terms of rejected requests per second.
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Fig. 9. Empirical CDF of the service time for Docker experiments.
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Fig. 10. Traffic profile observed during the Kubernetes experiments. Traffic
rates are taken over two-minute windows. The red line is the moving average
over 30 samples.
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Fig. 11. Scaling decisions taken by the AS algorithm during the Kubernetes
experiment at 25% of convergence (with θ = 1.0 and β = 0.02).

V. RESULTS AND DISCUSSION

We compare our provisioning scheme with the Google
Horizontal Pod Autoscaler (HPA) for Kubernetes, a widely
used container management tool. We also benchmark our
scheme with static over-provisioning and under-provisioning.
As comparative measures, we consider the following metrics:

i Saved cost: cf. (1), the difference in cost between em-
ploying the maximum amount of resources throughout
and using an auto-scaling algorithm to provision variable
amounts of resources,

ii Service time: the time taken to process a request normal-
ized by the number of iterations triggered by it, measured
at the server side in order to exclude network effects,

iii Blocking rate: a measure of service availability defined as
the percentage of dropped requests with respect to those
received by the server.

We also introduce convergence as a key metric to measure
the level of learning attained by our auto-scaler. This is
the proportion of states visited by the scaler for which the
policy is fully learned. Initially, a target number of statistically
significant visits (30 in our case) is attributed to each state
and serves as the baseline for decreasing ε, the probability of
acting randomly. Each state starts off with ε = 1 which is
monotonically decayed as the number of visits to that given
state increases and the agent acts less randomly in making
scaling decisions. When a given state attains the specified
number of visits, ε = 0 and the scaler acts greedily (when in

that state) according to the policy learned. In this way a good
trade-off between exploration and exploitation is achieved.
Owing to the uniform distribution in inter-arrival times in
the various traffic periods the likelihood of the same state
(the triplet of values defined in Section III-B) is low. As a
consequence of the latter, the convergence rate is very gradual,
as shown in Fig. 6.

1) Docker experiments: We initially test our scheme in
a Docker environment. With reference to the offered load
presented in Fig. 5, our scheme generates the scaling profile
shown in Fig. 7 with 20% convergence. With the parameters
we have adopted (θ = 1 and β = 0.02), the system learns to
act quite aggressively with respect to blocking and encourages
the provisioning of additional containers even with modest
rises in the traffic profile. A higher setting of β would result
in a stiffer reaction of the scaler, and would likely result in
higher blocking rates. With this setting, our solution achieves
51% saved cost.

The performance in terms of blocking rate is shown in
Fig. 8. Our scaler achieves blocking rates that are comparable
to the over-provisioned case with 9 containers throughout the
24 hours. It considerably outperforms the under-provisioned
case in which only 4 containers are statically deployed and
no adaptation is enforced over time. The saved cost for the
under-provisioned case stands at 55% which is only marginally
higher than that of our auto-scaler but with much poorer
service availability, especially at peak traffic.
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Fig. 12. CDF of the service time for the Kubernetes experiments.

From Fig. 9, it is clear that the number of containers
deployed has an effect on the service time. This is due to
the fact that container processes share the L2 and L3 cache
memory. The greater the number of active containers the more
pronounced the impact. For this reason, the over-provisioned
case with 9 containers exhibits slightly higher service times,
whereas the under-provisioned case with 4 containers yields
the lowest service time. Our scaling solution suffers a small
deviation from the low service times for about half of the
cases owing to the instances when it provisions more than
the benchmark 4 containers at peak traffic. However for all
cases considered, the maximum difference in service times is
small with respect to the minimum values observed, i.e., the
difference is less than 0.1 µs, for more than 93% of the cases.
This is because admission control ensures that the system only
rarely reaches saturation.

2) Kubernetes experiments: We now compare the perfor-
mance of our scaler against the commercial HPA for Kuber-
netes. We re-run the experiments with the traffic profile shown
in Fig. 10 using two computers with different specifications.
Our scaler autonomously learns the appropriate operating
conditions for each computer to trigger the addition or removal
of containers. HPA however requires that the threshold be
set as an external input. Such a setting is often a trial
and error process and is both application and configuration
dependent. To obtain comparable results to our scaler, we set
this threshold as 28%.

The comparison between the decisions of our scaler (at
25% convergence) and the ones made by HPA are shown in
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Fig. 13. Blocking rate observed over time during Kubernetes experiments in
terms of rejected requests per second.

Fig. 11. Two different servers are used in these experiments
to guarantee different service times. Even in this scenario, our
provisioning scheme achieves predictable predictable service
times, albeit different given the difference in compute power.
In this case the less powerful compute engine (slave node)
determines the service time benchmark.

While the two schemes save about the same costs and
achieve similar results in terms of service time, as depicted
in Fig. 12, their blocking performance differs. Our approach
based on CPU core pinning and Q-Learning largely outper-
forms HPA in terms of blocking rate, as shown in Fig 13.

VI. RELATED WORK

The container provisioning problem is an evolving field
of research given that this method of virtualization is quite
recent compared to virtual machines (VMs). The authors
of [14] leverage the maturity of VM provisioning schemes
and propose an Integer Linear Programming (ILP) optimal
mapping between containers and the available VMs.

In [15], the authors consider containers hosted within VMs
and propose a system able to coordinate the vertical scaling
of both. The authors of [11] propose ELASTICDOCKER, a
vertical scaling system based on MAPE-K principles. Their
scheme follows best-practices of setting thresholds to act as
triggers for scaling operations. These works do not consider
the effects of hyper-threading on vertical scaling and make
assumptions based on queuing theory [16]. The prevalence of
hyper-threaded CPUs therefore limits the performance of the
proposed schemes [7].

In [17], Ye et al. propose a scheme which predicts the re-
source demands of an application and scales appropriately. An
application-dependent, proactive resource provisioning scheme
is proposed in [18]. The latter leverages the historical record
of resource usage to trigger scaling actions.

The authors of [19] implement a horizontal scaler leveraging
both reactive and proactive approaches. The amount of needed
resources is calculated from a reactive term, based on a
threshold, and a proactive term, based on traffic forecasting.
The latter is performed with a simple ARMA model and may
be ineffective for rapidly varying traffic.

In [20] Sangpetch et al. carry out a comparative study
of three auto-scaling algorithms based on either Q-Learning,



artificial neural networks, or rules on thresholds. In this study,
Q-Learning is found to achieve superior performance.

The preceding proposals do not consider CPU architecture
and hence fail to capture the effect of hyper-threading on
performance. Our approach takes this into account and curtails
its pervasive effects by implementing CPU core pinning and
by leveraging horizontal scaling. These approaches, coupled
with our model free Q-Learning scaler, result in a robust
and configuration-agnostic scheme that ensures predictable re-
sponse times regardless of the application under consideration.

VII. CONCLUSIONS

We have presented a robust container provisioning system
that leverages Q-Learning for autoscaling. We have demon-
strated the consistent performance achieved by implementing
CPU core pinning and horizontal scaling when compared to
vertical scaling with hyper-threaded cores. We show that CPU
core pinning simplifies the pricing models for cloud providers
by facilitating an easy mapping between actual resources used
and container resources assigned to tenants. Although our
scheme curtails the application of hyper-threading and its
advantages, the benefits of predictable and consistent high
performance outweighs this disadvantage by far.

We have also demonstrated the superior performance of
our scaling scheme when compared to the Horizontal Pod
Autoscaler (HPA) for Kubernetes which is widely adopted
in container provisioning platforms. Our Q-Learning scheme
attains predictable response times in the face of highly dy-
namic traffic without the need for manual threshold setting. It
is able to autonomously learn the appropriate scaling triggers
without prior knowledge of the system configuration or the
cloud application.
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