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ABSTRACT
Precise Time-of-Arrival (TOA) estimations of aircraft and drone
signals are important for a wide set of applications including air-
craft/drone tracking, air traffic data verification, or self-localization.
Our focus in this work is on TOA estimation methods that can
run on low-cost software-defined radio (SDR) receivers, as widely
deployed in Mode S / ADS-B crowdsourced sensor networks such as
the OpenSky Network. We evaluate experimentally classical TOA
estimation methods which are based on a cross-correlation with a
reconstructed message template and find that these methods are
not optimal for such signals. We propose two alternative methods
that provide superior results for real-world Mode S / ADS-B signals
captured with low-cost SDR receivers. The best method achieves a
standard deviation error of 1.5 ns.

1 INTRODUCTION
Aircraft and unmanned aerial vehicles continuously transmit wire-
less signals for air traffic control and collision avoidance purposes.
These signals are either sent as responses to interrogations by sec-
ondary surveillance radars (SSR) or automatically on a periodic
basis (ADS-B). Both types of signals are transmitted over the so-
called Mode S data link [12] on the 1090 MHz radio frequency.

Over the last few years, sensor network projects have emerged
which collect those signals using a crowd of low-cost software-
defined radio (SDR) receivers such as e.g. theOpenSkyNetwork [20],
Flightaware [5], Flightradar24 [6] and many others. These sensor
networks can leverage the time-of-arrival (TOA) of Mode S sig-
nals for various kinds of applications, including aircraft localiza-
tion [20, 22], air traffic data verification [13, 16, 17, 19, 21], and
self-localization [15]. In those applications, a set of cooperating
receivers measure locally the TOA of the arriving signals and then
send these data to a central computation server. By joint process-
ing the TOA of the same signal arriving at different receivers, the
central server is able to estimate the location of the transmitter, the
location of the receivers, or the exact time when the signal was
transmitted.

The accuracy of these applications heavily depends on the preci-
sion of the TOA estimation, and in order to estimate positions up to
a few meters it is necessary to estimate the TOA with nanosecond
precision. The goal of this work is to provide a method for the
TOA estimation of Mode S signals that delivers nanosecond-level
precision even with low-cost SDR receivers, such as the widespread

RTL-SDR dongle [3]. We show that existing TOA estimation ap-
proaches based on a cross-correlation with a reconstructed signal
template are sub-optimal in the particular context of Mode S signals.
In fact, the loose tolerance margins allowed by the specifications on
the shape and position of each individual symbol within the packet
(up to ± 50 ns) adds uncertainty to the reconstruction of the whole
packet waveform at the receiver.

We propose two alternative methods that improve the precision
and at the same time reduce the computational load. We test differ-
ent variants of TOA estimation on real-world signal traces captured
with RTL-SDR, which is currently the cheapest SDR device on the
market and widely used by crowdsourced sensor networks. Our
results show that the best proposed method delivers TOA estimates
with a standard deviation error of 1.5 ns. We further identify the
limited dynamic range of the RTL-SDR device (less than 50 dB with
8-bit analog-to-digital converter (ADC) and fixed automatic-gain
controller (AGC)) as the main performance bottleneck, and show
that sub-nanosecond precision is achievable for signals that are not
clipped due the limited dynamic range of the device.

2 BACKGROUND
This section provides background on aircraft signals which we
rely on to estimate the TOA, and the limitations of classical TOA
estimation methods.

2.1 Mode S signal format
Hereafter we briefly review the physical-layer format of SSR Mode
S [18] reply and ADS-B messages transmitted by aircrafts on the
1090 MHz channel. Both packet formats consist of a preamble of
8 µs plus a payload of 112 or 56 bits (only for other SSR Mode S
replies) sent at 1 Mbps rate, for a total duration of 120 µs or 64
µs , respectively. The information bits are modulated with a simple
Binary Pulse Position Modulation (BPPM) scheme as illustrated in
Fig. 1: the symbol period of 1 µs is divided into two “chips" of 0.5 µs,
and the high-to-low and low-to-high transitions encode bits “1" and
“0", respectively. It is clear from Fig. 1 that the BPPM modulation
produces two types of pulses of different duration, denoted hereafter
as “Type-I" and “Type-II". Type-I pulses have a nominal duration of
one chip period and are produced by the bit sequences “00", “11"
and “10". The preamble consists of four Type-I pulses. On the other
hand, Type-II pulses have a nominal duration of two chip periods
and are produced exclusively by the “01" sequence. On average, we
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Figure 1: Mode S packet structure with a binary PPM modu-
lation.

expect approximately 112/2 = 56 Type-I and 112/4 = 28 Type-II
pulses for a payload of 112 bits.

The real-valued baseband signal is then modulated on the 1090
MHz carrier frequency and transmitted over the air. On the receiver
side, the decoding process relies exclusively on the signal amplitude,
since in BPPM the signal phase carries no information.

2.2 Limitation of standard TOA methods
The standard “course book" approach to TOA estimation in the
Additive White Gaussian Noise (AWGN) channel is a correlation
filter [14]: the received signal is cross-correlated with a known
template corresponding to the source signal, and the point in time
maximizing the cross-correlation module is taken as TOA estimate.

The correlation method relies on the assumption that the source
signal can be reconstructed very precisely at the receiver, based on
the signal specifications and knowledge of the payload bits pm .
Under this assumption, the correlation method represents the Max-
imum Likelihood Estimator (MLE) [14]. However, this assumption
is problematic in the particular case of real-world Mode S signals.
In fact, the standard specifications tolerate up to ±50 ns jitter in the
position of each individual pulse within the packet: such high tol-
erance value is practically negligible for the decoding process, but
not for the task of determining the TOA with nanosecond precision.
As to the shape of each pulse, tolerance values of 50 ns are allowed
for the pulse duration and rise time and up to 150 ns for the decay
time, while pulse amplitude may vary up to 2 dB (approximately
60%). Such loose tolerance margins introduce uncertainty in the
prediction of the shape and position of the pulses in the source
signal. Considering that Mode S signals are typically received with
high SNR, such an uncertainty might well prevail over the effect of
additive noise. Consequently, the correlation-based approach with
a known packet template is no longer guaranteed to be optimal,
motivating the quest for alternative, more precise methods.
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Figure 2: Block diagram of improved receiver with high-
precision TOA estimation.

3 OUR TOA ESTIMATION METHODS
In this section we describe the general approach to TOA estimation
based on the decoded payload and received signal samples, and
then present the different TOA estimation algorithms that were
tested.

3.1 Signal acquisition architecture
In the software domain, the high-precision TOA estimation process
can be seen as an additional function that is optionally called within
the receiver and remains independent from the main decoding pro-
cess. As such, it can be implemented on top of any legacy receiver,
including but not limited to the widely adopted open-source tool
dump1090 [1]. The overall block diagram of the proposed scheme
is exemplified in Fig. 2. The legacy receiver takes as input a stream
of complex in-phase and quadrature (IQ) samples collected at sam-
pling rate fs (for RTL-SDR hardware fs = 2.4 MHz). The legacy
receiver seeks to detect and decode the incoming packet and, if
successful, provides as output the decoded bit sequence pm along
with the indication of the leading IQ sample of the detected packet.

Denote by sm the sequence of complex IQ samples corresponding
to the whole packet. The sequence includes approximately 300
samples since we also pick a few samples immediately before and
after the packet in order to mitigate edge effects. The sample vector
sm and the decoded bit vector pm represent the input to our TOA
estimation block.

3.2 Proposed methods: CorrPulse and
PeakPulse

Hereafter we describe two novel TOA estimation algorithms specif-
ically developed for Mode S signals. For a generic packet m we
shall denote by Km the total number of pulses in the whole packet
(preamble and payload). The input vector of complex samples sm is
preliminarily upsampled by a factor N and transformed into vector
s ′m (for a review of upsampling process see e.g. [10]). To illustrate,
Fig. 3 plots an excerpt of the amplitude of both vectors, namely
|sm | (top plot) and

��s ′m �� (bottom plot), for a generic packet found in
a real-world trace.

The key aspect of the proposed algorithms is that the actual
temporal position τ̂k of the generic kth pulse within the packet
is estimated independently from other pulses, with no need to re-
construct a template for the whole packet. For each pulse k ≥ 2,
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Figure 3: Example of received signal amplitude correspond-
ing to the preamble and initial payload of a real ADS-B
packet. Original samples at fs = 2.4 MHz (top, red circles)
and corresponding upsampled version (bottom, blue line).

we compute the individual shift ∆τk
def
= τ̂k − τk , i.e., the difference

between the estimated and nominal pulse position relative to the
(estimated) position of the first pulse. Finally, the pulse shifts are
averaged in order to obtain the final TOA estimate:

t̂ = τ̂1 +
1

Km − 1

KmÕ
k=2

∆τk (1)

The two proposed variants differ in the way individual pulse
position estimates are obtained, and which type(s) of pulses are con-
sidered. In the first variant, labeled CorrPulse, each pulse position is
determined through pulse-level cross-correlation of the upsampled
vector s ′m with the corresponding nominal pulse shape. Both Type-I
and Type-II pulses are considered in the final averaging.

In the second variant, labeled PeakPulse, individual pulse posi-
tions are determined by simply picking the local maximum point
value within the pulse interval, with no cross-correlation operation.
In this variant only Type-I pulses are considered, while Type-II
pulses are ignored. This is motivated by the fact that Type-II pulses
have lower curvature, hence their local peaks cannot be identified
as reliably as for Type-I pulses.

4 EVALUATION METHODOLOGY
This section describes how we evaluate our new methods. First, we
introduce the other competing methods taken as reference for the
comparison. Then, we present the testbed setup with commercial
low-cost hardware. Finally, we provide details on the procedure
adopted to empirically assess the precision of the TOAmeasurement
methods in the given setup.

4.1 Other methods for comparison
4.1.1 Correlation with whole-packet template: CorrPacket. This

is the canonical cross-correlation method with a known signal
template. For every packetm, the whole packet template is recon-
structed from the decoded bits pm and then cross-correlated with
the amplitude of the incoming signal. Here also, upsampling by a
factor N is adopted to achieve sub-sample precision. Within the
template, the kth pulse is positioned at the nominal time τk . As to
the pulse shapes, we have tested two different variants: “Rectan-
gular" (R), and “Smoothed" (S). The two versions will be denoted
by CorrPacket/R and CorrPacket/S. The rectangular pulses have a
nominal duration of 0.5 µs and 1 µs for Type-I and Type-II pulses,
respectively, and zero rise/decay times. The rectangular pulse mask
is represented exclusively by “0" and “1" values, hence multiplica-
tions with another vector reduce to element selection, which saves
on computation load. The “Smoothed" shape corresponds to the
output of a low-pass filter with passband of 2.4 MHz—matched to
the bandwidth of the RTL-SDR receiver—when the input signal is a
nominal Type-I/Type-II pulse with the minimum decay/rise time
of 50 ns as per specifications [11].

4.1.2 Existing dump1090 based implementations. We also evalu-
ate the precision of the timestamp reported by the mutability fork
of the open-source tool dump1090 [1]. Furthermore, we test on our
traces also the method adopted by Eichelberger et al. in a recent
ACM SenSys’17 paper [15] which is also based on dump1090. Code
inspection revealed that this method is based on a cross-correlation
(implemented in frequency domain) with a partial packet template
consisting of the preamble plus one quarter of the payload, with
rectangular pulses and upsampling factor N = 25.

4.2 Testbed setup
The experimental setup consists of two identical sensors connected
to a single antenna through a power splitter and cables of identical
length. The sensors are located on the roof of a building as Figure 4
shows. Every sensor consists of one RTL-SDRv3 “Silver" model [4]
attached to a Raspberry Pi-3 [2]. The AGC gain is set to a fixed
value, manually tuned to maximize the packet decoding rate. The
sampling rate was set to fs = 2.4 MHz, the maximum value that our
setup is able to acquire with sample losses. Every I and Q sample is
represented with 8 bit. The full stream of IQ samples are recorded
one and processed multiple times offline. Our results are based on
a sample trace of 5 minutes collected in Thun (Switzerland) on
02-Aug-2017 at time 09:41. The number of ADS-B packets that are
correctly decoded at both sensors by the dump1090 open-source tool
[1] amount to 26445 from 59 different aircraft.

4.3 Evaluation Metrics
In this section, we briefly describe the methodology adopted to
assess the precision of the different TOA estimation methods. The
problem is not trivial, since our receivers are not synchronized and
the “true" TOA is unknown. Therefore, we developed an evaluation
method which allows us to quantify the TOA precision without a
ground truth.

Denote by tm,i the true absolute arrival time of packet m to
receiver i and by t̂m,i the corresponding measured TOA (by the
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Figure 4: Experimental setup. Two identical receivers con-
nected to the same antenna via a splitter are collectingMode
S messages sent by aircraft.

method under test). In general, the measured value t̂m,i is affected
by two distinct sources of error, namely clock error and measure-
ment noise:

t̂m,i = tm,i + ξi (t)|t=tm,i + ϵm,i . (2)
The term ξi (t) models the clock error between the receiver clock
and the absolute time reference, and can be modeled by a slowly-
varying function of time. Its magnitude depends on the hardware
characteristics of the device, and specifically on the stability of the
local oscillator.

The term ϵm,i represents the measurement noise in the TOA
estimation process and is modeled by a random variable with zero
mean and variance σ 2

TOA. The precision of the TOA estimate, defined
as the reciprocal of the noise variance, is independent of the clock
error. The goal of the present study is to reduce σ 2

TOA. The prob-
lem of counteracting the clock error component remains outside
the scope of the present contribution. Here it suffices to mention
that the clock error can be mitigated by adopting receivers with
GPS Disciplined Oscillators (GPSDO), or it can be estimated and
compensated in post-processing [7–9].

Hereafter we illustrate the methodology to experimentally quan-
tify the empirical TOA standard deviation σ̂TOA notwithstanding
the presence of a non-zero clock error component. First, we need
to get rid of the unknown true absolute arrival time tm,i in Equa-
tion (2). Since we use two identical receivers attached to the same
antenna, we can set tm,1 = tm,2 = tm and subtract the TOA mea-
surements at the two sensors to obtain the corresponding time
difference:

∆̂tm
def
= t̂m,2 − t̂m,1 = ∆ξ (tm ) + ∆ϵm (3)

wherein ∆ξ (t) def
= ξ2(t) − ξ1(t) denotes the compound clock error,

and ∆ϵm
def
= ϵm,2 − ϵm,1 the compound measurement error with

variance σ 2
∆ϵ = 2σ 2

TOA. At short time-scales, within the coherence
time of the process ∆ξ (t), the clock error represents a systematic
error, i.e. a bias term that can be estimated and removed in order to

(a) Low upsampling factor

(b) High upsampling factor

Figure 5: ECDF of ∆ϵ residuals.

estimate the error variance σ 2
∆ϵ . We do so by modeling the slowly-

varying function ∆ξi (t) by a polynomial whose coefficients are
estimated by standard order-recursive Least Squares (refer to [14,
Chapter 8] for details). After removing the estimated clock error
component, we obtain a set of residuals {∆ϵ}. Their Mean Square
Error (MSE) represents an empirical estimate of twice the TOA
varianceMSE∆ϵ = 2 · σ 2

TOA. Accordingly, their Root Mean Square
Error (RMSE) provides a direct empirical estimate of the TOA error
standard deviation, formally:

σ̂TOA =
1√
2
RMSE∆ϵ ≈ 0.7 · RMSE∆ϵ .

5 NUMERICAL RESULTS
We now present the results on the precision of the different TOA
estimation methods as evaluated in our testbed.
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Figure 6: TOA standard dev. error vs. upsampling factor N

5.1 Error distribution
In Fig. 5 we plot the Empirical Cumulative Distribution Function
(ECDF) of the residuals ∆ϵ ’s obtained with different TOA estimation
methods for all the packets in the test trace. The corresponding
values of the TOA error standard deviation σ̂TOA are reported in
the leftmost column of Table 1.

For those applications where the computation load is of con-
cern, it is relevant to investigate the performance of the different
methods with moderate value of the upsampling factor (N = 25).
For CorrPacket and CorrPulse, we consider the rectangular pulse
shape with binary 0/1 values, due to lower computation load. Refer-
ring to Fig. 5(a), we observe that the proposed PeakPulse algorithm
achieves a RMSE∆ϵ = 3.15 ns, less than half the value of the canoni-
cal CorrPacket/R method. It is remarkable that such good result was
obtained with no cross-correlation operation. Fig. 6 shows σ̂TOA
for different values of the upsampling factor N . We observe that
the precision of the proposed methods PeakPulse and CorrPulse/R
improves faster than CorrPacket/R with increasing N . These results
indicate that PeakPulse should be preferred when computation load
is at premium.

Next we consider applications that enjoy abundant computation
power, for which the main goal is to maximize precision and compu-
tation load is not of concern. For these, it is convenient to consider
higher upsampling factors (N = 83 in our case) and, for the cross-
correlation methods, the more elaborated “Smoothed" pulse shape.
The latter matches more closely the pulse shape passed through
the RTL-SDR front-end, leading to slightly higher precision than
the simpler “Rectangular" shape, as can be verified from Table 1.
The ECDF of the residuals ∆ϵ’s for these methods are plotted in
Fig. 5(b). It can be seen that the proposed CorrPulse/S method is
more precise than the classical CorrPacket/S method, and achieves
RMSE∆ϵ = 2.16 ns corresponding to σ̂TOA = 1.51 ns.

5.2 Error vs. signal strength
In the following, we investigate the impact of signal strength on
the TOA error obtained with the most precise method, namely Cor-
rPulse/S withN = 83. For a generic packetm and sensor i , we denote
by γm,i the average of the squared pulse height over all pulses — an
indicator of the arriving packet strength. Furthermore, we denote
by βm,i the number of pulses that are clipped in the receiver due to
one or more of the corresponding IQ samples saturating the ADC.

estimation method σ̂TOA [nanoseconds]
all packets L M H

legacy dump1090 45.20 44.94 45.19 45.43
SenSys’17, N = 25 5.90 6.11 5.88 5.78

CorrPacket/R, N = 25 4.98 5.48 4.85 4.94
CorrPacket/R, N = 83 2.14 3.04 1.78 2.35
CorrPacket/S, N = 83 2.07 3.00 1.68 2.275
CorrPulse/R, N = 25 1.89 2.75 1.56 1.86
CorrPulse/R, N = 83 1.63 2.72 1.04 1.77
CorrPulse/S, N = 83 1.51 2.60 0.79 1.77
PeakPulse, N = 25 2.20 3.36 1.70 2.23
PeakPulse, N = 83 2.12 3.44 1.62 2.17

Table 1: Empirical estimates of TOA error standard devia-
tion σ̂TOA.

Figure 7: Absolute error |∆ϵm | vs. packet strength γm .

In Fig. 7, we plot for each individual packetm the absolute value of
the residual error |∆ϵm | obtained with CorrPulse/S (N = 83) against
the mean signal strength between the two sensors γm

def
=

γm,1+γm,2
2 .

Each packet is classified into one of three classes: packets with
γm ≤ 0.04 are labeled by “L", packets with mini=1,2 βm,i ≥ 10
are labeled with “H", and all remaining packets are labeled with
“M". The three classes are marked respectively with black, red and
blue markers in Fig. 7. The estimated TOA error standard deviation
obtained by each method for each class are reported in Table 1. On
one extreme, timing estimates for “L" packets with lower strength
are impaired by quantization noise. On the other extreme, packets
received with high strength are subject to ADC clipping, a form
of distortion that clearly degrades timing precision. As expected,
these two classes yield higher error with all methods. Between the
two extremes, the strength of “M" packets fits well the dynamic
range: for these, the proposed method achieves σ̂TOA = 0.79 ns.

In our traces, less than 60% of all packets fall into class “M". With
better hardware, and specifically with more ADC bits and larger
dynamic range, it would be possible to tune the AGC gain so as to
increase the fraction of packets falling in this class, thus improving
the overall precision.

The above results indicate that the received packet metrics γm,1
and βm,i can be used to provide, for each individual TOA mea-
surement t̂m,i , also an indication of the expected precision, i.e., of
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Figure 8: Quantile-quantile plot of empirical errors ∆ϵ vs.
normal distribution.

the error variance σ̂ 2
m,i affecting each individual measurement. In

this way, algorithms that take TOA measurements as input (e.g.,
for position estimation) have the possibility to weight optimally
each individual input measurement, as done e.g. in Weighted Least
Squares methods [23].

Finally, we find that within each class the empirical error distribu-
tion is very well approximated by the Gaussian distribution, as seen
from the normal Q-Q plots in Fig. 8. This justifies the adoption of
Least Squares (LS) methods for position estimation problems based
on input TOA measurements [7], since for normally distributed in-
put errors the LS solution coincides with the Maximum Likelihood
estimate.

6 CONCLUSIONS AND OUTLOOK
We have presented two variants of a novel TOA estimation method
for Mode S signals that does not rely on long cross-correlations
with the template of a full packet. The most precise variant, namely
CorrPulse/S, involves only short cross-correlation operations on
individual pulses. The other variant, namely PeakPulse, is lighter to
compute, involves no cross-correlation operation and works well
also with moderate upsampling factors. We have shown that such
algorithms can achieve TOA estimates with nanosecond-level pre-
cision even with real-world signals captured with the cheapest SDR
hardware that is currently available, namely RTL-SDR. A closer
look at the test results reveals that the main limiting factor for the
achievable TOA precision with RTL-SDR is the limited dynamic
range — less than 50 dB with 8-bit ADC and fixed AGC — resulting
in a large fraction of packets being clipped or drowned into quanti-
zation noise. For packets that are received with signal strength well
within the dynamic range of the receiver, the CorrPulse/S achieves

sub-nanosecond precision. It can be expected that precision can be
further improved with better hardware. The PeakPulse method has
been implemented in C, integrated in the dump1090 receiver and is
released as open-source1.
1http://github.com/openskynetwork/dump1090-hptoa
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