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Abstract—We introduce structural transformations that al-
low simplifying a given network while preserving its original
“bandwidth” and “routing” capabilities, transparently to specific
allocations. We minimize a certain objective such as the aggregate
capacity of network links, number of nodes, or number of links,
in such a way that all the bandwidth that could be routed in
the original network can also be routed in the reduced one.
This improves cost-efficiency for both inter- and intra-datacenter
connections and simplifies network management. We also identify
a fundamental tradeoff between extra added capacity and sim-
plicity of representation for a given network. Our analytic results
are supported by extensive simulation results on hundreds of real
network topologies. One result is that by adding 10-30% extra
capacity to evaluated real-world networks one can simplify them
down to a star topology with a single switch, while all routing
and bandwidth allocation decisions on the simplified topology can
be mapped back to the original network. This is an important
step towards simplifying network management via a reduced
virtualized network infrastructure.

I. INTRODUCTION

Network infrastructure is an expensive resource that requires
complex management. Network providers are often unable to
fully leverage this huge investment. To simplify network man-
agement, one can propose to represent the original network
with a simpler/cheaper network that still implements specific
properties of the original. Usually, there is a tradeoff between
the simplicity of network representations and efficient reuse
of the underlying infrastructure.

There have been attempts to virtualize specific network
architectures, optimizing various objectives [1], [2], but there
is no well-understood process to get a simplified representation
of a network while preserving its “bandwidth” and “routing”
capabilities. This work is a first step in this direction. Pre-
serving network capabilities allows to operate services on the
simpler representation transparently from the physical infras-
tructure. In addition, understanding the constraints of a given
network shows which resources need additional investments.

The first problem we explore in this work (Section II)
is capacity planning, by which we mean minimizing the
aggregate capacity of the links in a network while maintaining
its original topology. Since different coexisting applications
can use bandwidth allocation methods that optimize different
objectives (e.g., aiming for shortest, cheapest, or load-balanced
traffic over several paths), we do not assume any knowledge
about bandwidth allocation methods and routing for inter-
connecting sources and destinations. In fact, the resulting set

Fig. 1. Example of three bandwidth equivalent networks.

Fig. 2. Bandwidth equivalence: (a) two equivalent graphs, (b) a bandwidth
allocation on G′ with three routes of bandwidth 1 maps to G.

of link capacities must allow for any bandwidth allocation
and routing the original did, a property we call bandwidth
equivalence. For a simple example, the three networks on
Fig. 1 are all bandwidth equivalent: any set of routes from
s1 and s2 to d that satisfies capacity constraints shown on
the edges of one of the graphs will also satisfy them in
the two others. However, the graphs have very different total
capacities, and the result of capacity planning for all three
networks on Fig. 1 should be the network on the right, which
has minimal aggregate capacity and cannot be reduced further.
Useful applications of capacity planning include various WAN
optimizations for interconnected geo-distributed data-centers,
where WAN links are extremely expensive [3], [4].

The second problem (Section III) goes even further: starting
from a given network topology, we allow shrinking edges and
merging nodes of the original network, simplifying it while
preserving its routing capabilities. We first define the notion
of routing equivalence between two networks, a property that
allows to map coherent sets of routes (called bandwidth alloca-
tions in what follows) between the networks while preserving
capacities. The simplified network can be used to find band-
width allocations, and they can be mapped back to the original
topology. Hence, we introduce network transformations that
simplify the network while preserving routing equivalence.
For instance, Fig. 2a shows a simplified routing equivalent
graph G′ for a more complex graph G; Fig. 2b shows a
bandwidth allocation from s to d on G′ and how it maps to
G; and vice versa. One can construct simple routes on G′ and
then map them back to G. Unfortunately, routing equivalence



Fig. 3. Examples: Different maximal flows lead to different total capacity.

is a strong property. In Section III, we explore additional
transformations that relax it, allowing further simplifications:
even without a 1-to-1 mapping between bandwidth allocations,
one can guarantee that any bandwidth routed from sources
to destinations in one network is also feasible in the other.
Finally, in Section IV we explore further possibilities. First
we show an instance of the well-known Braess’ Paradox in
our context: removing a link from a network may not affect
its capabilities negatively but rather allow to drastically reduce
its size. Second, we find a fundamental tradeoff between
additional network topology simplification and extra capacity
that would be required to achieve it.

Our analytic results are supported by a solid simulation
study on real network topologies (Section V) that confirm
that proposed transformations are applicable in practice. In
particular, adding 10-30% extra capacity to real world net-
works allows to simplify them to a star topology (connecting
sources and destinations through a single switch), where all
routing and bandwidth allocation decisions can be mapped
back to the original network. This represents an important step
towards improving the management of virtualized network
infrastructure. We conclude the paper with Section VII, where
we discuss further extensions.

II. CAPACITY PLANNING

In this section, we consider capacity minimization for a
given network with a predefined set of sources and destina-
tions, aiming to minimize capacity transparently to bandwidth
allocation methods. Informally, a bandwidth allocation is a
set of paths between sources and destinations, with bandwidth
values assigned to them, that satisfy link capacity constraints.

The maximal network flow between sources and destinations
could be used to find a potential reduction in required network
capacities. Clearly, if we find maximal flow values for every
link we can safely reduce original capacities to these values:
there is no way to allocate more bandwidth between sources
and destinations through each specific link. Unfortunately, two
different instances of maximal network flow can result in
different total network capacity. For a very simple example,
observe on Fig. 3 (left) that the maximal flow through the
top path leads to total capacity 3, and the max flow through
the bottom path leads to total capacity 4; this can add up
to arbitrarily large discrepancies (Fig. 3, right). Besides, ob-
jectives of various bandwidth allocation methods can extend
beyond optimal reuse of underlying network infrastructure and
can be application-specific. For instance, one objective can be
to allocate bandwidth along a “shortest” path for low-latency
traffic, while using the “cheapest” for another; both objectives
can be implemented simultaneously within the same network
by different applications. All this has led us to the formal
notion of bandwidth equivalence between two networks.

A. Bandwidth Equivalence

As a network interconnect, we consider a weighted directed
network G = (V,E,w, S,D) without self-loops, where V is
a set of vertices, E is a set of edges among them, and w :
E → R+ is a weight function that represents an available
capacities on edges. In addition some vertices in V are marked
as sources S ⊂ V and destinations D ⊂ V . We assume that
source vertices do not have incoming edges and destination
vertices do not have outgoing edges1.

We begin with the notion of bandwidth allocation; the intu-
ition is to define a set of routing paths together with specific
bandwidths allocated along these paths. Namely, a bandwidth
allocation A = (P, f) on a network G = (V,E,w, S,D) is
a set of edge-simple paths P = {p1, . . . , pk} and a function
f : P → R+ such that:
(1) ∀i ∈ [1, k], path pi = (v1, . . . , vli) starts at a source vertex

v1 ∈ S and ends at a destination vertex vli ∈ D;
(2) f(pi) ≥ 0 for every i (nonnegativity);
(3) for every e ∈ E,

∑
p∈P :e∈p f(p) ≤ w(e) (capacity

constraints).
Note that paths in a bandwidth allocation can contain loops
(but cannot cross the same edge twice).2

Two weighted networks G = (V,E,w, S,D) and G′ =
(V,E,w′, S,D) with the same graph structure but possibly
different weight functions w and w′ are called bandwidth
equivalent, denoted G ' G′, if every bandwidth allocation A
on network G is also a bandwidth allocation on network G′,
and vice versa. This definition does not depend on a specific
objective such as minimizing the number of edges or nodes.

For a simple example of bandwidth equivalence, see Fig. 1:
all three networks are bandwidth equivalent and can support
the same bandwidth allocations. However, the network on the
right of Fig. 1 is special: one cannot further reduce the capacity
of any edge in this network without violating bandwidth
equivalence. We call a network G∗ = (V,E,w∗, S,D) a
minimal bandwidth network if, for every network G = (V,E,
w, S,D) such that G ' G∗, it holds that w∗(e) ≤ w(e) for
every e ∈ E. Note that this definition uses a specific objective,
the total capacity of all edges

∑
e∈E w(e).

B. Existence and Uniqueness of Minimal Bandwidth Networks

The first problem we consider is to find the minimal
bandwidth network G∗ in the bandwidth equivalence class of
a given network G. Note that if a minimal bandwidth network
equivalent to a given G exists and is unique, it obviously
also minimizes the total capacity of all edges

∑
e∈E w∗(e);

however, it is not obvious that it exists at all. Fortunately, we
can provide a constructive definition: an explicit algorithm to
construct minimal bandwidth networks. Given a network G,
the brute force (BF) algorithm to find G∗ works as follows:

1If they do, we can simply replace an internal source vertex s by an internal
node vs and a new source s′ linked to that internal node vs with an infinite
capacity edge, and similarly for an internal destination vertex.

2The notion of bandwidth allocation is similar in spirit to flow decomposi-
tion: we partition a flow into a set of weighted paths; the difference is that in
flow decomposition no cycles are allowed, and all path weights are positive.



Fig. 4. The subgraph Ge used in the DAG-OPT algorithm.

• for every subgraph G′ ⊆ G with induced edge capacities,
compute max-flow fG′ from sources S to destinations D;

• for every edge e ∈ E, set its capacity in G∗ to the max-
imum of all flow values, i.e., w∗(e) = maxG′⊆G fG′(e).

Theorem 1. For every input network, the BF algorithm
computes a minimal bandwidth network G∗ that is unique.

C. Polynomial Time Algorithm for DAGs

The BF algorithm is obviously exponential since it includes
enumerating all subgraphs. We show now an algorithm that
finds the minimal bandwidth network in polynomial time if the
graph has no cycles; since we restrict the algorithm to directed
acyclic graphs (DAGs), we call it DAG-OPT. To find a minimal
bandwidth network equivalent to a DAG G = (V,E,w, S,D),
DAG-OPT proceeds as follows:

(1) sort vertices of G in topological order: u ≤ v if G has a
path from u to v (here we use the fact that G is a DAG);

(2) for every edge e = (u, v):
(i) consider the subgraph Ge of G induced by the vertex

set Ve which contains vertices comparable to u in the
topological order: Ve = {v′ ∈ V | v′ ≤ u} ∪ {v′ ∈
V | v′ ≥ v};

(ii) find a maximal flow f∗Ge
on Ge from sources to

destinations;
(iii) set the final capacity w∗(e) to the flow through e in

this maximal flow, w∗(e) = f∗Ge
(e).

This algorithm is illustrated in Fig. 4. Essentially, to find
the optimal capacity for an edge e we remove all vertices and
edges that are not connected to paths through e and solve the
maximal flow problem on the resulting subgraph, which can
be done in O(|V ||E|) time [5].

Theorem 2. The algorithm DAG-OPT outputs the minimal
bandwidth network G∗ equivalent to a given network (DAG)
G in time O(|V ||E|2).

D. Efficient Local Heuristic for Bandwidth Equivalence

We now present a local heuristic that, although it does
not find the minimal bandwidth graph in general, produces
good results in practice (see Section V). We also show that
this heuristic is optimal on graphs whose undirected version
is a forest, and, unlike DAG-OPT, it can be applied to
graphs with cycles. Moreover, this algorithm, called WPP, has
computational complexity O(|E|+ |V | log |V |), as opposed to
O(|V ||E|2) of DAG-OPT.

Consider a graph G = (V,E,w, S,D); the goal is to reduce
its total capacity

∑
e∈E w(e). Let us denote the total capacity

of the incoming and outgoing links of a vertex v by Iv and

Algorithm 1 Algorithm WPP(G)
1: N ← V
2: while N 6= ∅ do
3: Choose v ∈ N : min {Iv ,Ov} = minu∈N {Iu,Ou}
4: Apply WP to all edges e incident to v
5: N ← N \ {v}

Ov , respectively; we also denote Ie = Iu, Oe = Ov , for e =
(u, v) ∈ E.

The algorithm is based on a local capacity adjustment that
we call weight propagation (WP). WP uses a simple obser-
vation that an edge e ∈ E cannot transmit more bandwidth
than Ie or Oe.3 To apply WP to an edge e ∈ E is to set
w(e) ← min {w(e), Ie,Oe}; this yields a new graph which
is bandwidth equivalent to G. If w(e) > min{Ie,Oe}, by
applying WP to e we reduce its capacity and hence the total
capacity. WPP applies WP to the edges until no edge e satisfies
w(e) > min{Ie,Oe}. To bound the complexity, we need to
bound the number of WP applications, which is done by
carefully choosing the edges on which applying WP next.
WPP is presented in Algorithm 1: it processes the nodes of G,
chooses on each iteration an unprocessed node v with minimal
min {Iv,Ov} and applies WP to all edges incident to v.

As described, WPP runs for |V | iterations, and the WP
process is applied to every edge at most twice. The node v
for each iteration can be chosen with a strict Fibonacci heap
[6], which is created with complexity O(|V |), but in which
finding the minimum and decreasing a value takes constant
time, and deleting the minimum takes O(log |V |) time. Hence,
WPP has time complexity O(|E|+ |V | log |V |). It also holds
that once WPP is completed, all edges of the resulting graph
G′ = (V,E,w′, S,D) satisfy w′(e) ≤ min{I ′e,O ′e}.

Theorem 3. The algorithm WPP, after processing graph
G = (V,E,w, S,D), outputs a graph G′ = (V,E, w′, S,D)
such that G′ ' G and, ∀e ∈ E,w′(e) ≤ w(e) and
w′(e) ≤ min{I ′e,O ′e}, in time O(|E|+ |V | log |V |).

Observe that we do not claim that the graph G′ obtained by
WPP is the minimal bandwidth graph equivalent to G, because
this is not always the case: WPP is local, and it is unable to
process far-reaching dependencies between not immediately
connected parts of the graph. For a formal counterexample,
see Fig. 5, where an edge with capacity 2 can never route
bandwidth larger than 1 (due to the bridge to destination with
capacity 1), but WP operations are inapplicable because locally
a bandwidth of 2 can be pushed further, and the bottleneck is
two steps away. Fig. 5b shows that in this way we can achieve
an arbitrarily bad approximation ratio between WPP and the
optimal total capacity: each of the k edges with capacity k can
be reduced to capacity 1 in the minimal bandwidth graph, but
will not be reduced at all by WPP, so the total capacity of the
graph output by WPP is k2+2k+1 vs. 3k+1 in the minimal
bandwidth graph. This example shows that algorithm WPP is

3In this section, we assume that every source s has Is = ∞ and every
destination d has Od = ∞; recall that sources have no incoming links and
destinations have no outgoing links.



Fig. 5. Counterexamples for the optimality of WPP: (a) simple example; (b)
arbitrary approximation ratio.

not guaranteed to find the minimal bandwidth graph in general.
However, first, as we will see in Section V, WPP achieves
excellent results in practice. And second, in the common
special case of a forest, WPP is optimal.

Theorem 4. Let G = (V,E,w, S,D) be a graph such that its
undirected version is a forest. Then WPP applied to G outputs
the minimal bandwidth network G∗ equivalent to G.

III. NETWORK TOPOLOGY TRANSFORMATIONS

We have shown how to reduce the total capacity of a
network while preserving its original topology. This is required
in some problems (e.g., capacity planning) but in case of
network simplification/virtualization the objective is different:
simpler network management. The idea of network topology
transformations that we introduce in this section is to find, for
a network G, a simpler network G′ that can satisfy exactly the
same bandwidth requests as G. Since G′ is simpler, the feasi-
bility of bandwidth requests can be checked more efficiently.
Such transformations can be used to simplify management,
representing a complex network with a much simpler structure
which is easier to manage/configure.

In this section we explore this idea at two levels. First, we
look for a network G′ that can be used to simplify routing:
routing is done in the simple network G′, and the routes found
are mapped 1-to-1 to routes in the original network G. Second,
we show that one can simplify the network even further at the
cost of losing the 1-to-1 correspondence between routes, while
still preserving the feasibility property. We have summarized
the proposed transformations in Figure 6.

A. Routing Equivalent Transformations

We begin by defining the concept of routing equivalence,
which can be viewed as an extension of bandwidth equiv-
alence. Intuitively, two networks are routing equivalent if
they can carry the exact same set of bandwidth allocations
(as defined in Section II-A), even though they may have a
completely different structure. Formally, two networks G =
(V,E,w, S,D) and G′ = (V ′, E′, w′, S,D) with the same
set of sources and destinations are routing equivalent if there
is a one-to-one mapping g : PathG(S,D) → PathG′(S,D)4

between paths from sources to destinations on G and G′ that
preserves bandwidth allocations. I.e.,

4PathG(A,B) is the set of paths in network G = (V,E) that begin in
A ⊆ V and end in B ⊆ V .

Fig. 6. Topology transformations: (a) shrinking non-bottleneck incoming
edge; (b) shrinking non-bottleneck outgoing edge; (c) merging parallel edges;
(d) removing self-loops; (e) path of length 2.

(1) for every bandwidth allocation A = ({p1, . . . , pk}, f)
on network G, A′ = ({g(p1), . . . , g(pk)}, f ′), where
f ′(g(p)) = f(p), is a bandwidth allocation on G′;

(2) and vice versa, for every bandwidth allocation A′ =
({p′1, . . . , p′k}, f ′) on network G′, A = ({g−1(p′1), . . . ,
g−1(p′k)}, f), where f(p) = f ′(g(p)), is a bandwidth
allocation on G.

Our objective is to propose ways to transform a network
G into a simpler routing equivalent network G′. The transfor-
mation process must also provide the function g−1 that maps
any bandwidth allocation on the simple network G′ back to
G. The proposed transformations are illustrated in Figure 6.
They can be summarized in the following two heuristics.

1. Shrinking a non-bottleneck incoming edge. The most
general form of this heuristic is shown on Fig. 6a. Consider
an edge e = (u, v) such that u /∈ S, v /∈ D, and u 6= v.5

If e has capacity w(e) = M and its outgoing edges have
aggregate capacity Ov =

∑
ej∈Outv

w(ej) ≤M , then e is not
a bottleneck in any bandwidth allocation and can be shrunk
into a single node u. This means that node v and edge e
disappear, each edge ej = (v, xj) ∈ Outv is replaced by a
new edge e′j = (u, xj) with capacity w(e′j) = w(ej) = nj ,
and each edge ai = (y, v) ∈ Inv is replaced by a new
edge a′i = (y, u) with capacity w(a′i) = w(ai). The func-
tion g maps a path p = (. . . , e′, e, ej , . . .) ∈ PathG(S,D)
into g(p) = (. . . , e′, e′j , . . .) Note that g is 1-to-1 since a
path p′ = (. . . , e′, e′j , . . .) ∈ PathG′(S,D) is mapped to
either g−1(p′) = (. . . , e′, e, ej , . . .) (if e′ ∈ In(u)) or to
g−1(p′) = (. . . , ai, ej , . . .) (if e′ = a′i is one of the new edges
that replaced Inv). Fig. 6a illustrates this case, and Fig. 6c
shows an important special case when l = 1.

2. Shrinking a non-bottleneck outgoing edge. This heuristic
is symmetric to the previous one, as shown in Fig. 6b, but with
respect to the aggregate capacity of the edges incoming to u.

5Self-loops may have appeared in the shrinking process.



If Iu =
∑

j∈Inu
w(ej) ≤ N the link e = (u, v) is shrunk

into a single node v. The mapping function g is similar to
the previous case. As before, Fig. 6c is a special case of this
heuristic when k = 1.

Note that Transformations 1 and 2 reduce simultaneously
the number of edges in the network, the number of vertices
in the network, and the total capacity of all edges.

Theorem 5. The network G′ = (V ′, E′, w′, S,D) obtained
by applying Transformations 1 and 2 to a network G =
(V,E,w, S,D) is routing equivalent to G.

B. Bandwidth Preserving Transformations

Transformations 1 and 2 proposed in the previous subsection
produce routing equivalent simpler graphs. In this section,
we introduce a relaxation of the routing equivalence property,
called bandwidth-preserving routing transformation, allowing
for even simpler graphs. Intuitively, the property that is guar-
anteed by a bandwidth preserving routing transformation is
that any feasible allocation in the derived graph G′ can be
realized in graph G. The bad news is that the routes are not
directly given by mapping g, since it is not 1-1 anymore. The
good news is that this relaxed property allows to apply new
graph transformations that in most cases allow to end up with
a much simpler graph G′.

For two networks G = (V,E,w, S,D) and G′ = (V ′, E′,
w′, S,D) with the same set of sources and destinations, a
bandwidth-preserving routing transformation is a mapping g :
PathG(S,D) → PathG′(S,D) between paths from sources
to destinations on G and G′ that satisfies the following:
(1) for every bandwidth allocation A = ({p1, . . . , pk}, f)

on network G, A′ = ({g(p1), . . . , g(pk)}, f ′), where
f ′(g(p)) =

∑
q∈g−1(g(p)) f(q), is a bandwidth allocation

on G′;
(2) for every bandwidth allocation A′ = ({p′1, . . . , p′k}, f ′)

on network G′, there exists a function f : ∪ki=1g
−1(p′i)

→ R such that f ′(p′) =
∑

p∈g−1(p′) f(p) and A =

(∪ki=1g
−1(p′i), f) is a bandwidth allocation on G.

We add the following two transformations.
3. Merge parallel edges. If there are two parallel edges with

capacities m and n from vertex u to vertex v, we can replace
(merge) them by one new edge from u to v with total capacity
m+ n. This transformation is illustrated in Fig. 6d.

4. Remove self-loops. After some transformations, self-loops
may arise in the graph; they can be simply removed (Fig. 6e).

Figure 7b-g shows how the repetitive application of the
above transformations can drastically simplify a graph.

Theorem 6. Transformations 3 and 4 are bandwidth preserv-
ing routing transformations.

For the special case in which the initial graph G is a
forest, it is easy to see that the graph G′ obtained with
any bandwidth-preserving routing transformation g, is in fact
routing equivalent. This follows since a path p′i in G′ from
s ∈ S to d ∈ D can only be the image of a unique path from
s to d in G, and hence g is 1-to-1.

Fig. 7. Example of Braess’ Paradox and the tradeoff between total capacity
and topology optimization: (a) original graph; (b) graph with one edge
capacity increased; Transformation 2 is applied to link (b, c); (c-g) further
simplifications (dashed lines) lead to total collapse of the graph.

Observation 7. A bandwidth preserving routing transforma-
tion applied to a forest G = (V,E,w, S,D) generates a graph
G′ = (V ′, E′, w′, S,D) that is routing equivalent to G.

IV. TRADEOFFS AND A PARADOX

In the previous section we have proposed various transfor-
mations that aim to reduce edge capacities and network topol-
ogy as much as possible to simplify network management.
Now, we explore the options we have with a network that
cannot be further simplified with those transformations; we
will see that sometimes there is yet more to be done.

We begin with a paradoxical network shown on Fig. 7a:
the network allows to route bandwidth of 3 from s to d.
None of the transformations proposed above can be used to
simplify the network. Surprisingly, after removing one edge,
the central edge e = (a, b) of capacity 1, we can start a chain
of transformations that lead to the trivial graph on Fig. 7g.
Note that the bandwidth that can be sent from s to d in the
network is not affected by the removal of edge e from Fig. 7a,
so this is a bandwidth-preserving routing transformation. This
phenomenon can be regarded as an instance of the well-known
Braess’ Paradox [7], and it is worth to be studied further; e.g.,
is there an efficient algorithm for identifying edges that hinder
simplification without any side benefits?

Starting again from a network that cannot be simplified
with transformations shown above, we consider a fundamental
tradeoff between network topology simplification and extra
capacity required to achieve it. As a motivating example, see
Fig. 7 again: the original graph Fig. 7a is irreducible, but if
we increase the capacity of a single edge e′ = (b, c) by 1
(Fig. 7b), the graph again collapses to Fig. 7g.

One can define optimization problems related to this tradeoff
in a natural way. The general problem is to find the best
possible allocation of extra capacity to simplify the resulting
graph. The simplest possible graph is the star graph, that
has one inner node connected to all sources via incoming
edges and to all destinations via outgoing edges (Fig. 7g is



a star graph). The problem can be posed in several versions:
(a) given a capacity budget C, find the allocation of this
capacity budget to edges of the input graph such that the
resulting graph can be simplified as much as possible (in terms
of the number of edges, number of vertices, or both) with
bandwidth-preserving routing transformations; (b) what is the
minimal total capacity that has to be added to the graph so that
there exists a bandwidth-preserving routing transformation to
a star graph. Both problems (a) and (b) are hard optimization
problems. For Problem (a) we propose a local heuristic to
find a reasonable tradeoff value: After repeatedly applying
transformations from Section III, we are left with a graph
where every edge is a bottleneck (and hence transformations
1 and 2 cannot be applied). We choose the best edge e to
augment its capacity with the following greedy algorithm:
(1) for every edge e ∈ E of graph G,

(i) find the minimal capacity we such that, by increasing
its capacity to w(e)+we, e stops being a bottleneck;

(ii) repeatedly apply Transformations 1–4 from Sec-
tion III to the graph obtained from G by setting
w(e) ← w(e) + we, getting reduced bandwidth
equivalent graph Ge;

(iii) measure the resulting graph complexity C(Ge);
(2) choose e such that C(G)−C(Ge)

we
is maximal.

Here one can use different graph complexity measures C(G)
depending on the objectives, e.g., number of edges, number
of vertices, their sum, and so on. To solve problem (b) this
process has to be repeated until a star graph is obtained; these
heuristics will be evaluated in the next section.

V. EVALUATION

In this section, we present experimental results generated
by our heuristics. We have used graph topologies generated
by the topobench library [8], [9] and by the networkx python
library. In particular, we have generated a number of bench-
mark graphs in the following topologies: Fat Tree [10],
a common topology of choice in modern data centers and
high-performance computing; Jellyfish [11], [12], a recently
proposed random topology for high throughput data centers;
VL2 [13], a heterogeneous network structure proposed for data
centers; SWDC ring topology [14] that connects nodes in a
data center at random according to a distribution based on
small-world networks; Dragonfly [15] that aims to reduce the
network diameter by creating a virtual router out of a group of
routers; powerlaw cluster graph randomly generated with the
Holme and Kim algorithm [16], which are random graphs of
real world networks naturally arising in social networks and
similar environments; hypercube regular topology [17] often
used in high-performance computing.

Undirected unweighted topologies have been converted into
directed acyclic graphs; we also assigned a capacity to every
edge and labeled several first and last vertices in the chosen
topological order as source and destination vertices. After
this procedure, we obtained a collection of directed acyclic
graphs that reflect various topologies suggested for modern

data centers. We have tested our algorithms across a wide
variety of different generation parameters for each topology;
the tables below reflect only some characteristic examples. An
implementation of our algorithms together with sample topolo-
gies that can be used to recreate Tables I and II can be found
at http://github.com/infocom2017anonymous/virtualization.

In the first experiment, we ran our capacity reduction
algorithms, DAG-OPT which is optimal for directed acyclic
graphs, and the approximation heuristic WPP, on the generated
topologies. The results are shown in the WPP and DAG-OPT
columns of Table I. Results show that in most cases, we are
able to reduce the total graph capacity very significantly. (The
figures on bold are reductions of at least 50%.)

The rest of Table I shows the results of our topology
reduction heuristics. We show the routing equivalent and
routing non-equivalent heuristics in three versions: starting
from the original graph, starting from the WPP-reduced graph,
and starting from the graph reduced by DAG-OPT. We see
in Table I that for most topologies, the proposed heuristics
are able to significantly reduce the graph topology, sometimes
reducing the number of edges and vertices by a factor of 5 or
more. Figures in bold show a reduction of at least 50%.

Finally, our most interesting results deal with the capacity
vs. simplicity tradeoff as discussed in Section IV. In these
experiments, we evaluate how much capacity we need to add to
completely collapse the graph into a star graph. Table II shows
numerical results; we show how much extra capacity is needed
to collapse the graph in the two cases: with routing equivalent
and routing non-equivalent transformations. Note that in most
cases, the required extra capacity represents less than 35%
of the total original capacity (shown in bold); the table also
shows two cases (SWDC ring and Dragonfly) when the graph
is collapsed with no extra capacity. Hence, our experiments
let us conclude that network virtualization can be achieved in
most currently used network topologies at a small cost.

VI. RELATED WORK

A long research line considers various characteristics, such
as sparse cuts and bisection bandwidth, to represent throught-
put performance. REWIRE computes a network topology with
maximal bisection bandwidth and minimal end-to-end latency
by satisfying user constraints. In [18], “topology switching” is
considered to return control to individual applications and let
them decide how best to route data among their nodes. In [19],
network topologies based on error-correcting codes optimize
the bisection bandwidth characteristic. Many architectures for
high-performance datacenters have been proposed [20], [21],
[22], [23], [11], [24], [25] (to list just a few). In most cases,
these works concentrate on evaluating specific architectures
and comparing them; throughput optimization is considered
in [26], [27], expandability in [28], and failure resiliency
in [29], [30], [31]. On the other hand, there is a distinct
lack of fundamentals that allow to build network topologies
with desired properties or preserve them after simplifica-
tion/virtualization, and this is exactly what we attempt to do
in this work.



Original graph Reduced Routing equivalent Routing non-equivalent
DAG Original WPP DAG-OPT Original WPP DAG-OPT

Topology |V | |E| Capac. WPP OPT |V | |E| Capac. |V | |E| Capac. |V | |E| Capac. |V | |E| Capac. |V | |E| Capac. |V | |E| Capac.
Fat Tree 330 2305 12670 9169 1780 207 2168 11807 202 2163 8672 61 2022 1546 177 1520 10802 201 1634 8649 53 349 1411

328 1389 7535 5258 5089 150 1195 6320 145 1190 4627 143 1188 4468 119 746 4958 143 913 4406 133 883 4124
Jellyfish 50 285 21721 20504 20504 36 256 21278 36 256 20205 36 256 20205 36 248 21278 36 248 20205 36 248 20205

60 374 28827 27258 27258 42 339 27873 42 339 26586 42 339 26586 41 320 27576 41 312 26297 41 312 26297
50 282 21795 20443 20443 36 257 21336 36 257 20110 36 257 20110 36 248 21300 36 236 19983 36 236 19983

VL2 67 212 1021 694 663 19 151 734 18 150 555 18 150 526 19 73 724 18 69 548 18 69 519
102 351 1725 1163 1163 27 260 1257 25 258 932 25 258 932 13 23 567 22 94 858 22 94 858
112 312 1604 883 883 21 209 1010 14 202 606 14 202 606 18 40 848 13 25 482 13 25 482

SWDC ring 42 105 6010 5132 5132 19 65 4592 19 65 4218 19 65 4218 17 50 4097 18 53 4066 18 53 4066
26 63 2658 2170 2170 11 31 2115 11 31 1896 11 31 1896 11 29 2115 11 29 1896 11 29 1896
18 38 752 486 486 5 8 533 5 8 402 5 8 402 5 6 533 5 6 402 5 6 402

Dragonfly 65 193 14091 12733 12660 39 149 12040 37 147 11059 37 147 11016 30 112 9630 32 114 9686 34 122 10120
Powerlaw 60 122 7937 2207 2181 22 68 5107 12 58 1605 13 59 1670 19 48 4052 12 27 1571 13 32 1636

110 220 16617 2138 2039 30 126 9782 13 109 1795 13 109 1696 29 95 9181 13 28 1773 12 27 1512
210 422 32758 4196 2999 48 244 18759 19 215 3122 15 211 2107 40 155 15507 19 57 2998 15 42 2021

Hypercube 138 472 37820 35201 35201 108 428 35164 104 424 32939 104 424 32939 107 418 34938 104 418 32939 104 418 32939
266 1049 83227 78565 78527 215 983 77922 203 971 73162 204 972 73253 213 968 77616 201 950 72781 202 953 72872
42 107 5955 5239 5185 22 70 4636 23 71 4514 23 71 4460 21 61 4401 23 66 4514 23 66 4460

TABLE I
EVALUATION RESULTS FOR CAPACITY PLANNING AND TOPOLOGY REDUCTION ALGORITHMS.

Original graph Routing equivalent Routing non-equivalent
DAG No tradeoff Added Tradeoff No tradeoff Added Tradeoff

Topology |V | |E| Capac. OPT |V | |E| Capac. capac. |V | |E| Capac. |V | |E| Capac. capac. |V | |E| Capac.
Fat Tree 320 2281 12670 1780 61 2022 1546 916 12 1973 1296 53 349 1411 236 12 11 400

318 1363 7535 5089 143 1188 4468 3886 13 1058 3451 133 883 4124 1189 12 16 338
Jellyfish 40 260 21721 20504 36 256 20205 14708 12 232 17003 36 248 20205 7253 12 29 9656

50 347 28827 27258 42 339 26586 17213 12 309 22722 41 312 26297 9700 12 47 16103
60 433 34936 31403 48 421 30459 28769 11 384 25496 47 391 30245 11354 10 17 8381

VL2 57 189 1021 663 18 150 526 207 13 145 493 18 69 519 102 13 12 298
92 325 1725 1163 25 258 932 385 12 245 838 22 94 858 73 12 11 356

102 290 1604 883 14 202 606 142 11 199 585 13 25 482 31 11 10 214
SWDC ring 32 78 6010 5132 19 65 4218 999 10 56 3424 18 53 4066 596 9 19 2309

16 36 2658 2170 11 31 1896 126 10 30 1824 11 29 1896 126 10 25 1702
8 11 752 486 5 8 402 0 5 8 402 5 6 402 0 5 6 402

Dragonfly 55 165 14091 12660 37 147 11016 6023 11 121 8078 34 122 10120 1857 11 25 3619
Powerlaw 50 96 7937 2181 13 59 1670 221 10 56 1514 13 32 1636 221 10 22 1360

100 196 16617 2039 13 109 1696 0 13 109 1696 12 27 1512 0 12 27 1512
200 396 32758 2999 15 211 2107 335 10 206 1886 13 35 1866 331 10 21 1515

Hypercube 512 2304 189832 184774 442 2234 177182 234913 13 1805 119874 440 2218 176841 99767 13 26 7530
256 1024 83227 78527 204 972 73253 77254 11 779 48215 202 953 72872 26286 11 21 5470
32 80 5955 5185 23 71 4460 1513 11 59 3632 23 66 4460 503 11 24 2788

TABLE II
EVALUATION RESULTS FOR TRADING CAPACITY FOR SIMPLICITY: EXTRA CAPACITY NEEDED TO REDUCE THE GRAPH TO A STAR GRAPH.

VII. DISCUSSION AND CONCLUSION

In this work we have shown how a network can be reduced
to a much simpler network, where sensible management and
routing decisions can be made. This is, however, only the
first step towards a much more ambitious goal: represent the
original network as a small virtual switch, where a richer set
of decisions (e.g., scheduling) can be made and mapped to
operations in the physical network.
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VIII. APPENDIX

Proof of Theorem 1. Let us first prove that G∗ ' G. Assume
not, then (1) there is some bandwidth allocation in G which
is not a bandwidth allocation in G∗ or (2) there is some band-
width allocation in G∗ which is not a bandwidth allocation in
G. In either case, since both graphs have the same topology,
the only property of a bandwidth allocation in one graph
that can be violated in the other is the capacity constraints.
Case (1) implies that there is some bandwidth allocation
A = (P, f) and some edge e such that

∑
p∈P :e∈p f(p)

> w∗(e). Let us consider the subgraph Ge of G induced
by the paths {p ∈ P : e ∈ p ∧ f(p) > 0} and let a
function fe that maps to each edge e′ ∈ Ge a flow fe(e

′) =∑
p∈P :e′∈p f(p). From the capacity constraints property of

A, the maximum flow fGe
between sources and destinations

in Ge must satisfy that fGe
(e) ≥ fe(e) =

∑
p∈P :e∈p f(p).

Since w∗(e) = maxG′⊆G fG′(e) ≥ fGe(e), we reach a

Fig. 8. Reducing a flow on any subgraph G′ to a flow on Ge: (a) original
flow f ; (b) path decomposition of f : black paths include edge e, grey paths
go through other edges in the cut; (c) the final reduced flow f ′.

contradiction, and such A does not exist. In case (2) we assume
that there is some bandwidth allocation A = (P, f) in G∗

and some edge e ∈ E such that
∑

p∈P :e∈p f(p) > w(e).
This is impossible because from the BF algorithm it holds
that w∗(e) ≤ w(e), and by definition of bandwidth allocation
we have that

∑
p∈P :e∈p f(p) ≤ w∗(e). Hence we reach a

contradiction again, concluding that G∗ ' G.
The fact that G∗ is the minimal bandwidth graph follows

from the following observation. Consider any edge e and a
graph Ge ⊆ G such that, when computing the maximal flow
in Ge, fGe

(e) = maxG′⊆G fG′(e) = w∗(e). Applying flow
decomposition, we can obtain a set of paths P and a value
f(p) for each p ∈ P , so that A = (P, f) is a bandwidth
allocation in G. Observe that

∑
p∈P :e∈p f(p) = fGe(e) =

w∗(e). Hence, A must also be a bandwidth allocation in any
graph G′ ' G, G′ = (V,E,w′, S,D). Also, by definition of
bandwidth allocation,

∑
p∈P :e∈p f(p) = w∗(e) ≤ w′(e).

Proof of Theorem 2. We show that DAG-OPT produces the
same result as the BF algorithm from Theorem 1. In fact,
DAG-OPT can be viewed as a restriction of BF: instead of
all (exponentially many) subgraphs, we only consider |E|
subgraphs Ge. Hence, the question is why the largest flow
through e over all subgraphs of G equals the largest flow
through e in the subgraph Ge. Assume for the sake of
contradiction that some maximal flow f on some subgraph
G′ ⊆ G assigns a larger value to edge e than f∗e (i.e.,
f(e) = fG′(e) > f∗e (e)). Then we perform a reduction on
flow f illustrated on Fig. 8a; namely, we construct the new
flow f ′ as follows: (1) perform flow decomposition of f
into paths P = {p1, . . . , pk} from sources to destinations;
there are no cycles in the decomposition since we use a dag;
(2) construct a new flow f ′ as the composition of those paths
p ∈ P that contain edge e (Fig. 8b). After this reduction,
we get a flow f ′ (Fig. 8c) that has the following properties:
(1) it is a flow on subgraph Ge: f ′(e′) = 0 if e′ /∈ Ge;
this holds since if an edge e′ is not topologically comparable
to e, it cannot belong to the same path as e; (2) the flow
through e is preserved: f ′(e) = f(e); this holds since we
preserve all paths going through e. Thus, from the flow f on
subgraph G′ we have constructed a corresponding flow f ′ on
Ge that assigns the same value to edge e. So f ′(e) > f∗e (e),
a contradiction. The computational complexity of DAG-OPT
is dominated by computing maximal flow in each of |E|
subgraphs (the only other procedure is the topological sort
which takes O(|V |+ |E|) time and has to be run once).



Proof of Theorem 3. The complexity of algorithm WPP was
already derived in Section II-D. Let us now prove that G′ ' G
by proving that WPP preserves bandwidth equivalence.

Lemma 8. Let G′ = (V,E,w′, S,D) be the graph obtained
after applying WP to edge e in graph G = (V,E, w, S,D).
Then G ' G′.

Proof. Observe that w′(e) = min {w(e), Ie,Oe} while
w′(e′) = w(e′),∀e′ 6= e. Trivially, any bandwidth allocation
in G′ is also a bandwidth allocation in G. Let us now consider
an allocation A = (P, f) in G, and assume for contradiction
that it is not an allocation in G′. For this to happen it must
occur that

∑
p∈P :e∈p f(e) > w′(e) = min {w(e), Ie,Oe}. By

definition of bandwidth allocation
∑

p∈P :e∈p f(e) ≤ w(e) and
hence w(e) > w′(e) and w′(e) = min {Ie,Oe}. Assume
wlog that w′(e) = Ie, and let e = (u, v). Node u is
not a source, because by assumption in WP sources use
Is = ∞. Then, all the paths in P that cross e also cross
links incoming to u. For each such link e′ ∈ Paru, it holds
that

∑
p∈P :e′∈p f(e

′) ≤ w(e′). Hence,
∑

p∈P :e∈p f(e) ≤∑
e′∈Paru

∑
p∈P :e′∈p f(e

′) ≤
∑

e′∈Paru
w(e′) = Iu = Ie =

w′(e), a contradiction. The case w′(e) = Oe is symmetric.

By Lemma 8, after WPP the graph G′ is bandwidth equiva-
lent to the original G, and the fact that ∀e ∈ E,w′(e) ≤ w(e)
is also immediate from the WP process. All we need to show
now is that ∀e ∈ E,w′(e) ≤ min{I ′e,O ′e}.

We number iterations of the while loop in WPP (Algo-
rithm 1) from 1 to |V |. We number each vertex in V by the
iteration in which it is chosen in line 3, so that the vertex
chosen on iteration i is denoted vi. When convenient, we add
an iteration number as superscript to a variable or a value
to indicate that we take the value of that variable after the
execution of that iteration of the while loop (a superscript
of 0 indicates the initial value before entering the loop). We
denote the value min {Iu,Ou} as Mu, for any u ∈ V .

Lemma 9. At the end of Iteration i of the while loop,
(1) the value of Mvi did not change in the iteration, i.e.,

M i−1
vi = min {I i−1vi

,O i−1
vi } = min {I ivi ,O

i
vi} = M i

vi .
(2) all edges e incident to vi have w(e) ≤ Mvi , i.e., ∀e ∈

Parvi ∪ Chivi , w
i(e) ≤M i

vi .
(3) all nodes vj , j > i, have M i

vi ≤M i
vj .

Proof. We assume w.l.o.g. that M i−1
vi = I i−1vi . By definition

of I i−1vi , every edge e ∈ Parvi ≤ M i−1
vi , and the application

of WP to e on Iteration i does not change the value of w(e).
Hence, I ivi = I i−1vi . On the other hand, every edge e ∈ Chivi
either has (a) wi−1(e) ≤ M i−1

vi or (b) wi−1(e) > M i−1
vi . In

case (a), WP does not change w(e). In case (b), w(e) changes
so that wi(e) = M i−1

vi = I ivi . If every edge e ∈ Chivi falls
into case (a) then O i

vi
= O i−1

vi . If at least one edge e is in
case (b), O i

vi
≥ I ivi . In total, M i

vi = I ivi = I i−1vi = M i−1
vi ,

showing the first claim. The second claim is immediate from
WP and the first claim. For the third claim, we have several
cases. If vj is not a neighbor of vi, the value of Mvj cannot
change during Iteration i. If vj is connected to vi only with

edges e that satisfy wi−1(e) ≤M i−1
vi , the value of Mvj does

not change during the iteration. Finally, if vj is connected to
vi with at least one edge e that has wi−1(e) > M i−1

vi , since it
becomes wi(e) = M i

vi , even if Mvj is reduced, it still remains
M i

vj ≥M i
vi . This completes the case M i−1

vi = I i−1vi . The case
M i−1

vi = O i−1
vi is symmetric.

As observed, since each node in V is processed in a different
iteration of the while loop in Algorithm 1, WP is applied to
and edge e = (vi, vj) twice, in iterations i and j.

Lemma 10. The second time WP is applied to an edge e ∈ E
in Algorithm WPP, the value of w(e) is not changed.

Proof. Assume WP is applied to e in iterations i and j, with
i < j. By Lemma 9, at the end of iteration i we have that
wi(e) ≤ M i

vi and ∀k > i,M i
vi ≤ M i

vk
. Applying Lemma 9

iteratively, we get M i
vi ≤ M i

vi+1
= M i+1

vi+1
≤ M i+1

vi+2
= · · · ≤

M j−1
vj . So, when WP is applied to e on iteration j, wj−1(e) =

wi(e) ≤M i
vi ≤M j−1

vj , and w(e) does not change.

Lemma 11. After executing Algorithm WPP, there is no edge
e such that w′(e) > min{I ′e,O ′e}.

Proof. Assume by way of contradiction that after executing
Algorithm WPP there is an edge e such that w′(e) >
min{I ′e,O ′e}. Assume that WP was applied to e in iterations
i and j such that i < j. By definition of WP, it must have
happened that Ie, Oe, or both, have been reduced after iteration
j. Hence, in some iteration k > j some edge e′, with a vertex
in common with e, has reduced its capacity. However, iteration
k is the second time WP is applied to e′ (the first time was
either iteration i or iteration j), and by Lemma 10 its capacity
cannot change. Hence, we have reached a contradiction, and
the edge e does not exists.

This concludes the proof of the theorem.

Proof of Theorem 4. Let us consider the graph G′ =
(V,E,w′, S,D) obtained from G applying WPP. For each
edge e ∈ E, we obtain the graph G′e and the maximal flow f∗e
in G′e as described in algorithm DAG-OPT. We claim that ∀e ∈
E, f∗e (e) = w′(e), which implies the claim from the properties
of DAG-OPT and Theorem 2. Assume this is not the case by
way of contradiction, i.e., there is an edge e = (u, v) such
that f∗e (e) < w′(e). From Theorem 3 we have that w′(e) ≤∑

e′∈Inu
w′(e′) = I ′e and w′(e) ≤

∑
e′∈Outv

w′(e′) = O ′e.
Consider all edges e′ = (x, y) in the paths from the sources
to e in G′e. From Theorem 3 we have that in these edges
w′(e′) ≤

∑
e′′∈Inx

w′(e′′) = I ′e′ . Hence, the maximal flow
f∗e (e) has not been restricted in the paths from the sources to
e in G′e. Similarly, consider all edges e′ = (x, y) in the paths
from e to the destinations in G′e. From Theorem 3 we have
that in these edges w′(e′) ≤

∑
e′′∈Outy

w′(e′′) = O ′e′ . Hence,
the maximal flow f∗e (e) has not been restricted in the paths
from e to the destinations in G′e. This contradicts the fact that
f∗e is a maximal flow in G′e.


