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Abstract—Orchestrating resources in 5G and beyond-5G sys-
tems will be substantially more complex than it used to be
in previous generations of mobile networks. In order to take
full advantage of the unprecedented possibilities for dynamic
reconfiguration offered by network softwarization and virtu-
alization technologies, operators have to embed intelligence in
network resource orchestrators. We advocate that the automated,
data-driven decisions taken by orchestrators must be guided by
considerations on the cost that such decisions involve for the
operator. We show that such a strategy can be implemented via
a deep learning architecture that forecasts capacity rather than
plain traffic, thanks to a novel loss function named α-OMC. We
investigate the convergence properties of α-OMC, and provide
preliminary results on the performance of the learning process
in case studies with real-world mobile network traffic.

I. INTRODUCTION

Softwarization and virtualization are major features that will
characterize next-generation mobile networks. Network func-
tions traditionally implemented as hardware components will
become software-based, hence substantially more predisposed
to on-the-fly reconfiguration. Controllers will be responsible
for function management in the Software-Defined Network
(SDN), thus separating the control plane from the data one.
In turn, such a fresh flexibility will pave the way for end-
to-end Network Function Virtualization (NFV) and network
slicing [1], where complete logical abstractions of the physical
network are tailored to the specific requirements of different
services. Overall, 5G and beyond will offer unprecedented
opportunities for the dynamic management and orchestration
(MANO) of resources, at multiple levels of the architecture
that span from radio access to the network core [2].

The scenario portrayed above makes traditional schemes
for network resource allocation obsolete. Current approaches
are human-driven and reactive: they are based on manual
inspection of warnings issued by static thresholds on Key
Performance Indicators (KPI). This strategy simply will not
scale to environments where thousands of reconfiguration
decisions might have to be taken every few minutes. Instead,
there is a need for the integration of network intelligence in
the resource management loop [3]. This will be realized by
deploying, at each network controller, resource orchestrators
capable of taking automated decisions at short timescales. The
orchestrators will necessarily adopt a data-driven approach:

they will constantly monitor mobile network traffic, run dedi-
cated analytics on it, and proactively decide on the allocation
and release of network resources so as to accommodate the
demands for different mobile services. Ultimately, this will re-
alize the cognitive network management paradigm envisioned
to characterize 5G systems [4].

Designing resource configuration algorithms at the orches-
trators is thus a major challenge, and addressing it properly
is critical to realizing 5G mobile networks that are reliable,
efficient and cost-effective. In this work, we argue that the
sensible design of resource orchestration algorithms must duly
take into account the economic cost incurred by the mobile
network operator. Indeed, the resource orchestration decisions
have a direct monetary impact for the operator, in terms
of operating expense (OPEX). Specifically, two macroscopic
categories of cost can be told apart as follows.

• Capacity excess – when overprovisioning resources with
respect to the actual demand, the operator incurs a cost
due to fact that it is reserving to a network entity (e.g.,
a network slice, a network function, a virtual machine)
more resources than those needed, possibly seizing them
from other network entities that would have instead
needed them. At a global system level, continued over-
provisioning implies that the operator will have to deploy
more resources than those required to accommodate the
user demand, limiting the advantage of a virtualized
infrastructure and of cognitive networking solutions.

• SLA violation – if not enough resources are allocated to
a network entity, users will suffer low Quality of Service
(QoS), or even discontinued service. This has an indirect
price for the operator, which is not simple to quantify, in
terms of customer dissatisfaction and increased churning
rates. However, in emerging contexts such as those pro-
moted by network slicing, underprovisioning also entails
direct economic penalties for the operator: by violating
Service Level Agreements (SLAs) signed with the mobile
service provider, it incurs into monetary fees.

Clearly, the cost is not the same in the two cases, and it
may also vary depending on the specific settings, including
the nature of the concerned resources, the specificities of the
infrastructure managed by the operator, or its market strategies.
In all cases, we posit that, once suitably modeled, such costs



shall be at the core of the orchestrating decisions.
In this paper, we present a practical approach to implement

the concept above. We first discuss in Section II how the re-
source orchestration problem under economic costs translates
into a capacity forecast problem, as opposed to traditional
traffic forecast. Then we explain in Section III how to adapt
Deep Learning architectures to solve the capacity forecast
problem, by means of a custom loss function. In Section IV,
we investigate the theoretical properties of our proposed loss
function. Finally, we provide a preliminary evaluation of the
performance of our solution in selected case studies and real-
world mobile traffic demands, in Section V. We draw our
conclusions in Section VI.

II. CAPACITY FORECASTING

Empowering future networks with intelligent resource or-
chestration is a very hard task for a number of reasons: the
calibration of the amount of resources shall be (i) precise,
to avoid excessive overprovisioning of resources or continued
underprovisioning, and (ii) capable to perform a prediction
with very fine (time-, space- and service-wise) granularity.
This results into a highly complex problem that can be seen as
a learning process of the mobile subscribers’ behaviour. The
ultimate objective of such a process is understanding the kind
and amount of resources that have to be deployed at a given
location for a certain service, and with some advance in time.

For this reason, the intelligent resource orchestration prob-
lem addressed in this paper is tightly related to that of
anticipating mobile traffic demands. Stemming from time
series forecast analysis, there is a vast and recent literature on
mobile traffic forecasting with a variety of tools [5], including,
e.g., autoregressive models [6]–[9], information theory [10],
Markovian models [11], or Deep Learning [12]–[14].

However, forecasting the demand for mobile traffic only
provides a very partial input in terms of network intelligence.
In order to optimize the orchestration of resources, network
controllers need to know which capacity has to be allocated
to satisfy the demand. This adds one new layer of complexity
to the problem, as decisions on capacity must take into account
the diverse costs associated to errors outlined in Section I.
Yet, legacy demand prediction algorithms just aim at perfectly
matching the temporal behaviour of traffic, independently of
whether the predicted signal is above or below the target, and
are thus are agnostic of the aforementioned costs. Moreover,
they do not offer any insight on how much the excess resource
allocation (on top of the forecasted demand) should be.

The issues above affect even current state-of-the-art Deep
Learning architectures, which thus fall short of providing
a complete solution to the problem of intelligent resource
orchestration. For instance, the technique in [14] predicts
future demands so as to minimize an absolute error, hence
deviating as little as possible from the real demand. As shown
in Fig. 1a, this risks to cause substantial underprovisioning,
with a high cost for the operator in terms of subscribers’
churn rates, as well as of significant fees for violating Service-
Level Agreements (SLAs) with tenants. The plot makes it
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Fig. 1: Prediction error in (a) traffic and (b) capacity forecast.

clear that, if mobile network operators allocate resources based
on a plain traffic predictor, SLA violations will occur all the
time. A strategy of blind, fixed overprovisioning on top of
the demand forecast is also a highly inefficient workaround.
Constantly allocating a static (and arbitrarily set) amount of
resources above those estimated may be acceptable in the
current 4G monolithic architecture, but will become extremely
expensive when repeated across the high number of network
slices expected to characterize next-generation systems [15].

In the light of these considerations, we believe that capacity
forecasting is a problem that has to be tacked as a whole.
By predicting capacity rather than demand, we (i) directly
obtain the complete information needed by the orchestrators
(i.e., the capacity to be allocated), and (ii) can explicitly
include all considerations on overdimensioning, SLA, and
related economic costs in the problem formulation.

In this paper, we propose Deep Learning algorithms de-
signed to natively take into account the specific requirements
of capacity forecasting, and automatically drive the anticipa-
tory resource allocation. The ultimate goal of such learning
algorithms is to provide a resource allocation forecast like the
one depicted in Fig. 1b: the demand is always anticipated with
the minimum amount of overprovisioning that reduces the risk
of SLA violations.

III. LEARNING FOR COST-AWARE ORCHESTRATION

Owing to the complexity of the resource orchestration task,
and the availability of large amounts of historical training data,
Deep Learning is a prime candidate to implement intelligence
in mobile networks [16]. Deep Learning architectures are
employed for multiple purposes: classification, where the
output is the probability that a given input belongs to a
specific category; forecasting, where the objective is to predict
the next sample of a function given knowledge of the past;
reinforcement, where the goal is to derive the optimal policy
to maximize (resp., minimize) some revenue (resp., cost).

Capacity forecasting falls in the forecasting problems cate-
gory. In this case, the generic deep neural network architecture



is composed by an input layer that takes a portion of the
past mobile traffic time series, one or more hidden layers that
extract its relevant features for prediction, and an output layer
made by a single linear neuron that provides the forecast for
the next orchestration time slot. In our analysis, we consider
only fully connected layers (i.e., layers where each neuron
is connected with all the neurons of the successive layer),
due to their mathematical tractability; however, the approach
can be extended to any type of layer (e.g., Convolutional,
Pooling, etc.). Also, the architecture always terminates with
an output layer applying a linear function since the expected
output could assume any value.

A. Loss functions: a primer

The loss function is a key element in a Deep Learning
architecture. In a nutshell, the loss function measures the
error between the output estimation of the Deep Learning
architecture and the real sample. The current error value is
then back-propagated through the network layers in order
to minimize future errors. Specifically, back-propagation is
performed by evaluating the contribution of each weight and
bias to the error, and updating them in the direction that
minimizes the loss. As such a notion of direction is derived by
the partial derivatives of the error with respect to the weights
and biases, the loss function needs to be differentiable.

It is important that the loss function is chosen appropriately,
based on the nature of the problem to be solved. For instance,
in classification problems where the output is represented as
the probability that a certain input belongs to a particular
category, loss functions based on probability estimates, like
cross-entropy, are utilized. In regression or forecasting tasks,
loss functions based on linear output, like Mean Squared Error
(MSE) or Mean Absolute Error (MAE), are most suitable since
the output of the network can assume a continue value range.

Therefore, loss functions based on linear output are espe-
cially suitable also for capacity forecasting, where the output
is similarly a continue variable. As mentioned above, MSE and
MAE are two of the popular functions utilized in regression
problems (although others are found in the literature, e.g.,
Smooth MAE), yet they are not adequate for capacity fore-
casting. The reason is that they treat in the same way negative
(i.e., SLA violations) and positive (i.e., capacity excess) errors.

To address this issue, in the following we design a new,
dedicated loss function based on linear output and tailored to
capacity forecasting, thanks to its capability to differentiate
SLA violations from overprovisioning.

B. α-OMC: a loss function for capacity forecast

As discussed in Section II, the monetary cost incurred by
a network operator while running a network slice on its
infrastructure is due to two main components: (i) the cost
of overprovisioning the network with more resources than the
ones actually needed, and (ii) the cost due to SLA violations,
that are monetary compensation paid by the network operator
to its tenants in case of unserviced traffic.
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Fig. 2: Generic loss function for network resource orchestra-
tion: f(x) are in red, for x <≤ 0, g(x) are in blue, for x ≥ 0.
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Fig. 3: Actual α-OMC loss function. As ε is a very small value,
the function is close to x in the overprovisioning domain.

These two components need to be modeled in different ways
according to the desired point of operation of the system.
As mentioned in Section III-A, the loss function steers the
behaviour of the neural network by adjusting the weights of
the neurons according to the error between the estimated value
and the real one. Thus, a custom loss function for the capacity
forecasting problem is composed by a term f(x) that deal
with the resource overprovisioning costs, and a term g(x)
that models the cost for the resource violation penalties. The
variable x represents the discrepancy between the real and
estimated values at each orchestration interval.

The shape of overall cost function f(x) + g(x) is depicted
in Fig. 2. A perfect algorithm (i.e., an oracle) always keeps the
system in the perfect operation point x∗ = 0, so in this point
no penalty is introduced, i.e., f(x∗) = g(x∗) = 0. Of course,
it is very unlikely that the prediction always matches the real
demand, so a penalty value is back-propagated depending on
whether x is above or below the target operation point x∗.

1) g(x), a reactive approach to SLA violations: When the
orchestrated resources are less than those needed in reality
(i.e., x < x∗) the tenant receives a monetary compensation
from the network operator. This is the case of, for instance, an
SLA that guarantees a proportional compensation depending
on the number of time intervals in which an operator fails to
meet the requirements set by a tenant (e.g., the total bandwidth
of its users). Thus, the system has to learn that the operation
point x∗ is actually higher than the currently estimated one
through a penalty β, which is applied as soon as the estimation
falls below the real value. The parameter β can be customized
depending on the scenario: higher values may be used for cases
in which reliability is paramount (e.g., an URLLC network
slice), while lower values can be applied where KPIs are
measured over longer time intervals. Higher β are likely to



bring the system toward x > x∗, incurring hence in higher
deployment costs, as discussed next.

2) f(x), a monotonically increasing cost for resource over-
provisioning: While SLA violations depend on the agreements
between the tenants and the operator, the over-provision cost
solely depends on the network operator, and more specifically
on its OPEX in allocating excess capacity. We assume that
such a cost grows with the additional unused capacity, and
model it as a monotonically increasing function of x that is
only applied when x > x∗. The exact expression of f(x) may
vary, and be, e.g., linear (i.e., f(x) = γx), super-linear (i.e.,
f(x) = xγ), or exponential (i.e., f(x) = eγx). In our study,
we will consider a linear function, as portrayed in Fig. 2.

The parameter γ is configurable by the operator, and repre-
sents the monetary cost of resource allocation: for instance,
resources at the edge (i.e., spectrum) are typically scarcer
and more expensive to deploy than those in a network core
datacenter. Therefore, a positive error x in case of expensive
(i.e., high-γ) resources will tend to bring the system to a lower
estimation, with higher risks to hit the SLA violation zone.

3) Balancing the two cost contributions: In general, β and
γ are highly intertwined: β can be seen as the maximum
amount of resources a network operator is willing to add
instead of incurring an SLA violation, which is in turn a
function of γ. Therefore, in the following, we express the
custom loss as a function of α = β

γ .
As explained in Section III-A, the loss function shall be

differentiable in all its domain. This forces us to introduce
minimum slopes of intensity ε (a very small value) for x < 0
and at x = 0. We name the resulting loss function Operator
Monetary Cost, which has a single configurable parameter α.
The final expression of α-OMC is:

α-OMC(x) =


α− ε · x if x ≤ 0

α− 1
εx if 0 < x ≤ εα

x− εα if x > εα.

(1)

Fig. 3 provides a sample illustration of (1) above.

IV. CONVERGENCE ANALYSIS OF α-OMC
Given the α-OMC loss function defined in Sec. III-B we

study its theoretical properties. Specifically, we are interested
in showing that it is a suitable function to be employed
in neural network architectures, and that is compatible with
backpropagation algorithms.

Let us write the α-OMC loss function for a given epoch as:

L (x) =
1

N

N∑
i=1

(l1 (x) + l2 (x) + l3 (x)) ,

l1 (x) = −εx+ α, where x ≤ 0

l2 (x) = −
1

ε
x+ α, where 0 ≤ x ≤ εα

l3 (x) = x− εα, where x ≥ εα.
Here, x is the difference between o = 〈w,h〉+b and y, which
represent the prediction and the real output, respectively. Also,
error contributions are summed over N batches i in the epoch.

The partial derivative of the loss function with respect to
the output of the final layer o is then:

∂L

∂o
=

1

N

N∑
i=1

∂l1 (x)

∂o
+
∂l2 (x)

∂o
+
∂l3 (x)

∂o

where,

∂l1 (x)

∂o
= −ε, where x ≤ 0,

∂l2 (x)

∂o
= −1

ε
, where 0 ≤ x ≤ εα,

∂l3 (x)

∂o
= 1, where x ≥ εα.

As we can see, (i) the obtained partial derivative are
monotonic, (ii) they do not vanish if the error is very high,
and (iii) they form a piece-wise linear (and, more precisely,
constant) function.

The monotonicity together with the no-vanish property
ensure that α-OMC leads to convergence, since the partial
derivatives always lead to the minimums’ direction and main-
tain a non-zero value that avoids getting stuck in case the
of a too high initial error [17]. Furthermore, the resulting
partial derivatives are not only piece-wise linear but also
constant: according to [17], the convergence speed under
this circumstances is faster, especially when using first order
optimization methods such as the well-known Adam [18].

Although it may be possible to design different classes
of loss functions that present the characteristics defined in
Section III-B, α-OMC already provides desirable convergence
properties that make it very suitable for the capacity forecast-
ing problem, as discussed in the next section.

V. EMPIRICAL EVALUATION OF α-OMC

In order to evaluate the effectiveness of the proposed
loss function, we compare α-OMC against two classic loss
functions employed in forecasting problems: MSE and MAE.
Experiments are carried out under different neural network
configurations. Specifically, we use five different architectures,
each composed by fully connected layers with a variable
number of hidden layers that ranges from 2 to 20. Each hidden
layer consists of 16 neurons followed by a ReLU activation
function, and the whole model is trained using Adam [18] with
a learning rate of 10-4 during 100 epochs.

We leverage real-world measurement data that describes the
traffic generated by the YouTube video streaming service in
a mobile network deployed in a large metropolitan region in
Europe. We assume that such traffic is serviced at a single
datacenter, where the operator needs to anticipate the resources
(e.g., CPU time and memory for virtual machines) required to
accommodate the service demand. The orchestration occurs
over 5-minute intervals, which is reasonable in network in-
frastructures supporting NFV [19], and for standard Virtual
Infrastructure Managers [20].

The capacity is then predicted in terms of bytes of traffic
that will have to be allocated during the following 5-minute
orchestration interval. To that end, the neural network uses
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Fig. 4: Average operator’s economic cost versus the learning epochs, under α-OMC, MSE and MAE loss functions. Smaller
plots at bottom show the actual errors minimized by MSE and MAE. Top: α = 2. Bottom: α = 4.

the last 30 minutes of traffic as input1. In line with our
discussion of economic costs induced by overprovisioning and
underprovisioning, the overall monetary penalty incurred by a
network operator is computed as the number of time steps with
SLA violations multiplied by a factor α, plus the amount of
excess predicted capacity2. To ease the interpretation of results,
the monetary penalty is then transformed into a normalized
cost, dividing it by the instantaneous expenditure peak.

A. Cost minimization capability

We start by evaluating the dynamics of the learning algo-
rithm, testing the behaviour of each loss function over time.
Specifically, we measure the normalized cost when using the
different loss functions and architectures.

The top row of Fig. 4 shows how the test average normalized
cost o network operation vary during the training phase for
5 different architectures, under α = 2. While the 2-OMC
loss function minimizes the operator’s cost, both MAE and
MSE converge to a fixed fee that depends on the value of α.
Indeed, when doubling α from a value of 2 to a value of 4, as
showed in the bottom row of Fig. 4, also the fee doubles to a
value of 2. This confirms that classical loss functions are not
effective when dealing with capacity forecasting, resulting in
high penalties for operators.

The smaller plots below each row in Fig. 4 depict the
average normalized loss, i.e.,, a metric that does not consider
monetary factors, but purely measures the distance of the

1We experimented with longer history input, without noticeable differences.
2We remark that multiplying the number of violations by α returns a

dimensionally correct penalty, whose unit can be interpreted as the cost of
allocating resources to service one additional byte of traffic.

prediction to the actual traffic demand. These curves illustrate
that both MAE and MSE do minimize the overall discrepancy
from the target signal, which, however, is not aligned with the
actual monetary cost. Conversely, α-OMC steers the forecast-
ing capability of the Deep Learning architecture by weighting
the different sources of cost: it goes beyond legacy traffic
demand estimation, and performs an actual capacity forecast.

B. Gradient behavior

Backpropragation algorithms work by updating the weights
and biases of each layer proportionally to the value of the
gradient of the loss function. Thus, a relevant aspect to
investigate is how the 2-OMC loss gradients behave with
respect to the weights and biases of the last layer.

In Fig. 5 we show the maximum, minimum and mean
value of all gradients (i.e., weights and biases) of a 2-OMC
loss function with respect to the last layer. We observe that,
after fluctuations due to the initial randomness, all gradients
converge to 0. This means that the last-layer weights and
biases do not contribute anymore to the prediction error as
they reached a minimum point in the loss function (which
could be global or local). Fig. 5 also give us an estimation of
the convergence speed: after around 50 epochs all gradients
converge under any neural network architecture.

C. Forecast comparison

As last experiment, we compare the forecasting obtained
on the test dataset after training our neural network with 20
hidden layers employing the 2-OMC, MSE and MAE loss
functions in order to highlight the different results obtained
in terms of curves and network cost. The results, presented
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Fig. 6: Capacity forecasting with a 20-hidden-layer architecture for the 2-OMC, MSE and MAE loss functions. Top: actual
and predicted time series. Bottom: overprovisioning (blue) and underprovisioning (red) errors. Figure best viewed in colors.

in Fig. 6a–6c, confirm that (i) the deployed neural network
architecture is able to provide an accurate forecast for all of
the different loss functions, and (ii) only a cost-aware loss
function like 2-OMC is able to minimize the actual network
operation penalty, almost completely avoiding expensive SLA-
violations, and minimizing the overprovisioning in doing so.
State-of-the-art loss functions such as MSE and MAE do not
distinguish between negative and positive errors, and induce
an unacceptable high number of SLA violations.

VI. CONCLUSIONS

In this paper we made the case for capacity forecasting in
mobile network resource orchestration. We discussed how this
original problem can be solved by Deep Learning algorithms
with custom loss functions that consider real network opera-
tional costs. We proposed α-OMC, the very first cost-aware
loss function for network resource orchestration, and assessed
its convergence properties both theoretically and empirically.
Our results show the effectiveness of α-OMC in meeting real
network requirements when compared to legacy, state-of-the-
art loss functions for traffic demand prediction.
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