
Master on Telematics Engineering
Academic Year 2016/2017

Master Thesis

SEMPER: A Stateless Traffic Engineering
Solution based on MP-TCP for WAN networks

Ginés Garcı́a Avilés

Director
Pablo Serrano Yáñez-Mingot

Leganés, 28th of September 2017

Keywords: WAN, Traffic-Engineering, Multipath-TCP
Abstract: Current Enterprise Networks deployments must accomplish a strong set of requirements in terms
of resiliency, reliability and resources usage. As current approaches are based on monolithic and expensive
infrastructures built on dedicated overlay links, vendors are trying to move to economical hybrid solutions that
encompasses private dedicated links with public/regular Internet connections. However, these usually rely on complex
Traffic Engineering solutions hardware dependent or proprietary that are costly in terms of computational time and
memory usage in the forwarding nodes. In this paper, we propose SEMPER: a lightweight traffic engineering (TE)
solution based on MP-TCP which, in contrast to other TE solutions, moves the complexity to the endpoints of the
connection, and relieves the forwarding elements from complex operations or maintaining state. As our evaluation
shows, SEMPER efficiently makes use of all available paths between the endpoints while maintaining fairness, and
properly adapts to variations on the available capacity.



SEMPER: A Stateless Traffic Engineering Solution
based on MP-TCP for WAN networks

Gines Garcia-Aviles

Abstract—Current Enterprise Networks deployments must
accomplish a strong set of requirements in terms of resiliency,
reliability and resources usage. As current approaches are based
on monolithic and expensive infrastructures built on dedicated
overlay links, vendors are trying to move to economical hy-
brid solutions that encompasses private dedicated links with
public/regular Internet connections. However, these usually rely
on complex Traffic Engineering solutions hardware dependent
or proprietary that are costly in terms of computational time
and memory usage in the forwarding nodes. In this paper, we
propose SEMPER: a lightweight traffic engineering (TE) solution
based on MP-TCP which, in contrast to other TE solutions,
moves the complexity to the endpoints of the connection, and
relieves the forwarding elements from complex operations or
maintaining state. As our evaluation shows, SEMPER efficiently
makes use of all available paths between the endpoints while
maintaining fairness, and properly adapts to variations on the
available capacity.

I. INTRODUCTION

Resiliency and Fault Tolerance are two of the most impor-
tant requirements for enterprise wide area networks (WAN),
and are becoming even more important in recent days, where
the availability of different network links is the clear repre-
sentation of the current “meshification” trends.

The enterprise wide area networks paradigm enables the
creation of a virtual private area network (VPN) linking
different branches of an enterprise with its headquarters. With
the increasing availability of different (physical) paths among
different offices, Traffic Engineering solutions that exploit
multiple paths are currently very used and there is a lot of
research effort focused on the improvement of the state of
the art solutions. SD-WAN [1] is an example of “hands on”
product that manages traffic over multiple links.

The most common enterprise WAN deployment consists on
edge routers located in different campuses, called branches,
and different links that interconnect them with a central
headquarter. Typically, those solutions are based on private
overlay models [1], [2].

However, to achieve increased resiliency, reliability and an
optimal usage of the resources for computing assets distributed
across several locations, these solutions have to rely on mon-
itoring systems to assess the traffic level of each link at any
time. This operation, which is essential to forward/reroute
flows to the best path, is usually costly in terms of computation
time and prone to errors as it is based on traffic probes. In this
paper, we propose a novel traffic engineering technique, that
overcomes the disadvantages of stateful approaches to provide
efficient connectivity between edge and central headquarters.

Our solution is based on moving the complexity to the
network endpoints (in this case, the end hosts), by using the
multipath version of TCP (MP-TCP) [3]. By exploiting its
congestion control capabilities, it simplifies the operation of
edge routers in both branches and headquarters.

The rest of this paper is organised as follows. In Section II
we review the evolution of the enterprise network deployments
together with the different Traffic Engineering approaches
applied. In Section III we discuss the use of MP-TCP as
a traffic engineering (TE) solution, including its potential
benefits and challenges. In Section IV we detail the design
of our TE solution (SEMPER), a light-weight solution to
efficiently and fairly distribute flows across existing paths
between branches of the enterprise WAN. Section V describes
the setup and methodology to perform the evaluation, which
is provided in Section VI, showing the benefits of SEMPER.
Finally, Section VII concludes the paper.

II. BACKGROUND

As introduced in Section I, current enterprise WAN deploy-
ments are moving from using expensive dedicated links (as
depicted in Fig. 1a) to different solutions that exploit shared
and possibly disjoint links (Fig. 1b), that usually provide path
diversity between branches and headquarters.

The aim of reducing link associated costs while maintaining
reliability, availability and performance leads to a new ap-
proach called ”Hybrid WAN”. The Hybrid WAN architecture
uses different connection types for the different links that con-
forms the deployment. In other words, hybrid WAN combines
the usage of dedicated links with shared Internet connections,
providing a more cost-effective and versatile way to connect
all branch offices. With the latter approach, the enterprise still
have a dedicated link for critical traffic and rely on regular In-
ternet connections (broadband) for non-critical traffic Fig. 1b.
Usually, the traffic is routed through a specific link depending
on its criticality by a TE solution deployed at the edge routers.
The current architectural approaches envision to the usage of
redundant broadband links in order to maintain availability,
reliability and performance. This reduces operational costs,
as it avoids the usage of dedicated links. In this paper, we
consider the latter approach.

Traffic Engineering (TE) is a tool for achieving control
over how data packets are forwarded within a network. These
techniques usually compute multiples paths among all the
source-destination pairs and distribute the traffic load between
them. Optimizing the performance is a process that must be



Branch 1 Corporate
Network

Branch 2

Dedicated Links

(a) Classic WAN: Dedicated links.

Branch 1 Corporate
Network

Dedicated Link

Internet

Dedicated Link

(b) Hybrid WAN: shared and dedi-
cated links.

Fig. 1: WAN Deployments

defined at the beginning, because there are different objectives
that could be optimized at the same time [4]. TE solutions
usually involve a set of components in the network, where the
different techniques will be applied. These techniques may
follow an adaptive feedback control system [5], providing
optimal routing and resources management in the system.

As we pointed out previously, current WAN deployments
consists on multiple paths between edge routers, TE techniques
shall exploit path diversity to increase resiliency and reliability,
also improving the overall performance. There are different
TE solutions for path assignment in multipath environments,
usually performing the assignment using information provided
by a monitoring system [6].

Software Defined WAN (SD-WAN) [1] is a commercial
solution for multipath enterprise WAN. It is the result of apply-
ing the Software Defined Networking (SDN) [7] architecture
on a Wide Area Network. This approach shifts the control
plane from the physical devices to a logical entity called
controller. The controller entity allow the administrator to
remotely configure the edge routers on each branch to change
the behaviour of the network.

Equal-Cost-MultiPath (ECMP) [8] is a technique to perform
packet routing among multiple paths with equal cost to reach a
destination. In WAN, shortest path protocols are usually used
to obtain the available paths between two edge routers (or
configure MPLS labels in case of MPLS-enabled deployment).
Then, ECMP runs over the edge routers and balance the load
between them. In other words, ECMP exploits shortest-path
diversity by splitting the traffic between them [6].

Usually, ECMP distributes traffic homogeneously among
all the equal-cost paths, it does not take into account the
level of congestion on each path. Without being aware of the
congestion, it is possible that one path is more congested than
the others leading to inefficiencies. In addition, ECMP cannot
offload traffic to paths with different cost, because it only splits
traffic between paths with the same cost.

For the reasons explained above, applying ECMP on the
edge routers is not a valid solution. Conversely, Shifting the
control plane to a logical entity, as SD-WAN proposes, allows
the combination of different types of links (MPLS, broadband,
wireless, ...) in the same WAN. This reduces or even avoids the
usage of expensive dedicated links as it redirects non-sensitive
traffic over cheaper links. In the end, it optimizes the usage
of the resources having a centralized view of the network.

SD-WAN is, independently of the forwarding strategy, a
stateful solution: the stored state information grows with the
number of flows that are being managed. In addition, it
requires a monitoring system, as the decision on the path to be
selected is usually taken considering its congestion level. This
is achieved by sending periodic small packets to the destination
to infer/measure the congestion. As a result, a solution such
as SD-WAN increases the CPU usage and needed storage
making routers (and hence an enterprise WAN deployment)
more expensive.

The TE solution proposed by this work combines the multi-
flow approach of Multipath TCP [3] with the newest multi-path
approaches for WAN deployments and it relies on MP-TCP
to perform traffic offload to less congested links. Our solution
performs a stateless and efficient path assignment, exploiting
the heterogeneity of the multi-path network. In addition, it
avoids the usage of monitoring systems and stateful strategies
for path assignment, reducing the computational and memory
requirements of the hardware deployed at the edge.

III. USING MP-TCP FOR TRAFFIC ENGINEERING

As discussed above, efficiently exploiting the availability of
multiple (and possibly heterogeneous) paths is still an open
research problem, despite the numerous attempts available in
the literature. Since the introduction of Equal Cost Multi-
Path routing (ECMP) [8], the research community strove to
find a mechanism to efficiently deal with the availability of
multiple paths. By “efficiently” we refer to solving a number of
challenges entailed by the multi-path approach, such as, e.g.,
packet reordering, load balancing or fast re-routing in case of
failures. In general, the main difficulty is that the solutions to
these problems are complex to implement, and therefore multi-
path is not a fully exploited paradigm in nowadays networks.

However, the introduction of MP-TCP [3] could completely
change this situation. By coupling the congestion control
of multiple subflows, MP-TCP can efficiently handle the
shortcomings that the use of multiple paths may introduce,
dynamically balancing the transmission window over different
subflows [9]. However, despite the clear advantages of an
extensive deployment of MP-TCP, its far from widely adopted,
relegated to a few remarkable use-cases such as e.g. Apple
Siri [10] or Proxy enhancements [11]. Still, even counting
for these examples, for the case of end user applications the
focus is typically on a couple of heterogeneous interfaces (i.e.,
a cellular and a WLAN), and not in the design of generic
solutions that scale up to many paths.

These cases discussed above are typically based on one of
the two possible modes of operation supported by MP-TCP,
namely, the full-mesh mode, which supports exploiting
path diversity by generating one flow per path available
at the source node. The other mode of operation is the
ndiffports mode, which generates multiple flows at the
source irrespective of the number of interfaces available, and
there relies on subsequent hops to exploit path diversity.

Indeed, MP-TCP ndiffports has already been proven
an effective solution for single-homed hosts in datacenter



networks [12]. This motivates applying a similar strategy for
this scenario can be a valid decision for solving the problems
introduced in Section I. By activating MP-TCP on all the end
users within the branch, the outgoing traffic from the branch
is already “multipath-ready”, so an edge router can effectively
exploit multiple paths at a relative low cost by forwarding
sub-flows to the different paths.

One of the main benefits of this approach (that we will
detail in the next section) is that all the complexity of former
traffic engineering solutions, based on complex monitoring
operations (e.g., actively assessing the link capacity) and
the corresponding load balancing schemes, is pushed to the
branches of the network, as MP-TCP runs on the end hosts.
With this approach, the design of the forwarding strategy (i.e.,
the path assignment) to be implemented at the edge routers
becomes of paramount importance. We remark that it is a
different problem from the one studied for ECMP forwarding,
as we are not considering path assignment of single path flows,
but rather path assignment of sub-flows belonging to same
“parent” multipath flow.

In the next section, we design a solution for Traffic Engi-
neering, which we refer to as SEMPER (StatEless Multi Path
forwarding for Edge Routers). Two outstanding features of
SEMPER are:
• It does not require any knowledge of the topology, this

including key variables such as the number of disjoint
paths between any two sites. This is in contrast with
other solutions that might require the knowledge of this
variable, to fix the number of sub-flows that have to be
generated by MP-TCP accordingly.

• It does not require a complex scheme for the distribution
of sub-flows between paths. Again, this is in contrast with
other solutions that, knowing the “optimal” number of
sub-flows, introduce the added complexity of a scheme
to properly balance these among the set of available paths.

IV. SEMPER: A TE SOLUTION BASED ON MP-TCP

We next design SEMPER, a TE solution that does not
require the knowledge of the topology nor the use of complex
sub-flow balancing schemes on the forwarding elements. We
first describe the MP-TCP configuration used in the end hosts,
and then the simple forwarding functionality that the end
routers connecting each of the branches need to implement.

To describe the changes to the end hosts, we start by
describing MP-TCP by means of its main components, which
are depicted in Fig. 2. The first component is the path-
manager, which is responsible for the TCP subflows that will
conform the MP-TCP connection. As described before, this
component supports different policies: the full-mesh policy
creates a sub-flow for each available (source IP, destination
IP) pair, while with the ndiffports policy the host will
create a concrete number of sub-flows for the same pair of IP
addresses, changing the source port.1

1There is a also a default policy, where no flows are created but only
accepted.

MP-TCP Host

Congestion 
Control

Scheduler
Path 

Manager

MP-TCP Host

Congestion 
Control

Scheduler
Path 

Manager

MP-TCP Host

Congestion 
Control

Scheduler
Path 

Manager

Flow balancer

Router
n links

K subflows 
1 link

SEMPER

Fig. 2: SEMPER reference architecture

The second component is the scheduler. This module as-
signs higher-layer TCP segments over the existing sub-flows,
taking into account the different characteristics of each subflow
(e.g., the RTT), trying to optimise the overall performance.
Here, among the different policies available, there are three
worth mentioning: default, where paths with lowest RTT
are preferred; roundrobin, which implements such policy
across sub-flows, and redundant, where the same informa-
tion is transmitted over all existing interfaces (for instance,
this is the one used by Siri in Apple’s iPhones, to maximise
reliability). Finally, the congestion control module implements
the congestion control algorithm, that computes the congestion
window to be used on each existing sub-flow.

Number of sub-flows per host to generate

The first challenge when designing SEMPER is to select
the proper number of sub-flows that each MP-TCP host has to
generated, which we denote as K. Given an unknown number
of available paths P between the two branches, the actual
value of K that should be used has an impact on performance,
depending on the number of hosts running in the branch n

• If n×K < P , then not all capacity is used, as there are
not enough sub-flows to occupy all the available paths.

• if n×K ≥ P , there are at least one sub-flow per available
path, but there are two pending challenges: (i) how to
assign sub-flows to paths, and (ii) if there is any penalty
when using more sub-flows than the number of available
paths.

We will discuss the first challenge in the next section. As
for the second challenge, in our experiments we demonstrate
that there is no major penalty in using an overly large value
of K, which results in the following key building block for
SEMPER:

Each MP-TCP end host generates K = 32 sub-flows.



Mapping of sub-flows to paths

The other functionality to be designed, to run in the edge
router of each branch, is the flow balancer. This module is
responsible for assigning each sub- flow to one of the available
paths. As mentioned, while this functionality falls outside MP-
TCP, it is one the main components of SEMPER. This module
is placed in the edge router, as illustrated in the architecture
depicted in Fig. 2.

One of the key objectives of the designed solution is a
reduced complexity, leveraging on the end hosts running MP-
TCP. To continue with this reduced complexity, we discard
the use of passive or active monitoring, and will leverage
on MP-TCP’s congestion control to properly adapt to the
available capacity. More specifically, we will rely on MP-
TCP for efficiently and fairly distribute resources among the
hosts, and design a very simple flow balancer. The only
requirement for this flow balancer is that TCP segments and
acknowledgements from the same sub-flow have to be always
assigned to the same path, so the congestion control can
properly react.

The SEMPER flow balancer is based on performing a hash
function (Fig. 3) on the 4-tuple composed by the source and
destination IP addresses and port numbers, and map this hash
to one of the available paths (numbered from 1 to n). For
simplicity, we use a simple hash function based on the modulo
operation, which will then map a sub-flow to a path with a
probability 1/n. We implement the corresponding (reverse)
mapping function at the router at the other side, to support
the required path symmetry.

Use a hash function to randomly assign a TCP sub-
flow to a path.

1

2

n

Hash 
Function

Fig. 3: SEMPER forwarding strategy

While this approach results in an extremely light-weight
solution, there are two key issues that might result on non-
optimal performance, and we will discuss in the performance
evaluation:

1) Due to the random assignment of sub-flows to paths,
the complete utilization of all the available path is not
guaranteed (even when there are more sub-flows than
paths).

2) Sub-flows belonging to the same MP-TCP connection
may not all follow disjoint paths.

Indeed, source port generation is an OS dependent proce-
dure that is regulated by a recommendation only [13]. How-
ever, source port number generation. Despite some remarkable

exception such as some Windows flavours [14], almost all
the state of the art solutions are using random hash values
to generate the source port, either at a global level (i.e.,
different processes share the same random seed) or at local
level (one random seed per process). Therefore, we cannot
use any predictive technique to guess the “next source port”
for a given port, and we have to rely on a purely random
process to avoid keeping any state.

Benchmark: a stateful solution

To have a proper performance comparison during our ex-
periments, we designed an alternative approach to SEMPER,
which will serve as a reference benchmark for the use of MP-
TCP for traffic engineering. This approach consists on the
following configuration:

• Each MP-TCP host is aware of the number of existing
paths between the end points P , and generates one sub-
flow per path, i.e., K = 32.

• The flow balancer module distributes à la round-robin
each of these sub-flows across the available paths.

1

2

n

Fig. 4: Stateful forwarding strategy

With this approach, we guarantee that all sub-flows are
evenly distributed across all the available paths (Fig. 4). To
distribute the load of the TCP handshakes across paths, the
first sub-flow from a given host is hashed as in SEMPER,
while the next sub-flows are assigned sequentially (modulo n,
the total number of paths). Note that the price to pay for this
approach, which evenly distributes flows across paths, is to
keep state at both routers.

V. TESTBED AND METHODOLOGY

Our motivation is to design a solution that can be immedi-
ately implemented in a real-life testbed. However, given the
number of hosts and paths considered during our experiments,
the cost of deploying an actual testbed of the required size
would be prohibitive. Because of this, we decide to make use
of virtualisation techniques to evaluate the performance under
different conditions, which enables using the real software
implementation of the required modules.

We evaluate SEMPER against the stateful counterpart
mainly along three dimension: throughput performance,
throughput distribution fairness and fault tolerance. In the
following we describe the used hardware and software con-
figuration and the employed methodology to compute the
evaluation results.



MPTCP
Host

Default 
Router

Edge 
Router

SDN
Controller Multiple

Paths

SDN
Controller

MPTCP
Host

Default 
Router

Edge 
Router

Fig. 5: Emulated topology throughout our experiments

A. Hardware and software configuration

Our virtualisation environment runs on top of desktop PC,
equipped with an AMD FX(tm)-8320 8-Core Processor and
32 GB of RAM. It runs the Mininet network emulator [15]
to create a network consisting of virtual hosts, switches,
controllers, and links, where hosts run standard Linux network
software. All the end hosts run a kernel implementation of
Multipath TCP, while the switches run Open Virtual Switch,
supporting OpenFlow . This configuration2. results highly flex-
ible for both routing and forwarding, which is very convenient
for the implementation of SEMPER and the automation of
experiments, as we will describe in the next section. The
software framework is depicted in Figure 5.

As illustrated in Fig. 5, we will focus on the classical
dumbbell topology, where two branches are connected via
multiple disjoint paths. One of this routers (the one on the
left) is connected to a “default router,” that serves a number
of hosts, each running MP-TCP. The other border router is
connected to an Iperf server running MP- TCP. All routers run
also the lightweight RYU SDN controller, which simplifies the
implementation of the different subflow forwarding techniques
discussed above.

B. Setting up a experiment

We next describe the methodology that we follow to perform
one experiment, which is defined by the following configura-
tion parameters:
• Number of end hosts connecting to the server.
• Number of MP-TCP subflows generated by a host.
• Capacity of the links connecting the border routers.
• Traffic engineering solution: (stateless) random forward-

ing or (stateful) round robin.
• Total duration of the experiment T
For each configuration, the methodology works as follows.

First, the right MP-TCP kernel, shared by all machines, is
loaded. Then, Mininet is launched to create the environment,
this including instantiating the required number of hosts,
routers, controllers, etc. as well as setting up the various links
between entities and the corresponding capacities (for those
with finite capacity). Depending on the traffic engineering
solution of choice, the SDN controllers are correspondingly
configured, following the schemes described in Section IV.

2We used Mininet v2.3.0d1, the linux kernel 3.18.20-90-mptcp, OVS v2.0.2,
RYU v4.9 and Openflow v1.3.

Once the above is set up, we launch the different MP-
TCP connections between the end hosts and the server, and
configure them to perform data transmission during the length
indicated by the parameter T . Note that our objective is to
measure performance in steady-state conditions, i.e., with all
flows connected. However, given the relatively large number
of subflows that we consider, we found out that depending
on the schedule of the subflow starts, the bandwidth of the
links and the experiment duration, it could happen that the
last subflow to start may send its first SYN way after the first
subflow has already finished. Because of this, we cannot rely
on the statistics provided by Iperf to assess the performance
of the solution, as these might not correspond to steady-
state conditions. Further details on the implementation are
provided in Appendix.We next describe how we compute the
performance for a given experiment.

C. Computing the throughput figures

During the execution of a experiment, we store the
tcpdump traces corresponding to the TCP segments that
are sent over all the paths connecting the routers, so then
we can extract the statistics corresponding to steady- state
conditions. In order to find these conditions in a robust manner,
we proceed as follows. We define a measurement period TM ,
which is less than the total duration of the experiment T . Given
that the first SYN segment is sent at time 0, our objective is to
find an adequate window of time TM where all TCP subflows
are connected. This is done as follows:
• For each subflow, we iteratively search in the tracefiles

for the last ACK segment corresponding to TCP’s three-
way-handshake.

• If the total number of ACKs found corresponds to the
expected number of generated subflows, we denote the
timestamp of the last ACK as T1 and continue. Otherwise,
we restart the experiment.

• We then search in the tracefiles for the first FIN of TCP’s
disconnecting for each subflow.

• If the total number of FINs found corresponds to the
expected number of generated subflows, we denote the
timestamp of the first FIN as T2 and continue. Otherwise,
we restart the experiment.

• Finally, if T2 − T1 > TM , we proceed to compute the
throughput figures for the period [T2 − TM , T2].

We denote as Ri the throughput obtained by host Hi,
which is obtained as the sum of the total number of bytes
acknowledged for all its subflows divided by TM (we note that
this results computationally more expensive than counting on
Iperf reports).

D. Validation

Here we analyse the impact of T and TM on the obtained
throughput figures, to guarantee that we run the experiments
long enough and that statistics are gathered over the required
periods of time, i.e., a steady-state where MP-TCP is effi-
ciently using the available capacity. To this aim, we consider
the dumbbell topology with N = 2 paths connecting the



42 46 50 54 58
H2 Throughput [Mbps]

42

46

50

54

58

H
1

Th
ro

ug
hp

ut
[M

bp
s]

400s - TM = 50s

400s - TM = 100s

400s - TM = 200s

100s - TM = 50s

(a) Capacity region for the validation scenario.

42 44 46 48 50 52
Throughput [Mbps]

0

0.25

0.5

0.75

1

C
D

F

400s - TM = 50s

400s - TM = 100s

400s - TM = 200s

100s - TM = 50s

(b) CDF of H1 throughput for different measurement times.

Fig. 6: Validation results

two border routers. Each path consists on a 50 Mb/s link
(so the total capacity connecting the routers is 100 Mb/s).
There are two TCP hosts (H1 and H2) and each host generates
two subflows, and the forwarding tables are configured such
that each of the subflows from the same host goes through a
different path.

We consider we following values for the total duration of the
MP-TCP sessions, T = {100, 400} s, and the following values
for the measurement period TM = {50, 100, 200, 400} s.
For each valid configuration, we repeat the experiment 10
times, and compute the throughput obtained by both hosts,
namely, R1 and R2. To illustrate the differences between the
obtained result and the nominal capacity of both links, we
plot the resulting (R1, R2) points for all experiments and
configurations, which results in the Fig. 6a. We also represent
in the figure, with a green continuous line, the limit of the
capacity region of this scenario, which corresponds to those
x and y values such that x+ y = 100 Mb/s.

As the figure illustrates, for all combinations of T and
TM , the total throughput obtained (R1+R2) is very close to
the boundary of the capacity region, with an average total
throughput of approx. 94 Mb/s in all cases. While the figure
confirms the efficiency of MP-TCP when using the available
resources, it also illustrates that there is some variability in the
resource distribution between H1 and H2 across experiments.
To investigate the impact of T and M on this variability, we
compute the Cumulative Distribution Function (CDF) of the
TCP throughput obtained by one host3 during 20 repetitions.
The results are depicted in Fig. 6b.

According to the results, the use of small values for
TM results in a notable variability across experiments, with
throughput differences that span approx. ± 20%. In contrast,
longer TM values practically halves these differences. For
these reasons, during our performance evaluation we will fix
T = 400 s and TM = 200 s.

3We only consider the results for H1, given that we have seen, in the
previous results, that H2 will receive practically all the remaining capacity.

VI. PERFORMANCE EVALUATION

Building on the methodology described above, we next
evaluate the performance achieved by SEMPER, and compare
it vs. the stateful solution. We start by validating the chosen
configuration for the number of subflows per host of the
stateful TE solution. After this validation, we first compare the
performance in static scenarios, analysing the impact of the
number of paths connecting the routers, and then in dynamic
scenarios, where one of the links becomes unavailable at some
point in time.

In our performance evaluation, we follow the methodology
described in the previous section to compute set of the
throughputs obtained by each host, {Ri}. Based on this set of
values, we evaluate the performance based on two variables:
• Total throughput: defined as the sum of the throughput

obtained by each of the hosts, which will serve as a
measurement of efficiency (the closer to the maximum
capacity, the better).

Total throughput ,
∑
i

Ri (1)

• Fairness: which serves to quantify the evenness in the
distribution of the resources, and is computed following
Jain’s definition [16], i.e.,

Fairness ,
(
∑

i Ri)
2

N
∑

i R
2
i

(2)

which ranges from one (perfect fairness) to 1/N .

A. Validation of SEMPER configuration

We first evaluate the performance of SEMPER but using a
varying number of generated subflows per host (K), to gather
insight on the impact of this parameter and to confirm that our
K = 32 setting is appropriate. We set-up a dumbbell topology
with 8 links of 50 Mb/s connecting the two routers. We
consider two different configurations for the number of hosts
connecting to the MP-TCP server, namely, N = {2, 32}, and
the following set of subflows per host K = {2, 4, 8, 16, 32}.



2 4 8 16 32
Number of subflows per host

0

100

200

300

400
Th

ro
ug

hp
ut

[M
bp

s]

TCP-8 Hosts
SEMPER 2 Hosts
SEMPER 32 Hosts

(a) Total throughput (Median)

2 4 8 16 32
Number of subflows per host

0

0.25

0.5

0.75

1

JF
I

TCP-8 Hosts
SEMPER 2 Hosts
SEMPER 32 Hosts

(b) Jain Fairness Index.

Fig. 7: Validation of SEMPER configuration: Experiments increasing the number of subflows

We also compute the performance of scenario in which 8 hosts
use a single TCP flow connected to the server, where each flow
uses a different path, which will serve for reference purposes
(i.e., a baseline).

For each scenario, we repeat each measurement 10 times,
and compute the median of the results. We depict these in
Fig. 7, illustrating the total throughput (Fig. 7a) and fairness
(Fig. 7b) for an increasing number of subflows per host K.

Concerning the total throughput, the results show that when
the number of hosts is small (N = 2) and SEMPER does no
use enough subflows (K < 8), the performance is notably
worse than the baseline. This is caused, of course, by the
random assignment of subflows, which fails to occupy all the
available paths (and therefore, the capacity). In contrast, when
the number of hosts is large (N = 32) or the number of
subflows is large (K ≥ 8), the performance is closer to the
baseline.

Considering fairness results, the performance is remarkably
fair for all the considered scenarios, as for all configurations
of the experiments the median is well above 0.9. There is a
small drop for the case of N = 32 hosts and only 2 subflows
per host, which is caused by the very few case in which a host
has its two subflows sent over the same path (and therefore a
relative lower throughput than others). Furthermore, this drop
is “corresponded” for similar reasons by another small drop
for N = 2 hosts and 32 subflows per host.

Given that the number of subflows has an impact on
performance, but only if there are too few (and not too many),
we conclude that our SEMPER configuration with K = 32
sub-flows per host is a suitable candidate to implement a TE
solution, given its good performance in terms of efficiency and
fairness. Additional experiments are available in the Appendix.

In the following section, we evaluate its performance in a
number of scenarios, comparing the results obtained vs. the
state-full solution.

B. Comparison in static scenarios

To compare the performance of the two TE solutions,
we consider different dumbbell topologies in terms of the
number of 50 Mb/s paths between the two routers. For each
configuration, we compute the total throughput and fairness

(as defined before) of the stateless and the stateful solutions.
It is worth remarking here that the stateless solution does not
require any knowledge of the topology, while the stateful is
based on generating as many sub-flows per host as disjoint
paths are available. We repeat each experiment 10 times, and
compute the efficiency and fairness of each configuration,
providing the median across experiments. We perform our
evaluation for the case of N = 4 hosts and an increasing
number of paths between the routers, from 2 to 8 paths. The
results are depicted in Fig. 8 for the total throughput (Fig. 8a)
and fairness (Fig. 8b).

Concerning the total throughput figures, the results show
that both TE solutions perform very efficiently, as in all cases
the achieved results are very close to the total capacity between
the links. Only for the case of 8 paths between the routers there
are some differences between this maximum capacity (namely,
400 Mb/s) and the achieved capacity of both TE solutions, with
the stateless version slightly underperforming the stateful. The
reason for this small drop in performance for the proposed
solution is, like in the previous section, the randomness of the
assignment of subflows to paths, that in very few cases fails
to occupy all available links.

For the case of fairness, the figure illustrates that both
solutions perform very close to one (note that for the stateful
solution, this is guaranteed by design). There is only one small
drop in fairness for the case of two paths between hosts, which
is caused when the total number of subflows is relatively way
larger than the total number of paths (note that we had a similar
behaviour in the previous section).

Following these results, we conclude that the performance
of both TE solutions is almost optimal. Furthermore, given
that our TE proposal does not require a prior knowledge of
the topology (to configure the number of subflows per host to
generate), nor the use of state in the routers, it results a more
deployable solution to efficiently use all resources available.

C. Comparison in dynamic scenarios

In the previous section, we consider static scenarios in terms
of the available resources, i.e., a fixed number of paths between
the hosts. As the results show, the designed TE solution makes
an efficient and fair use of the available resources. Next, we



2 4 6 8
Number of Paths

0

100

200

300

400
Th

ro
ug

hp
ut

[M
bp

s]

RR
SEMPER

(a) Total throughput (Median)

2 4 6 8
Number of Paths

0

0.25

0.5

0.75

1

JF
I

RR
SEMPER

(b) Jain Fairness Index.

Fig. 8: Performance evaluation in static scenarios, N = 4 hosts

0

100

200 Aggregate Throughput

0

100

200 Aggregate Throughput

0 100 200 300 400
Time [s]

0

40

80

120

Throughput per host

RR

0 100 200 300 400
Time [s]

0

40

80

120

Throughput per host

SEMPER

Th
ro

ug
hp

ut
[M

bp
s]

(a) Instantaneous throughput over time.

0
0.25

0.5
0.75

1

JF
I

RR

-150
-100 -50 0 50 100 150

Time [s]

0
0.25

0.5
0.75

1

JF
I

SEMPER

(b) Instantaneous fairness over time.

Fig. 9: Performance evaluation in dynamic scenarios, N = 2 hosts

address an scenario in which the amount of available resources
are reduced at a given point in time, i.e., a link is down, to
assess the performance in these circumstances.

For ease of visualisation, now we consider the same dumb-
bell topology as before, but with only N = 2 hosts, and 4
paths between the routers. We run the experiments during
T=400 s, and we remove one of the links at t=200 s. The
resulting instantaneous throughput figures, averaged over 1 s,
are depicted in Fig. 9, including the case of the total throughput
(Fig. 9a, top) and the per-host throughput (Fig. 9a, bottom),
for the two TE solutions considered.

According to the figure, both schemes immediately adapt to
the new circumstances, with practically no loss of efficiency
due to some “transient” conditions when adapting from a
4 paths to a 3 paths scenario.4 We acknowledge that this
result is somehow expected, as all involved transmission
windows are operating at around the required values, and
therefore the sudden unavailability of a link does not harm
their operation –in terms of total throughput performance.
However, when considering the per-host performance, it is
worth remarking the differences between the two TE solutions:
while SEMPER provides a very smooth operation over time,
the stateful solution solution exhibits the “usual” variability of

4We omit the results corresponding to the re-activation of the link, as
recovery is practically immediate.

TCP throughput, which is caused by the fast reaction of one
flow to losses experienced by the other flow. Indeed, it can
be seen the “symmetry” across the average throughput per
flow between the two lines. We argue that this is an additional
benefit of the proposed TE algorithm, namely, better fairness
properties over time.

To look further into the fairness properties of SEMPER,
we compute the fairness figures over the same 1 s time
windows, and represent them in Fig. 9b. As expected, the
smooth behaviour from the use of our TE solution results in
very stable behaviour of fairness over time, while the use of
the stateful approach results in less predictable figures, due to
the throughput variability described above.

VII. CONCLUSIONS

Current Enterprise networks are moving from monolithic
infrastructures based on dedicated links and costly components
to newer approaches that reduce costs, as well as improving
resources utilization, reliability and resiliency. Costly dedi-
cated links are replaced by multiple public/shared internet
connections, increasing the availability of multiple paths.
Traffic engineering solutions are very used in practise to
exploit multiple paths, but they exhaust the available resource
at the edge routers because of the computational time and
memory they require. In this paper we proposed SEMPER, a



stateless solution for traffic engineering, that natively exploits
path redundancy by efficiently matching MP-TCP subflows
to paths, avoiding thus monitoring and fault avoidance tech-
niques. Moreover, SEMPER moves the complexity to the end
hosts by relying load balancing on the MP-TCP congestion
control. Our results show that SEMPER is as effective as
a stateful solution in terms of aggregating throughput and
fairness, but with a practically negligible implementation cost.

REFERENCES

[1] O. Michel, E. Keller, “SDN in wide-area networks: A survey,” IEEE
Fourth International Conference, 2017.

[2] B.S. Davie, Y. Rekhter, “MPLS: technology and applications,” Morgan
Kaufmann Publishers, 2000.

[3] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “RFC 6824: TCP
extensions for multipath operation with multiple addresses,” IETF, 2013.

[4] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, X. Xiao, “RFC 3272:
Overview and principles of Internet traffic engineering,” IETF, 2002.

[5] D.O. Awduche, “MPLS and traffic engineering in IP networks,” IEEE
communications Magazine, 1999.

[6] M. Chiesa, G. Kindler, M. Schapira, “Traffic engineering with equal-
cost-multipath: An algorithmic perspective,” IEEE/ACM Transactions on
Networking, 2017.

[7] E. Haleplidis, K. Pentikousis, S. Denazis, J.H. Salim, D. Meyer,
O. Koufopavlou, “RFC 7426: Software-defined networking (SDN): Lay-
ers and architecture terminology,” IRTF, 2015.

[8] C. Hopps, “RFC 2992: Analysis of an equal-cost multi-path algorithm,”
IETF, 2000.

[9] C. Raiciu, M. Handley, and D. Wischik, “RFC 6536: Coupled congestion
control for multipath transport protocols,” IETF, 2011.

[10] O. Bonaventure and S. Seo, “Multipath TCP deployments,” IETF
Journal 12, 2016.

[11] X. Wei, “MPTCP proxy mechanisms, draft-wei-mptcp-proxy-
mechanism-00,” IETF draft, 2014.

[12] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-
level adaptive routing for improved latency and throughput in datacenter
networks,” ACM CoNEXT, 2012.

[13] M. Larsen and F. Gont, “RFC 6056: Recommendations for Transport-
Protocol Port Randomization,” IETF, 2011.

[14] J. Kristoff, “Ephemeral Source Port Selection Strategies,” Available
Online https://www.cymru.com/jtk/misc/ephemeralports.html

[15] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible Network Experiments using Container-Based Emulation,”
CoNEXT, 2012.

[16] R. Jain, D. Chiu, and W. R. Hawe. “A quantitative measure of fairness
and discrimination for resource allocation in shared computer system,”
Eastern Research Laboratory, Digital Equipment Corporation, 1984.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, J. Turner, “OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, 2008.

[18] G. Combs, “TSharkDump and Analyze Network Traffic. Wireshark”
,2012.

APPENDIX

IMPLEMENTATION DETAILS

The implementation consists of two different software com-
ponents, the MP-TCP framework that guides the execution
of the experiments and the data treatment tool that extracts
information from the packet dump files gathered during the
experiments.

The MP-TCP framework (see Alg. 1) is an experiment
manager that controls each component of the framework.
The framework is composed by three main elements: MP-
TCP kernel, Mininet and SDN Controllers. First of all, the
framework sets up the MP-TCP kernel specifying the number
of subflows to be generated per host, the congestion control

Algorithm 1 MP-TCP framework

1: for iter = 0; iter < NUM ITERATIONS; iter + +
do

2: start_flow_balancer(edge_routers)
3: create_topology(NUM_HOSTS, NUM_LINKS,

LINK_BW)
4: for link = 0; link < NUM LINKS; link ++ do
5: new thread(′tshark − ilink′)
6: end for
7: for server = 0; link < NUM SERV ERS; server+

+ do
8: start_iperf_server(server)
9: end for

10: for host = 0;host < NUM HOSTS;host++ do
11: start_iperf_client(host)
12: end for
13: # Wait experiment end
14: stop_servers()
15: stop_flow_balancer(edge_router)
16: end for

Algorithm 2 Sampling algorithm: samples every second

1: data = sortByT imeStamp(subflowdata)
2: EXP DURATION = 400
3: sharedQueue = Queue
4: for check = 0; check < EXP DURATION ; check +

+ do
5: packet_below = data.select(packet.time <= check)
6: packet_above = data.select(packet.time >= check)
7: if packet below and packet above NOT empty then
8: below absV al = abs(below.time− check)
9: above absV al = abs(above.time− check)

10: selected = min(below absV al, above absV al)
11: else if packet below NOT empty then
12: selected = below
13: else if packet above NOT empty then
14: selected = above
15: end if
16: sharedQueue.write(selected)
17: end for

algorithm and the path manager (ndiffports in our case). Then,
the framework creates the topology through Mininet’s python
API, setting up hosts, servers and configuring links between
edge routers with a certain bandwidth, queue size and delay.
Finally, the framework starts all the component instantiated in
Mininet’s environment to be able to perform the experiment.
The key component here are the SDN Controllers because
they have the implementation of the different strategies to
map subflows to paths (SEMPER and Round-Robin). More in
detail, the edge routers have been deployed as a combination
of an SDN controller and an OpenFlow virtual switch [17] to
take advantage of the benefits of SDN.

During the experiments, there are multiple Tshark instances



2 4 8 16 32
Number of hosts

0

100

200

300

400
Th

ro
ug

hp
ut

[M
bp

s]

TCP-8Hosts
SEMPER 2 subflows
SEMPER 32 subflows

(a) Total throughput (Median)

2 4 8 16 32
Number of hosts

0

0.25

0.5

0.75

1

JF
I

TCP-8Hosts
SEMPER 2 subflows
SEMPER 32 subflows

(b) Jain Fairness Index.

Fig. 10: Validation of SEMPER configuration: Experiments increasing the number of hosts

0

100

200 Aggregate Throughput

0

100

200 Aggregate Throughput

0 100 200 300 400
Time [s]

0

40

80

120 Throughput per host

RR

0 100 200 300 400
Time [s]

0

40

80

120 Throughput per host

SEMPER

Th
ro

ug
hp

ut
[M

bp
s]

(a) Instantaneous throughput over time.

0
0.25

0.5
0.75

1

JF
I

RR

-150
-100 -50 0 50 100 150

Time [s]

0
0.25

0.5
0.75

1

JF
I

SEMPER

(b) Instantaneous fairness over time.

Fig. 11: Performance evaluation in dynamic scenarios, N = 4 hosts

[18] gathering packets from all the available paths in the
experiment and dumping all the information into files. The
resulting files are the input of the second software component,
the data treatment tool.

The data treatment tool extracts general information about
each MP-TCP connection that took place during the experi-
ment. The main idea is to extract representative information
of each connection in order to have lightweight files that are
used to compute concrete results (throughput or fairness). The
process of extracting general information from the generated
files could be challenging, because if the links bandwidth is
high, huge packet traces files are generated.

The first step to optimize this process, is to define a
sampling methodology to be able to handle these large dump
files. The idea is to extract only representative packets of each
MP-TCP connection in concrete points of the experiment,
taking into account that every MP-TCP connection consists
on more than one subflow (Algorithm.2). In other words, we
select the packet that is close to a specific time stamp. For
example, if the duration of the experiment is 5 seconds samples
of the dump files should be collected every second, the selected
packets will be those whose time stamp is the closest to {0s,
1s, 2s, 3s, 4s, 5s} for each subflow of each connection. By
specifying the interval of time between samples, we can extract
information with different levels of granularity.

Once the sampling process is defined, we speed up the
extraction process by using a producer-consumer approach.
With this definition, we improve the process by using multiple
producers that extract the information exploiting paralleliza-
tion, being the extracted information stored in a shared buffer.
The consumers extract data from the shared buffer in order to
generate a plain text file with the results.

ADDITIONAL RESULTS

In addition to the experiments performed in Sec. VI, we
have performed further experiments regarding validation of
SEMPER in Subsec. VI-A, the comparison of SEMPER with
a stateful solution in a dynamic scenario (Subsec. VI-C).

Concerning the validation, we define a set of experiments
where we vary the number of hosts (N) involved in the
experiment , to assess how this parameter might affect to
the resources usage. We also run the experiment using the
dumbbell topology with 8 links of 50 Mb/s connecting the
edge routers. In this case, we set 2 SEMPER configuration
using K = 2 and K = 32 (SEMPER generating 2 and 32
subflows respectively), a set of hosts N = {2, 4, 8, 16, 32}
and maintaining as baseline the experiments with 8 single TCP
flows using each flow a different path.

For each scenario (SEMPER configuration), we use the
same methodology of 10 repetitions computing the median of



the results. Fig. 10 show both total throughput (Fig. 10a) and
fairness (Fig. 10b) when increasing number of hosts involved
in the experiment form N = 2 to N = 32.

Regarding the total throughput, the result show that SEM-
PER with K = 2 does not exploit all the available resources
if N < 8, leading to a poor performance as we pointed out
in the previous results. On the other hand, SEMPER with
K = 32 performs well regardless of the number of hosts
involved, outperforming the TCP baseline with N = {16, 32}.
Considering fairness, all the configurations performs close
to 1, which means fairness in resources sharing. As in the
previous experiments, SEMPER with K = 2 suffers small
drops caused by the cases where both subflows of a host were
sent over the same path.

The number of hosts involved in the experiments has an
impact on the performance, but it appears when there are
too few hosts using SEMPER K = 2, similar to the results
depicted in 7. With this information we can confirm that
SEMEPER with K = 32 is a suitable candidate also when
a larger number of hosts are involved.

Together with the experiments to compare SEMPER with
a stateful solution in a dynamic scenario, we have performed
a similar experiment but with two hosts (N = 4) and the
results are characterized in in Fig. 11. As we identify in
Subsec. VI-C (N = 4), both schemes immediately adapt to
the new circumstances, in terms of throughput Fig. 11a, with
practically no loss of efficiency. However, considering the
per-host performance, SEMPER still operates smoothly over
time compared with the stateful solution. Regarding fairness
(Fig. 11b), SEMPER presents a smooth behaviour while in
the stateful approach, the results are less predictive due to the
fluctuation of the per-host throughput mentioned before.


