
Formalizing and Implementing
Distributed Ledger Objects?

Antonio Fernández Anta1, Chryssis Georgiou2, Kishori Konwar3, and
Nicolas Nicolaou4

1 IMDEA Networks Institute, Madrid, Spain, antonio.fernandez@imdea.org
2 U. of Cyprus, Dept. of Computer Science, Nicosia, Cyprus, chryssis@cs.ucy.ac.cy

3 MIT, Cambridge, USA, kishori@mit.edu
4 Algolysis Ltd & KIOS Research and Innovation Center of Excellence, U. of Cyprus, Nicosia,

Cyprus, nicolasn@ucy.ac.cy

Abstract. Despite the hype about blockchains and distributed ledgers, no for-
mal abstraction of these objects has been proposed1. To face this issue, in this
paper we provide a proper formulation of a distributed ledger object. In brief, we
define a ledger object as a sequence of records, and we provide the operations
and the properties that such an object should support. Implementation of a ledger
object on top of multiple (possibly geographically dispersed) computing devices
gives rise to the distributed ledger object. In contrast to the centralized object,
distribution allows operations to be applied concurrently on the ledger, introduc-
ing challenges on the consistency of the ledger in each participant. We provide
the definitions of three well known consistency guarantees in terms of the op-
erations supported by the ledger object: (1) atomic consistency (linearizability),
(2) sequential consistency, and (3) eventual consistency. We then provide imple-
mentations of distributed ledgers on asynchronous message passing crash-prone
systems using an Atomic Broadcast service, and show that they provide even-
tual, sequential or atomic consistency semantics. We conclude with a variation of
the ledger – the validated ledger – which requires that each record in the ledger
satisfies a particular validation rule.

1 Introduction

We are living a huge hype of the so-called crypto-currrencies, and their technologi-
cal support, the blockchain [20]. It is claimed that using crypto-currencies and public
distributed ledgers (i.e., public blockchains) will liberate stakeholder owners from cen-
tralized trusted authorities [23]. Moreover, it is believed that there is the opportunity
of becoming rich by mining coins, speculating with them, or even launching your own
coin (i.e. with an initial coin offering, ICO).

Cryptocurrencies were first introduced in 2009 by Satoshi Nakamoto [20]. In his pa-
per, Nakamoto introduced the first algorithm that allowed economic transactions to be
? Partially supported by the Regional Government of Madrid (CM) grant Cloud4BigData

(S2013/ICE-2894) cofunded by FSE & FEDER, and the NSF of China grant 61520106005.
We would like to thank Paul Rimba and Neha Narula for helpful discussions.

1 This observation was also pointed out by Maurice Herlihy in his PODC2017 keynote talk.

accomplished between peers without the need of a central authority. An initial analysis
of the security of the protocol was presented in [20], although a more formal and thor-
ough analysis was developed by Garay, Kiayias, and Leonardos in [10]. In that paper the
authors define and prove two fundamental properties of the blockchain implementation
behind bitcoin: (i) common-prefix, and (ii) quality of chain.

Although the recent popularity of distributed ledger technology (DLT), or blockchain,
is primarily due to the explosive growth of numerous crypocurrencies, there are many
applications of this core technology that are outside the financial industry. These ap-
plications arise from leveraging various useful features provided by distributed ledgers
such as a decentralized information management, immutable record keeping for pos-
sible audit trail, a robust and available system, and a system that provides security
and privacy. For example, an emerging area is the use of DLT in medical and health
care applications. At a high level, the distributed ledger can be used as a platform to
store health care data for sharing, recording, analysis, research, etc. One of the most
widely discussed approaches in adopting DLT is to implement a Health Information Ex-
change (HIE) system, for sharing transactions among the participants such as patients,
caregivers and other relevant parties [16]. Another interesting open-source initiative is
Namecoin that uses DLT to improve the registration and ownership transfer of internet
components such as DNS [21].

In the light of these works indeed crypto-currencies and (public and private) dis-
tributed ledgers2 have the potential to impact our society deeply. However most experts,
often do not clearly differentiate between the coin, the ledger that supports it, and the
service they provide. Instead, they get very technical, talking about the cryptography
involved, the mining used to maintain the ledger, or the smart contract technology used.
Moreover, when asked for details it is often the case that there is no formal specification
of the protocols, algorithms, and service provided, with a few exceptions [26]. In many
cases “the code is the spec.”

From the theoretical point of view there are many fundamental questions with the
current distributed ledger (and crypto-currency) systems that are very often not prop-
erly answered: What is the service that must be provided by a distributed ledger? What
properties a distributed ledger must satisfy? What are the assumptions made by the pro-
tocols and algorithms on the underlying system? Does a distributed ledger require a
linked crypto-currency? In his PODC’2017 keynote address, Maurice Herlihy pointed
out that, despite the hype about blockchains and distributed ledgers, no formal abstrac-
tion of these objects has been proposed [14]. He stated that there is a need for the
formalization of the distributed systems that are at the heart of most cryptocurrency
implementations, and leverage the decades of experience in the distributed computing
community in formal specification when designing and proving various properties of
such systems. In particular, he noted that the distributed ledger can be formally de-
scribed by its sequential specification, and be implemented using a universal construc-
tion, based on well-known concurrent objects, like consensus objects.

In this paper we provide a proper formulation of a family of ledger objects, starting
from a centralized, non replicated ledger object, and moving to distributed, concurrent

2 We will use distributed ledger from now on, instead of blockchain.

Code 1 Ledger Object L
1: Init: S ← ∅
2: function L.get()
3: return S
4: function L.append(r)
5: S ← S‖r
6: return

Code 2 Validated Ledger Object VL (only
append)

1: function VL.append(r)
2: if Valid(S‖r) then
3: S ← S‖r
4: return ACK
5: else return NACK

implementations of ledger objects, subject to validation rules. In particular, we provide
definitions and sample implementations for the following types of ledger objects:

Ledger Object (LO): We begin with a formal definition of a ledger object as a
sequence of records, supporting two basic operations: get and append. In brief, the
ledger object is captured by Code 1 (in which ‖ is the concatenation operator), where the
get operation returns the ledger as a sequence S of records, and the append operation
inserts a new record at the end of the sequence. The sequential specification of the
object is then presented, to explicitly define the expected behavior of the object when
accessed sequentially by get and append operations.

Distributed Ledger Object (DLO): With the ledger object implemented on top of
multiple (possibly geographically dispersed) computing devices or servers we obtain
distributed ledgers – the main focus of this paper. Distribution allows a (potentially
very large) set of distributed client processes to access the distributed ledger, by issu-
ing get and append operations concurrently. To explain the behavior of the operations
during concurrency we define three consistency semantics: (i) eventual consistency,
(ii) sequential consistency, and (iii) atomic consistency. The definitions provided are
independent of the properties of the underlying system and the failure model.

Implementations of DLO: In light of our semantic definitions, we provide a num-
ber of algorithms that implement DLO satisfying the above mentioned consistency se-
mantics, in asynchronous crash-prone systems, using an Atomic Broadcast service.

Validated (Distributed) Ledger Object (V[D]LO): We then provide a variation
of the ledger object – the validated ledger object – which requires that each record in
the ledger satisfies a particular validation rule, expressed as a predicate Valid(). To this
end, the basic append operation of this type of ledger filters each record through the
Valid() predicate before is appended to the ledger (see Code 2).

Other related work. A distributed ledger can be used to implement a replicated state
machine [17, 25]. Paxos [19] is one the first proposals of a replicated state machine
implemented with repeated consensus instances. The Practical Byzantine Fault Toler-
ance solution of Castro and Liskov [6] is proposed to be used in Byzantine-tolerant
blockchains. In fact, it is used by them to implement an asynchronous replicated state
machine [5]. The recent work of Abraham and Malkhi [1] discusses in depth the relation
between BFT protocols and blockchains consensus protocols. All these suggest that at
the heart of implementing a distributed ledger object there is a version of a consensus
mechanism, which directly impacts the efficiency of the implemented DLO. In a later
section, we show that an eventual consistent DLO can be used to implement consen-
sus, and consensus can be used to implement a DLO; this reinforces the relationship
identified in the above-mentioned works.

Among the proposals for distributed ledgers, Algorand [12] is an algorithm for
blockchain that boasts much higher throughput than Bitcoin and Ethereum. This

work is a new resilient optimal Byzantine consensus algorithm targeting consortium
blockchains. To this end, it first revisits the consensus validity property by requiring
that the decided value satisfies a predefined predicate, which does not systematically
exclude a value proposed only by Byzantine processes, thereby generalizing the valid-
ity properties found in the literature. Gramoli et al. [8, 13] propose blockchains imple-
mented using Byzantine consensus algorithms that also relax the validity property of
the commonly defined consensus problem.

One of the closest works to ours is the one by Anceaume et al [2], which like our
work, attempts to connect the concept of distributed ledgers with distributed objects,
although they concentrate in Bitcoin. In particular, they first show that read-write regis-
ters do not capture Bitcoin’s behavior. To this end, they introduce the Distributed Ledger
Register (DLR), a register that builds on read-write registers for mimicking the behavior
of Bitcoin. In fact, they show the conditions under which the Bitcoin blockchain algo-
rithm satisfies the DLR properties. Our work, although it shares the same spirit of for-
mulating and connecting ledgers with concurrent objects (in the spirit of [22]), it differs
in many aspects. For example, our formulation does not focus on a specific blockchain
(such as Bitcoin), but aims to be more general, and beyond crypto-currencies. Hence,
for example, instead of using sequences of blocks (as in [2]) we talk about sequences
of records. Furthermore, following the concurrent object literature, we define the ledger
object on new primitives (get and append), instead on building on multi-writer, multi-
reader R/W register primitives. We pay particular attention on formulating the consis-
tency semantics of the distributed ledger object and demonstrate their versatility by
presenting implementations. Nevertheless, both works, although taking different ap-
proaches, contribute to the better understanding of the basic underlying principles of
distributed ledgers from the theoretical distributed computing point of view.

2 The Ledger Object

2.1 Concurrent Objects and the Ledger Object

An object type T specifies (i) the set of values (or states) that any objectO of type T can
take, and (ii) the set of operations that a process can use to modify or access the value
of O. An object O of type T is a concurrent object if it is a shared object accessed
by multiple processes [24]. Each operation on an object O consists of an invocation
event and a response event, that must occur in this order. A history of operations on
O, denoted by HO , is a sequence of invocation and response events, starting with an
invocation event. (The sequence order of a history reflects the real time ordering of the
events.) An operation π is complete in a historyHO , ifHO contains both the invocation
and the matching response of π, in this order. A history HO is complete if it contains
only complete operations; otherwise it is partial [24]. An operation π1 precedes an
operation π2 (or π2 succeeds π1), denoted by π1 → π2, in HO , if the response event of
π1 appears before the invocation event of π2 in HO . Two operations are concurrent if
none precedes the other.

A complete history HO is sequential if it contains no concurrent operations, i.e., it
is an alternative sequence of matching invocation and response events, starting with an
invocation and ending with a response event. A partial history is sequential, if removing

its last event (that must be an invocation) makes it a complete sequential history. A
sequential specification of an object O, describes the behavior of O when accessed
sequentially. In particular, the sequential specification of O is the set of all possible
sequential histories involving solely object O [24].

A ledger L is a concurrent object that stores a totally ordered sequence L.S of
records and supports two operations (available to any process p): (i) L.getp(), and (ii)
L.appendp(r). A record is a triple r = 〈τ, p, v〉, where τ is a unique record identifier
from a set T , p ∈ P is the identifier of the process that created record r, and v is the
data of the record drawn from an alphabet A. We will use r.p to denote the id of the
process that created record r; similarly we define r.τ and r.v. A process p invokes a
L.getp() operation3 to obtain the sequence L.S of records stored in the ledger object L,
and p invokes a L.appendp(r) operation to extend L.S with a new record r. Initially,
the sequence L.S is empty.

Definition 1. The sequential specification of a ledger L over the sequential history HL
is defined as follows. The value of the sequence L.S of the ledger is initially the empty
sequence. If at the invocation event of an operation π in HL the value of the sequence
in ledger L is L.S = V , then:

1. if π is a L.getp() operation, then the response event of π returns V , and
2. if π is a L.appendp(r) operation, then at the response event of π, the value of the

sequence in ledger L is L.S = V ‖r (where ‖ is the concatenation operator).

2.2 Implementation of Ledgers

Processes execute operations and instructions sequentially (i.e., we make the usual well-
formedess assumption where a process invokes one operation at a time). A process p
interacts with a ledger L by invoking an operation (L.getp() or L.appendp(r)), which
causes a request to be sent from p to L, and a response from L to p. The response
marks the end of the operation and carries the result of the operation.4. The result for
a get operation is a sequence of records, while the result for an append operation is
a confirmation (ACK). This interaction (from the point of view of p) is depicted in
Code 3. A possible centralized implementation of the ledger that processes requests
sequentially is presented in Code 4 (each block receive is assumed to be executed in
mutual exclusion). Figure 1(left) abstracts the interaction between the processes and the
ledger.

3 Distributed Ledger Objects

In this section we define distributed ledger objects, and some of the levels of consistency
guarantees that can be provided. These definitions are general and do not rely on the

3 We define only one operation to access the value of the ledger for simplicity. In practice, other
operations, like those to access individual records in the sequence, will also be available.

4 We make explicit the exchange of request and responses between the process and the ledger to
reveal the fact that the ledger is concurrent, i.e., accessed by several processes.

Ledger

process i process j

(Append, r)

(AppendRes, ACK) (GetRes, 〈r1,r2,…〉)

(Get)

process i process j

(c, Append, r)

(c, AppendRes, ACK) (c, GetRes, 〈r1,r2,…〉)

(c, Get)

Distributed Ledger
server server

server

Fig. 1. The interaction between processes and the ledger, where r, r1, r2, . . . are records.
Left: General abstraction; Right: Distributed ledger implemented by servers

Code 3 External Interface (Executed by a Pro-
cess p) of a Ledger Object L

1: function L.get()
2: send request (GET) to ledger L
3: wait response (GETRES, V) from L
4: return V
5: function L.append(r)
6: send request (APPEND, r) to ledger L
7: wait response (APPENDRES, res) from L
8: return res

Code 4 Ledger L (centralized)
1: Init: S ← ∅
2: receive (GET) from process p
3: send response (GETRES, S) to p

4: receive (APPEND, r) from process p
5: S ← S‖r
6: send resp (APPENDRES, ACK) to p

properties of the underlying distributed system, unless otherwise stated. In particular,
they do not make any assumption on the types of failures that may occur. Then, we
show how to implement distributed ledger objects that satisfy these consistency levels
using an atomic broadcast [9] service on an asynchronous system with crash failures.

3.1 Distributed Ledgers and Consistency

Distributed Ledgers A distributed ledger object (distributed ledger for short) is a
concurrent ledger object that is implemented in a distributed manner. In particular, the
ledger object is implemented by (and possibly replicated among) a set of (possibly
distinct and geographically dispersed) computing devices, that we refer as servers. We
refer to the processes that invoke the get() and append() operations of the distributed
ledger as clients. Figure 1(right) depicts the interaction between the clients and the
distributed ledger, implemented by servers.

In general, servers can fail. This leads to introducing mechanisms in the algorithm
that implements the distributed ledger to achieve fault tolerance, like replicating the
ledger. Additionally, the interaction of the clients with the servers will have to take into
account the faulty nature of individual servers, as we discuss later in the section.

Consistency of Distributed Ledgers Distribution and replication intend to ensure
availability and survivability of the ledger, in case a subset of the servers fails. At
the same time, they raise the challenge of maintaining consistency among the differ-
ent views that different clients get of the distributed ledger: what is the latest value
of the ledger when multiple clients may send operation requests at different servers

concurrently? Consistency semantics need to be in place to precisely describe the al-
lowed values that a get() operation may return when it is executed concurrently with
other get() or append() operations. Here, as examples, we provide the properties that
operations must satisfy in order to guarantee atomic consistency (linearizability) [15],
sequential consistency [18] and eventual consistency [11] semantics. In a similar way,
other consistency guarantees, such as session and causal consistencies could be for-
mally defined [11].

Atomicity (aka, linearizability) [4, 15] provides the illusion that the distributed
ledger is accessed sequentially respecting the real time order, even when operations
are invoked concurrently. I.e., the distributed ledger seems to be a centralized ledger
like the one implemented by Code 4. Formally5,

Definition 2. A distributed ledger L is atomic if, given any complete history HL, there
exists a permutation σ of the operations in HL such that:

1. σ follows the sequential specification of L, and
2. for every pair of operations π1, π2, if π1 → π2 in HL, then π1 appears before π2

in σ.

Sequential consistency [4, 18] is weaker than atomicity in the sense that it only
requires that operations respect the local ordering at each process, not the real time
ordering. Formally,

Definition 3. A distributed ledger L is sequentially consistent if, given any complete
history HL, there exists a permutation σ of the operations in HL such that:

1. σ follows the sequential specification of L, and
2. for every pair of operations π1, π2 invoked by a process p, if π1 → π2 in HL, then
π1 appears before π2 in σ.

Let us finally give a definition of eventually consistent distributed ledgers. Infor-
mally speaking, a distributed ledger is eventual consistent, if for every append(r) op-
eration that completes, eventually all get() operations return sequences that contain
record r, and in the same position. Formally,

Definition 4. A distributed ledger L is eventually consistent if, given any complete his-
tory HL, there exists a permutation σ of the operations in HL such that:

(a) σ follows the sequential specification of L, and
(b) for every L.append(r) ∈ HL, there exists a complete history H ′L that extends6 HL

such that, for every complete historyH ′′L that extendsH ′L, every complete operation
L.get() in H ′′L \H ′L returns a sequence that contains r.

Remark: Observe that in the above definitions we consider HL to be complete. As
argued in [24], the definitions can be extended to sequences that are not complete by
reducing the problem of determining whether a complete sequence extracted by the non

5 Our formal definitions of linearizability and sequential consistency are adapted from [4].
6 A sequence X extends a sequence Y when Y is a prefix of X .

complete one is consistent. That is, given a partial history HL, if HL can be modified
in such a way that every invocation of a non complete operation is either removed or
completed with a response event, and the resulting, complete, sequence H ′L checks
for consistency, then HL also checks for consistency. Alternatively, following [4], a
liveness assumption can be made where every invocation event has a matching response
event (and hence all histories are complete).

3.2 Distributed Ledger Implementations in a System with Crash Failures

In this section we provide implementations of distributed ledgers with different levels
of consistency in an asynchronous distributed system with crash failures, as a mean of
illustrating the generality and versatility of our ledger formulation. These implementa-
tions build on a generic deterministic atomic broadcast service [9].

Distributed Setting We consider an asynchronous message-passing distributed sys-
tem. There is an unbounded number of clients accessing the distributed ledger. There is
a set S of n servers, that emulate a ledger (c.f., Code 4) in a distributed manner. Both
clients and servers might fail by crashing. However, no more than f < n of servers
might crash7. Processes (clients and servers) interact by message passing communica-
tion over asynchronous reliable channels.

Code 5 External Interface of a Distributed Ledger
Object L Executed by a Process p

1: c← 0
2: Let L ⊆ S : |L| ≥ f + 1
3: function L.get()
4: c← c + 1
5: send request (c, GET) to the servers in L
6: wait response (c, GETRES, V) from some i ∈ L
7: return V
8: function L.append(r)
9: c← c + 1

10: send request (c, APPEND, r) to the servers in L
11: wait response (c, APPENDRES, res) from some i ∈ L
12: return res

We assume that clients are aware of
the faulty nature of servers and know
(an upper bound on) the maximum
number of faulty servers f . Hence, we
assume they use a modified version of
the interface presented in Code 3 to
deal with server unreliability. The new
interface is presented in Code 5. As can
be seen there, every operation request is
sent to a set L of at least f + 1 servers,
to guarantee that at least one correct
server receives and processes the re-
quest (if an upper bound on f is not known, then the clients contact all servers). More-
over, at least one such correct server will send a response which guarantees the ter-
mination of the operations. For formalization purposes, the first response received for
an operation will be considered as the response event of the operation. In order to dif-
ferentiate from different responses, all operations (and their requests and responses)
are uniquely numbered with counter c, so duplicated responses will be identified and
ignored (i.e., only the first one will be processed by the client).

In the remainder of the section we focus on providing the code run by the servers,
i.e., the distributed ledger emulation. The servers will take into account Code 5, and in
particular the fact that clients send the same request to multiple servers. This is impor-
tant, for instance, to make sure that the same record r is not included in the sequence of

7 The atomic broadcast service used in the algorithms may internally have more restrictive re-
quirements.

records of the ledger multiple times. As already mentioned, our algorithms will use as a
building block an atomic broadcast service. Consequently, our algorithms’ correctness
depends on the modeling assumptions of the specific atomic broadcast implementation
used. We now give the guarantees that our atomic broadcast service need to provide.

Atomic Broadcast Service The Atomic Broadcast service (aka, total order broadcast
service) [9] has two operations: ABroadcast(m) used by a server to broadcast a message
m to all servers s ∈ S, and ADeliver(m) used by the atomic broadcast service to deliver
a message m to a server. The following properties are guaranteed (adopted from [9]):

– Validity: if a correct server broadcasts a message, then it will eventually deliver it.
– Uniform Agreement: if a server delivers a message, then all correct servers will

eventually deliver that message.
– Uniform Integrity: a message is delivered by each server at most once, and only if

it was previously broadcast.
– Uniform Total Order: the messages are totally ordered; that is, if any server delivers

message m before message m′, then every server that delivers them, must do it in
that order.

Eventual Consistency and relation with Consensus We now use the Atomic Broad-
cast service to implement distributed ledgers in our set of servers S guaranteeing differ-
ent consistency semantics. We start by showing that the algorithm presented in Code 6
implements an eventually consistent ledger, as specified in Definition 4.

Code 6 Eventually Consistent Distributed
Ledger L; Code for Server i ∈ S

1: Init: Si ← ∅
2: receive (c, GET) from process p
3: send response (c, GETRES, Si) to p

4: receive (c, APPEND, r) from process p
5: ABroadcast(r)
6: send response (c, APPENDRES, ACK) to p

7: upon (ADeliver(r)) do
8: if r /∈ Si then Si ← Si‖r

Code 7 Consensus Algorithm Using an Even-
tually Consistent Ledger L

1: function propose(v)
2: L.append(v)
3: Vi ← L.get()
4: while Vi = ∅ do
5: Vi ← L.get()
6: decide the first value in Vi

Lemma 1. The combination of the algorithms presented in Code 5 and Code 6 imple-
ments an eventually consistent distributed ledger.

Proof Sketch. The lemma follows from the properties of atomic broadcast. Considering
any complete history HL, a permutation σ that follows the sequential specification can
be constructed by ordering: (i) an append(r) operation according to the order the atomic
broadcast service delivers the first copy of r, and (ii) a get operation that returns V
immediately after the append(r) operation, such that r is the last record in V . Moreover,
by Code 5, when an append(r) operation is invoked, at least one correct server receives
and atomically broadcasts r. By uniform agreement and uniform total order properties,
all the correct servers receive the first copy of r in the same order, and hence all add r
in the same position in their local sequences. Therefore, eventually all get operations
will return a sequence that will contain r. �

Let us now explore the power of any eventually consistent distributed ledger. It is
known that atomic broadcast is equivalent to consensus in a crash-prone system like the
one considered here [7]. Then, the algorithm presented in Code 6 can be implemented as
soon as a consensus object is available. What we show now is that a distributed ledger
that provides the eventual consistency can be used to solve the consensus problem,
defined as follows.

Consensus Problem: Consider a system with at least one non-faulty process and in
which each process pi proposes a value vi from the set V (calling a propose(vi) func-
tion), and then decides a value oi ∈ V , called the decision. Any decision is irreversible,
and the following conditions are satisfied: (i) Agreement: All decision values are identi-
cal. (ii) Validity: If all calls to the propose function that occur contain the same value v,
then v is the only possible decision value. and (iii) Termination: In any fair execution
every non-faulty process decides a value.

Lemma 2. The algorithm presented in Code 7 solves the consensus problem if the
ledger L guarantees eventual consistency.

Proof Sketch. A correct process p that invokes proposep(v) will complete its
L.appendp(v) operation. By eventual consistency, some server will eventually deliver
v and the L.getp() will return a non-empty sequence. Condition (a) of Definition 4
guarantees that, given any two sequences returned by L.get() operations, one is a
prefix of the other, hence guaranteeing agreement. Finally, from the same condition,
the sequences returned by L.get() operations can only contain values appended with
L.appendp(v), hence guranteeing validity. �

Combining the above arguments and lemmas we have the following theorem.

Theorem 1. Consensus and eventually consistent distributed ledgers are equivalent in
a crash-prone distributed system.

Atomic Consistency Observe that the eventual consistent implementation does not
guarantee that record r has been added to the ledger before a response APPENDRES is
received by the client p issuing the append(r). This may lead to situations in which a
client may complete an append() operation, and a succeeding get() may not contain
the appended record. This behavior is also apparent in Definition 4, that allows any
get() operation, that is invoked and completed inH ′L, to return a sequence that does not
include a record r which was appended by an append(r) operation that appears in HL.

An atomic distributed ledger avoids this problem and requires that a record r ap-
pended by an append(r) operation, is received by any succeeding get() operation, even
if the two operations were invoked at different processes. Code 8, describes the algo-
rithm at the servers in order to implement an atomic consistent distributed ledger. The
algorithm of each client is depicted from Code 5. Briefly, when a server receives a get
or an append request, it adds the request in a pending set and atomically broadcasts the
request to all other servers. When an append or get message is delivered, then the server
replies to the requesting process (if it did not reply yet).

Theorem 2. The combination of the algorithms presented in Codes 8 and 5 implements
an atomic distributed ledger.

Code 8 Atomic Distributed Ledger; Code for
Server i

1: Init: Si ← ∅; pendingi ← ∅; g pendingi ← ∅
2: receive (c, GET) from process p
3: ABroadcast(get, p, c)
4: add (p, c) to g pendingi

5: receive (c, APPEND, r) from process p
6: ABroadcast(append, r)
7: add (c, r) to pendingi

8: upon (ADeliver(append, r)) do
9: if r /∈ Si then

10: Si ← Si‖r
11: if ∃(c, r) ∈ pendingi then
12: send response (c, APPENDRES, ACK) to r.p
13: remove (c, r) from pendingi

14: upon (ADeliver(get, p, c)) do
15: if (p, c) ∈ g pendingi then
16: send response (c, GETRES, Si) to p
17: remove (p, c) from g pendingi

Proof. To show that atomic consistency
is preserved, we need to prove that our al-
gorithm satisfies the properties presented
in Definition 2. The underlying atomic
broadcast defines the order of events
when operations are concurrent. It re-
mains to show that operations that are
separate in time can be ordered with re-
spect to their real time ordering. The fol-
lowing properties capture the necessary
conditions that must be satisfied by non-
concurrent operations that appear in a
history HL:

A1 if appendp1
(r1) → appendp2

(r2) from processes p1 and p2, then r1 must appear
before r2 in any sequence returned by the ledger

A2 if appendp1
(r1) → getp2

(), then r1 appears in the sequence returned by getp2
()

A3 if π1 and π2 are two get() operations from p1 and p2, s.t. π1 → π2, that return
sequences S1 and S2 respectively, then S1 must be a prefix of S2

A4 if getp1
() → appendp2

(r2), then p1 returns a sequence S1 that does not contain r2

Property, A1 is preserved from the fact that record r1 is atomically broadcasted and
delivered before r2 is broadcasted among the servers. In particular, let p1 be the process
that invokes π1 = appendp1

(r1), and p2 the process that invokes π2 = appendp2
(r2)

(p1 and p2 may be the same process). Since π1 → π2, then p1 receives a response to
the π1 operation, before p2 invokes the π2 operation. Let server s be the first to respond
to p1 for π1. Server s sends a response only if the procedure ADeliver(append, r1)
occurs at s. This means that the atomic broadcast service delivers (append, r1) to s.
Since π1 → π2 then no server received the append request for π2, and thus r2 was
not broadcasted before the ADeliver(append, r1) at s. Hence, by the Uniform Total
Order of the atomic broadcast, every server delivers (append, r1) before delivering
(append, r2). Thus, the ADeliver(append, r2) occurs in any server s′ after the appear-
ance of ADeliver(append, r1) at s′. Therefore, if s′ is the first server to reply to p2 for
π2, it must be the case that s′ added r1 in his ledger sequence before adding r2.

In similar manner we can show that property A2 is also satisfied. In particular let
processes p1 and p2 (not necessarily different), invoke operations π1 = appendp1

(r1)
and π2 = getp2

(), s.t. π1 → π2. Since π1 completes before π2 is invoked then there
exists some server s in which ADeliver(append, r1) occurs before responding to p1.
Also, since the GET request from p2 is sent, after π1 has completed, then it follows that
is sent after ADeliver(append, r1) occured in s. Therefore, (get, p2, c) is broadcasted
after ADeliver(append, r1) as well. Hence by Uniform Total Order atomic broadcast,
every server delivers (append, r1) before delivering (get, p2, c). So if s′ is the first
server to reply to p2, it must be the case that s′ received (append, r1) before receiving
(get, p2, c) and hence replies with an Si to p2 that contains r1.

The proof of property A3 is slightly different. Let π1 = getp1() and π2 = getp2(),
s.t. π1 → π2. Since π1 completes before π2 is invoked then the (get, p1, c1) must be

Code 9 Sequentially Consistent Distributed
Ledger; Code for Server i ∈ S

1: Init: Si ← ∅; pendingi ← ∅; g pendingi ← ∅
2: receive (c, GET, `) from process p
3: if |Si| ≥ ` then
4: send response (c, GETRES, Si) to p
5: else
6: add (c, p, `) to g pendingi

7: receive (c, APPEND, r) from process p
8: ABroadcast(c, r)
9: add (c, r) to pendingi

10: upon (ADeliver(c, r)) do
11: if r /∈ Si then Si ← Si‖r
12: if (c, r) ∈ pendingi then
13: send resp. (c, APPENDRES, ACK, |Si|) to r.p
14: remove (c, r) from pendingi

15: if ∃(c′, p, `) ∈ g pendingi : |Si| ≥ ` then
16: send response (c′, GETRES, Si) to p
17: remove (c′, p, `) from g pendingi

Code 10 External Interface for Sequential
Consistency Executed by a Process p

1: c← 0; `last ← 0
2: Let L ⊆ S : |L| ≥ f + 1
3: function L.get()
4: c← c + 1
5: send request (c, GET, `last) to the servers in L
6: wait response (c, GETRES, V) from some i ∈ L
7: `last ← |V |
8: return V
9: function L.append(r)

10: c← c + 1
11: send request (c, APPEND, r) to the servers in L
12: wait response (c, APPENDRES, res, pos) from

some i ∈ L
13: `last ← pos
14: return res

delivered to at least a server s that responds to p1, before the invocation of π2, and
thus the broadcast of (get, p2, c2). By Uniform Total Order again, all servers deliver
(get, p1, c1) before delivering (get, p2, c2). Let S1 be the sequence sent by s to p1.
Notice that S1 contains all the records r such that (append, r) delivered to s before the
delivery of (get, p1, c1) to s. Thus, for every r in S1, ADeliver(append, r) occurs in s
before ADeliver(get, p1, c). Let s′ be the first server that responds for π2. By Uniform
Agreement, since s′ has not crashed before responding to p2, then every r in S1 that
was delivered in s, was also delivered in s′. Also, by Uniform Total Order, it must be
the case that all records in S1 will be delivered to s′ in the same order that have been
delivered to s. Furthermore all the records will be delivered to s′ before the delivery of
(get, p1, c1). Thus, all records are delivered at server s′ before (get, p2, c2) as well, and
hence the sequence S2 sent by s′ to p2 is a suffix of S1.

Finally, if getp1
() → appendp2

(r2) as in property A4, then trivially p1 cannot return
r2, since it has not yet been broadcasted (Uniform Integrity of the atomic broadcast). �

Sequential Consistency An atomic distributed ledger also satisfies sequential consis-
tency. As sequential consistency is weaker than atomic consistency, one may wonder
whether a sequentially consistent ledger can be implemented in a simpler way.

We propose here an implementation, depicted in Code 9, that avoids the atomic
broadcast of the get requests. Instead, it applies some changes to the client code to
achieve sequential consistency, as presented in Code 10. This implementation provides
both sequential (cf. Definition 3) and eventual consistency (cf. Definition 4).

Theorem 3. The combination of the algorithms presented in Code 9 and Code 10 im-
plements a sequentially consistent distributed ledger.

Proof Sketch. Due to lack of space the detailed proof can be found in [3]. In brief, a
permutation σ (as required in Definition 3) can be constructed by placing the concur-
rent operations in an order that satisfies the sequential specification of the ledger. The
ordering of operations at each process is captured by the following properties:
S1 if appendp(r1) → appendp(r2) then r1 must appear before r2 in the ledger.

S2 if getp() → appendp(r1), then getp returns a sequence Vp that does not contain r1
S3 if appendp(r1) → getp(), then getp returns a sequence Vp that contains r1
S4 if π1 and π2 are two getp() operations, such that π1 → π2, and that return sequences

V1 and V2 respectively, then V1 must be a prefix of V2.

We can show that Codes 9 and 10 satisfy the above properties, following claims
similar to the ones we used in the case of an atomic distributed ledger. �

4 Validated Ledgers

Code 11 Validated Ledger VL (centralized)
1: Init: S ← ∅
2: receive (GET) from process p
3: send response (GETRES, S) to p

4: receive (APPEND, r) from process p
5: if Valid(S‖r) then
6: S ← S‖r
7: send response (APPENDRES, ACK) to p
8: else send response (APPENDRES, NACK) to p

A validated ledger VL is a ledger in
which specific semantics are imposed on
the contents of the records stored in the
ledger. For instance, if the records are
(bitcoin-like) financial transactions, the
semantics should, for example, prevent
double spending, or apply other transac-
tion validation used as part of the Bitcoin
protocol [20]. The ledger preserves the semantics with a validity check in the form of
a Boolean function Valid() that takes as an input a sequence of records S and returns
true if and only if the semantics are preserved. In a validated ledger the result of an
appendp(r) operation may be NACK if the validity check fails. Code 11 presents a cen-
tralized implementation of a validated ledger VL.

The sequential specification of a validated ledger must take into account the possi-
bility that an append returns NACK. To this respect, property (2) of Definition 1 must be
revised as follows:

Definition 5. The sequential specification of a validated ledger VL over the sequential
historyHVL is defined as follows. The value of the sequence VL.S is initially the empty
sequence. If at the invocation event of an operation π in HVL the value of the sequence
in ledger VL is VL.S = V , then:

1. if π is a VL.getp() operation, then the response event of π returns V ,
2(a). if π is an VL.appendp(r) operation that returns ACK, then Valid(V ‖r) =
true and at the response event of π, the value of the sequence in ledger VL is
VL.S = V ‖r, and
2(b). if π is a VL.appendp(r) operation that returns NACK, then Valid(V ‖r) =
false and at the response event of π, the value of the sequence in ledger VL is
VL.S = V .

Based on this revised notion of sequential specification, one can define the eventual,
sequential and atomic consistent validated distributed ledger and design implementa-
tions in a similar manner as in Section 3.

It is interesting to observe that a validated ledger VL can be implemented with
a regular ledger L if we are willing to waste some resources and accuracy (e.g., not
rejecting invalid records). In particular, processes can use a ledger L to store all the
records appended, even if they make the validity to be broken. Then, when the function

get() is invoked, the records that make the validity to be violated are removed, and
only the valid records are returned. This algorithm does not check validity in a π =
append(r) operation which returns ACK, because it is not possible to know when π is
processed the final position r will take in the ledger (and hence to check its validity).

5 Conclusions

In this paper we formally define the concept of a distributed ledger object with and with-
out validation. We have focused on the definition of the basic operational properties
that a distributed ledger must satisfy, and their consistency semantics, independently
of the underlying system characteristics and the failure model. Finally, we have ex-
plored implementations of fault-tolerant distributed ledger objects with different types
of consistency in crash-prone systems augmented with an atomic broadcast service.
Comparing the distributed ledger object and its consistency models with popular ex-
isting blockchain implementations, like Bitcoin or Ethereum, we must note that these
do not satisfy even eventual consistency. Observe that their blockchain may (temporar-
ily) fork, and hence two clients may see (with an operation analogous to our get) two
conflicting sequences, in which neither one is a prefix of the other. This violates the se-
quential specification of the ledger. The main issue with these blockchains is that they
use probabilistic consensus, with a recovery mechanism when it fails.

As mentioned, this paper is only an attempt to formally address the many questions
that were posed in the introduction. In that sense we have only scratched the surface.
There is a large list of pending issues that can be explored. For instance, we believe
that the implementations we have can be adapted to deal with Byzantine failures if the
appropriate atomic broadcast service is used. However, dealing with Byzantine failures
will require to use cryptographic tools. Cryptography was not needed in the imple-
mentations presented in this paper because we assumed benign crash failures. Another
extension worth exploring is how to deal with highly dynamic sets of possibly anony-
mous servers in order to implement distributed ledgers, to get closer to the Bitcoin-like
ecosystem. In a more ambitious but possibly related tone, we would like to fully explore
the properties of validated ledgers and their relation with cryptocurrencies.

References

1. I. Abraham and D. Malkhi. The blockchain consensus layer and BFT. Bulletin of EATCS,
3(123), 2017.

2. E. Anceaume, R. Ludinard, M. Potop-Butucaru, and F. Tronel. Bitcoin a distributed shared
register. In Stabilization, Safety, and Security of Distributed Systems - 19th International
Symposium, SSS 2017, Boston, MA, USA, 2017, pages 456–468, 2017.

3. A. Fernández Anta, C. Georgiou, K. M. Konwar, and N. C. Nicolaou. Formalizing and
implementing distributed ledger objects. CoRR, abs/1802.07817, 2018.

4. H. Attiya and J. L. Welch. Sequential consistency versus linearizability. ACM Trans. Comput.
Syst., 12(2):91–122, 1994.

5. M. Castro and B. Liskov. Proactive recovery in a byzantine-fault-tolerant system. In Proceed-
ings of the 4th conference on Symposium on Operating System Design & Implementation-
Volume 4, page 19. USENIX Association, 2000.

6. M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

7. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. J.
ACM, 43(2):225–267, 1996.

8. T. Crain, V. Gramoli, M. Larrea, and M. Raynal. (leader/randomization/signature)-free
byzantine consensus for consortium blockchains. CoRR, abs/1702.03068, 2017.

9. X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms: Tax-
onomy and survey. ACM Comput. Surv., 36(4):372–421, 2004.

10. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II, pages 281–310, 2015.

11. M. Gentz and J. Dude. Tunable data consistency levels in Microsoft Azure Cosmos DB, June
2017.

12. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 51–68. ACM, 2017.

13. V. Gramoli. From blockchain consensus back to byzantine consensus. Future Generation
Computer Systems, 2017. In press.

14. M. Herlihy. Blockchains and the future of distributed computing. In E. M. Schiller and A. A.
Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, page 155. ACM, 2017.

15. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

16. T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado. Blockchain distributed ledger technologies
for biomedical and health care applications. Journal of the American Medical Informatics
Association, 24(6):1211–1220, 2017.

17. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, 21(7):558–565, 1978.

18. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, C-28(9):690–691, 1979.

19. L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–
169, 1998.

20. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
https://bitcoin.org/en/bitcoin-paper (accessed April 3rd, 2018).

21. Namecoin. https://www.namecoin.org (accessed April 3rd, 2018).
22. N. Nicolaou, A. Fernández Anta, and C. Georgiou. Cover-ability: Consistent versioning

in asynchronous, fail-prone, message-passing environments. In Network Computing and
Applications (NCA), 2016 IEEE 15th International Symposium on, pages 224–231, 2016.

23. N. Popper and S. Lohr. Blockchain: A better way to track pork chops, bonds, bad peanut
butter? New York Times, Mar. 2017.

24. M. Raynal. Concurrent Programming: Algorithms, Principles, and Foundations. Springer,
2013.

25. F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

26. G. Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014.

