
Fault tolerant scheduling of non-uniform tasks

under resource augmentation

Dariusz R. Kowalski and Prudence W.H. Wong (Speaker) ∗ Elli Zavou †

1 Introduction

Dealing with computationally intensive jobs is becoming a necessity rather than an
additional advantage of new computational systems. Some of the multiple challenges
that appear with the complexity of such systems include the dynamicity of job (or task)
arrivals, the diversity of their computational demands (e.g. different processing times),
the unpredictable machine failures, as well as the preservation of power consumption.

In this work we focus on the simple model of one single machine prone to unpre-
dictable crashes and restarts, and tasks of sizes c ∈ [cmin, cmax] arriving dynamically in
the system. Values cmin and cmax represent the smallest and largest processing times a
task may need respectively, when executed by the machine running without additional
resource augmentation. We consider a parameter s representing speedup; the amount of
resource augmentation added to the machine, such that the processing time of a task of
size c becomes c/s. We apply resource augmentation to overcome the machine failures,
as an alternative to using more processing entities (e.g. multiprocessor systems).

Due to the unpredictable nature of the machine and the dynamicity of task arrivals,
we consider crash, restart and injection patterns to be controlled by an adversarial entity
A, and perform worst-case competitive analysis for the performance of online scheduling
algorithms. We focus on two efficiency measures: the completed time, which is the
aggregate size of all tasks that have been completely executed, and latency, which is the
longest time a task spends in the system. In some sense, the former corresponds to the
utilization of the machine, while the latter on the fairness of the scheduling algorithm.

In a previous work, Fernández Anta et al. [2] looked at the pending time competi-
tiveness of a similar system of multiple machines and showed that in order to achieve
competitiveness, it is necessary to use speedup. They proved the NP-hardness of the
offline version of the problem and gave lower bounds on speedup, under which no com-
petitiveness can be achieved. These were given by conditions C1: s < ρ and C2:
s < 1 + γ/ρ, where ρ = cmax/cmin, the ratio of maximum over minimum task sizes,
and γ > 0 a parameter that represents the number of cmin tasks that a machine with
speedup s can complete in addition to a cmax task, in an interval of length (γ + 1)cmin.
In a different line of work and environment, Fernández Anta et al. [1] have shown that
even with no speedup, an algorithm that gives priority to the shortest tasks can achieve

∗D.Kowalski@liverpool.ac.uk and pwong@liverpool.ac.uk. Department of Computer Science,
University of Liverpool, L69 3BX Liverpool, UK.
†elli.zavou@imdea.org. Universidad Carlos III de Madrid and IMDEA Networks Institute, 28911

Madrid, Spain. PhD Candidate partially supported by FPU Grant from MECD, Spain.

1



completed time competitiveness at most 1/(ρ + 1). Following their line of work, Jur-
dzinski et al. [3] proposed an algorithm that generalized the results of [1] for a fixed
number of different task sizes (more than two), and improved the competitiveness to
1-completed-time-competitiveness, when working with speedup s = 2. Another require-
ment for this algorithm to work, is the divisibility property of the task sizes. We therefore
hope to be able to give an algorithm that needs less resource augmentation to achieve
1-completed-time-competitiveness, even if some restrictions apply on the task sizes.

2 Results

Our first result in this work involves the speedup threshold for non-competitiveness. It
is summarized in the following theorem, whose proof is based on defining and analyzing
two different adversarial strategies (one for each efficiency measure), under which no
algorithm can be competitive, either regarding latency or completed time. Roughly
speaking, the adversary attempts to force the online algorithm unable to complete the
cmax-task and hence incurring infinite latency.

Theorem 1 For any given cmin, cmax and s, if both conditions C1 and C2 are sat-
isfied, NO deterministic online algorithm is latency competitive, or 1-completed-time-
competitive when run with speedup s against an adversary that injects tasks of sizes
c ∈ [cmin, cmax], even in a system with one single machine.

However, considering the result in [1], we introduce a deterministic scheduling
algorithm γ-Burst, for the case of only two task sizes, which achieves both 1-latency-
competitiveness and 1-completed-time-competitiveness as soon as condition C2 does
not hold (even if condition C1 still holds, i.e. s ∈ [1 + γ/ρ, ρ)). Observe that the
speedup required is less than s = 2 needed for the algorithm in [3].

Algorithm γ-Burst. It separates the pending tasks in two lists according to their size
and sorts them according to their arrival time. This way, the next task to be scheduled
from each list, if one of that size is to be scheduled, is the first task (being the one that
has been waiting the longest in the system). It then takes its scheduling decisions at the
end of each stage, which also indicates the beginning of a new one. A stage ends either
by being interrupted by a machine crash or by the completion of all the tasks that were
decided at the beginning of the stage to be scheduled within the stage. The scheduling
decisions are taken based on the following rules:
1. If there are no cmax tasks pending, then γ-Burst schedules a cmin task.
2. If there are no cmin tasks pending, then it schedules a cmax task.
3. Else, if there are at least γ tasks of size cmin pending, it schedules γ cmin-tasks
consecutively followed by a cmax task.
4. Otherwise, it schedules tasks from the two lists alternatively. In this case, the stage
ends after a single task is completed.

Theorem 2 For any given cmin, cmax and speedup s satisfying condition C1 ∧ ¬C2,
i.e. s ∈ [1 + γ

ρ , ρ), algorithm γ-Burst is 1-latency-competitive and 1-completed-time-
competitive.

2



The proof of the results claimed in the theorem above is based on the analysis of
latency for each group of task sizes, as well as the exhaustive analysis of the completed
time in different types of stages.

References

[1] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, Joerg Widmer,
and Elli Zavou. Measuring the impact of adversarial errors on packet scheduling
strategies. In Structural Information and Communication Complexity - 20th Inter-
national Colloquium, SIROCCO 2013, Ischia, Italy, July 1-3, 2013, Revised Selected
Papers, pages 261–273, 2013.

[2] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, and Elli Zavou.
Online parallel scheduling of non-uniform tasks: Trading failures for energy. In
Fundamentals of Computation Theory - 19th International Symposium, FCT 2013,
Liverpool, UK, August 19-21, 2013. Proceedings, pages 145–158, 2013.

[3] Tomasz Jurdzinski, and Dariusz R Kowalski, and Krzysztof Lorys. Online packet
scheduling under adversarial jamming. In Approximation and Online Algorithms:
12th International Workshop, WAOA 2014, Wroc law, Poland, September 11-12,
2014, Revised Selected Papers, volume 8952, page 193. Springer, 2015.

3


