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Abstract

This thesis tackles the optimization of energy efficiency in data centers in terms of network

and server utilization.

For what concerns networking utilization the work focuses on Energy Efficient Ethernet

(EEE) - IEEE 802.3az standard - which is the energy-aware alternative to legacy Ethernet, and an

important component of current and future green data centers. More specifically the first contri-

bution of this thesis consists in deriving and analytical model of gigabit EEE links with coalescing

using M/G/1 queues with sleep and wake-up periods. Packet coalescing has been proposed to save

energy by extending the sojourn in the Low Power Idle state of EEE. The model presented in this

thesis approximates with a good accuracy both the energy saving and the average packet delay by

using a few significant traffic descriptors. While coalescing improves by far the energy efficiency

of EEE, it is still far from achieving energy consumption proportional to traffic. Moreover, coa-

lescing can introduce high delays. To this extend, by using sensitivity analysis the thesis evaluates

the impact of coalescing timers and buffer sizes, and sheds light on the delay incurred by adopting

coalescing schemes. Accordingly, the design and study of a first family of dynamic algorithms,

namely measurement-based coalescing control (MBCC), is proposed. MBCC schemes tune the

coalescing parameters on-the-fly, according to the instantaneous load and the coalescing delay

experienced by the packets. The thesis also discusses a second family of dynamic algorithms,

namely NT-policy coalescing control (NTCC), that adjusts the coalescing parameters based on

the sole occurrence of timeouts and buffer fill-ups. Furthermore, the performance of static as well

as dynamic coalescing schemes is investigated using real traffic traces. The results reported in this

work show that, by relying on run-time delay measurements, simple and practical MBCC adap-

tive coalescing schemes outperform traditional static and dynamic coalescing while the adoption

of NTCC coalescing schemes has practically no advantages with respect to static coalescing when

delay guarantees have to be provided. Notably, MBCC schemes double the energy saving benefit

of legacy EEE coalescing and allow to control the coalescing delay.

For what concerns server utilization, the thesis presents an exhaustive empirical characteriza-

tion of the power requirements of multiple components of data center servers. The characteriza-

tion is the second key contribution of this thesis, and is achieved by devising different experiments

to stress server components, taking into account the multiple available CPU frequencies and the

presence of multicore servers. The described experiments, allow to measure energy consumption

XI
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of server components and identify their optimal operational points. The study proves that the

curve defining the minimal CPU power utilization, as a function of the load expressed in Active

Cycles Per Second, is neither concave nor purely convex. Instead, it definitively shows a super-

linear dependence on the load. The results illustrate how to improve the efficiency of network

cards and disks. Finally, the accuracy of the model derived from the server components con-

sumption characterization is validated by comparing the real energy consumed by two Hadoop

applications - PageRank and WordCount - with the estimation from the model, obtaining errors

below 4.1%, on average.
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Chapter 1

Introduction

During the past years a lot of effort has been invested to increase processing, communication,

switching speed and data storage with little effort to optimize the power consumption. According

to [34], about 14 TWh were consumed in 2005 by the telecom core network in EU-251 and the

yearly consumption is expected to increase to about 30 TWh by 2020. Similarly, data center in-

frastructures have become one of the largest and fastest growing consumers of electricity globally,

surpassing the aviation industry in terms of energy consumption [19]. To put this into perspec-

tive, in 2013, U.S. data center’s electricity consumption (91 TWh) was sufficient to power twice

the number of all the households in New York City [73]. As a result, ICT energy consumption

accounts for 3% of the global consumption and has an annual increase of ≈4.3% [90].

Although this power consumption is useful for the human beings, it is also potentially harm-

ful for our environment since it produces an augmented amount of CO2 emissions and highly

contributes to the greenhouse effect. The current threat to the environment could turn into a much

more serious threat in the near future, since there is a growing demand of new generation devices

that require connection to the Internet (Internet Of Things). In addition, existing network con-

nected devices are now increasing their bandwidth demands (e.g., Web servers, databases, etc.).

Indeed, the Internet traffic might grow with the number of data centers in the network and the

number of users that demand higher amounts of traffic such as bigger files, videos, TV over IP

etc. Hence, as the data traffic demand rises, especially in developing countries, more and more

energy consumption is expected for networking and data centers. Consequently, there is a grow-

ing interest to improve energy efficiency in networking and data center’s design, with obvious

environmental and financial motives.

In order to protect the environment and obtain lower service cost, Internet Service Providers

and Network Operators are currently deploying new strategies to reduce energy consumptions. A

first approach towards building greener ICT was the development of energy proportional com-

puting and networking infrastructures [30, 57]. This effort took advantage of energy efficient

hardware, like CPU voltage/frequency scaling and sleep states, low-power Ethernet and power-

1The first 25 countries that joined the European Union.
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4 Introduction

efficient OS-level resource management (e.g. on demand Linux governor and PowerNap [32]).

However, even at low utilization loads, in the order of 10%, both the network and the server

power consumption can reach up to 50% of its peak demand [36], allowing room for further

improvement.

To address this, the community additionally has proposed workload consolidation techniques

which: (i) keep all infrastructure always on but optimize trafic and task allocations to minimize

the number of low-utilized network links and machines, e.g. traffic engineering techniques and

Facebook autoscale [95], or (ii) turn-off part of the infrastructure and allocate traffic or tasks to

fewer but highly-utilized links or servers correspondingly.

In this context, this thesis investigates on the characterization of servers and the energy they

consume and on the recently approved Energy Efficient Ethernet (EEE) standard for power saving

in Local Area Networks.

Indeed, in order to obtain full benefit of the aforementioned energy-efficient techniques, it is

crucial to have a good characterization of servers in the data center, as a function of the utiliza-

tion of the server’s components. That is, it is necessary to know and understand the energy and

power consumption of servers and how this changes under the different configurations. There is

a large body of literature on characterizing servers’ energy and power consumption. However,

the existing literature does not jointly considers phenomena like the irruption of multicore servers

and dynamic voltage and frequency scaling (DVFS) [93], which are key to achieve scalability and

flexibility in the architecture of a server. With these new parameters, more variables come into

play in a server configuration. Learning how to deal with these new parameters and how they

interact with other variables is important since this may lead to larger savings.

To further reduce energy consumption, research has proposed workload consolidation algo-

rithms which concentrate computation into a subset of the data center infrastructures. Numerous

studies leverage live virtual machine (VM) migration, a modern virtualization functionality which

allows seamless relocation of VMs between physical hosts, with relatively short down-times. In

most cases, a consolidation strategy is encoded into a VM placement algorithm that maximize en-

ergy savings while fulfilling a minimum guaranteed level of performance, expressed in the form

of service-level-agreements (SLA). The evaluation of the proposed approximation algorithms is

typically based on custom simulation frameworks [14, 41] or small-scale testbeds [35, 76, 89].

Moreover, it has been traditionally considered that the CPU is responsible for most of the

power being consumed in a server, and that this power increases linearly with the load. Although

the power consumed by the CPU is significant, I believe that the power incurred by other elements

of the server, like disks and NICs (Network Interface Cards) are not negligible, and have to be

taken into account. Moreover, I believe that the assumption that CPU power consumption depends

linearly on the load in a server may be too simplistic, especially when the server has multiple

cores and may operate at multiple frequencies. In fact, even the way load is expressed has to

be carefully defined (e.g., it cannot be defined as a proportion of the maximal computational

capacity of the CPU, since this value changes with the operational frequency). Therefore, more
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complex/complete models for the power consumed by a server are necessary. In order to be

consistent, these models have to be based on empirical values. However, I found that there is a

lack of empirical work studying servers energy behavior.

In this thesis I partially fill this void of empirical analyses of server power consumption by

proposing a measurement-based characterization —which is the first of its kind— of the energy

consumption of a server components with DVFS and multiple cores. I evaluate here different

server machines and evaluate what is the contribution to their power consumption of the CPU,

hard drive disk, and network card (NIC). My results support, for instance, my belief that more

complex models than linear ones are required for CPU power consumption. From the measure-

ments obtained from the servers I evaluate, I propose a holistic energy consumption character-

ization, that accounts for the power consumed by CPU, disk, and NIC. My approach captures

the influence of the processing frequency and the multiple cores, not only to the CPU power

consumption, but also to that of disk input/output (I/O) and NIC activity.

Furthermore, legacy Ethernet is a power-unaware standard which consumes a constant amount

of power independently from the actual traffic flowing through the wires. However, low speed

Ethernet cards consume about 200 mW , which is not a significant consumption considering that

a server or a home PC consumes tens to thousands of Watts. Therefore, so far Ethernet power

saving strategies did not rise the interest of researchers and developers, due to the irrelevance of

potential savings for low speed connections. In contrast, new high speed Gigabit interface cards

consume a few tens of Watts [85] which makes reasonable the introduction of a power saving

mechanism. In fact, taking into account that the amount of Web Hosting Centers and server farms

has been extremely increased due to the new trends and services (YouTube, Facebook, Twitter

etc.), there are now billions of running interfaces that consume a constant amount of power. Ac-

tually, more than 20% of the energy consumption in data centers is due to the network operation,

which establishes network as the second biggest energy consumer in data centers [8]. While

high-speed Ethernet cards constantly absorb a considerable part of a server’s consumption—e.g.,

10Gbps cards consume∼15W [85]—recent studies have shown that network links are underuti-

lized: ∼40% are “comatose” and another ∼40% of the links are loaded no more than 10% [15].

Hence the need to introduce a network-wide energy saving mechanism. Therefore, a new power

aware Ethernet standard (standardized late 2010) was introduced to minimize the power con-

sumption of the links when low traffic is present, namely IEEE 802.3az, or EEE [47]. Indeed,

according to [29], the authors estimate significant reductions by EEE of about 4 TWh per year

over one billion devices.

While some effort has been put in understanding the behavior of EEE links where power

saving can be activated independently in each traffic direction, e.g., [42, 58, 64], in this thesis, I

am the first to present an analytical model for bidirectional EEE links, e.g., EEE links in which

power saving operations can only be activated when there is no traffic in both link directions. The

latter (namely, the bidirectional EEE case) is a very relevant case, since the EEE standard adopts

this bidirectional behavior for 1000Base-T cards, which are the most commonly adopted and
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diffused gigabit network cards, as of today. However, it is known that EEE underperforms even

under low traffic conditions due to LPI transitioning delays [22,79] and therefore more advanced

solutions are needed. Notably, packet coalescing techniques have been proposed to boost EEE

performance when traffic is not scarce and packet arrivals have short spacing. The basic idea

behind coalescing is to aggregate packets in a buffer of limited size until either the buffer is full or

a timeout expires, thus improving the energy proportionality of EEE. The cost of such coalescing

techniques consists in additional queueing delay for the packets.

1.1. Main Results and Contributions

The main contributions of this thesis can be outlined as follows:

I analytically model the behavior of gigabit EEE links with coalescing using M/G/1

queues with sleep and wake-up periods.

Using sensitivity analysis, I discuss the properties of coalescing techniques for EEE

gigabit links, and propose the design of two families of dynamic coalescing schemes that

effectively trade off energy saving and delay guarantees.

I add to the existing literature a unique evaluation of real traces with bidirectional

flows over 1 Gbps links. Moreover, I am the first to evaluate the importance of precise

timestamping on the trace-based performance evaluation of EEE.

I suggest a methodology to empirically characterize the energy consumption of a

server.

I provide novel, experimental-based, insights on the power consumption of the com-

ponents that contribute the most to the server’s power consumption, and finally

I propose an accurate technique to estimate the energy consumption of cloud applica-

tions.

Below I give more specific details on the above points.

For what concerns the study of network transmission efficiency leveraging EEE I am the first

that model so deeply the behavior of 1 Gbps links considering both the bidirectional behavior of

the links and packet coalescing. I study the special case of 1Gbps links because they are the most

commonly deployed links in data centers and their special behavior is challenging for modeling

and for the design of new coalescing methods which boost the performance of 1 Gbps links.

I propose an analytical model that uses simple statistical parameters (such as arrival rates and

loads) to estimate the energy consumption of gigabit EEE links, and the packet delay incurred in

the link when coalescing techniques are adopted. Note that my model can approximate accurately

the energy consumption and the average introduced packet delay. However, since my model
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introduces an approximation on the effect of burstiness in the computation of busy periods after

exiting state LPI , some minor discrepancies appear when traffic bursts dominate my Poisson

assumption.

Moreover I show how I collected real traces from a large web hosting center and extracted

from them the traffic parameters needed by my EEE model. I further evaluate why precise times-

tamp of the data is important when capturing real data traces. I use those real traces to validate my

model in terms of EEE power saving and packet delay by simulating the EEE and packet coalesc-

ing behaviors with real input traffic, using a modified ns-3 simulator [1]. In line with other stud-

ies focusing on EEE, e.g., [43, 64], I show that, without coalescing, EEE enables non-negligible

power saving only when the offered traffic is rather low (few percents of the link capacity) and

packet arrivals are bursty.

Another fundamental contribution of Part II consists in the performance evaluation of packet

coalescing strategies for EEE. Not only I evaluate the power saving enhancements achievable by

means of static coalescing approaches, but I also propose two dynamic strategies to adapt the

coalescing parameters to the traffic characteristics. In the first dynamic strategy my performance

analysis shows that both the size of the coalescing queue and the duration of the coalescing time-

out should adapt to the offered traffic. However, I show that a dynamic coalescing approach can

be used, which seamlessly adapts to any traffic conditions, and achieves nearly optimal results

in terms of power saving and packet delay. Nonetheless, my thorough investigation shows that

also static coalescing can achieve nearly optimal results, thus questioning the importance of ex-

ploring more complex approaches based on run time adaptation of the coalescing parameters.

However, in the second dynamic strategy, I derive a sensitivity analysis of the coalescing delay

and energy saving with respect to the coalescing timer duration and the coalescing buffer size, and

use it to design measurement-based control schemes that outperform static coalescing schemes.

My new analytical study reveals the importance of coalescing parameters in different scenarios,

and unveils that by adjusting the sole coalescing timer duration, it is possible to tune the link

performance to achieve near-optimal energy saving, while incurring controlled coalescing delay.

In particular, the incurred delay is a monotonically increasing function of the coalescing timer,

which is key to design delay-controlled coalescing algorithms. Exploiting my analytical findings,

I design a simple measurement-based delay-controlled distributed adaptive coalescing scheme

in which network cards at the edge of the link coordinate by running a simple distributed algo-

rithm to sense the delay incurred by packets. My proposal uses the sensed delay as control signal

to trigger the dynamic adaptation of the coalescing timer in the direction identified through the

analysis.

Finally, I show that significant economy can be achieved in a typical data center (∼$1.7M

annually) by replacing legacy Ethernet links with EEE links with coalescing.

For what concerns server’s efficiency, I observe that active CPU cycles per second (ACPS)

is a convenient metric of CPU (central processing unit) load in multi-core/multi-frequency ar-

chitectures. I show how to isolate the contribution of energy consumption due to CPU, disk I/O
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operations, and network activity by just measuring server’s total energy consumption and a few

activity indicators reported by the operating system. I also show that the baseline energy con-

sumption of a server — i.e., the energy consumed just because the server is turned on — has

a strong impact on server’s total consumption. This result enlightens the need of new efficient

solutions for servers. As concerns the components’ energy characterization, I show that, besides

the baseline consumption, the CPU has the largest impact among all components, and its energy

consumption is not linear with the load. Disk I/O operations are the second highest cause of con-

sumption, and their efficiency is strongly affected by the I/O block size used by the application.

Eventually, network activity plays a minor yet not negligible role in the energy consumption, and

the network impact scales almost linearly with the network transmission rate. All other compo-

nents (e.g., memory, fans, GPU, etc.) can be accounted for the baseline energy consumption,

which is subject to minor variations under different operational conditions. Specifically, the main

results of my measurement campaign are listed below:

The CPU power utilization depends on the number of working cores, the CPU frequency, and

the CPU load (in ACPS units). My measurements confirm that the energy consumption with

a single working core at constant frequency can be closely approximated by a linear function

of the CPU load. However, given a CPU frequency, the energy consumption in multicore

architectures is a concave function of the CPU load and can be approximated by a low-order

polynomial. The energy consumption for a fixed CPU load is, in general, minimized by using

the highest number of cores and the lowest frequency at which the load can be served. However,

the minimum achievable energy consumption is a piecewise concave function of the CPU load.

The energy consumed by hard disks for reading and writing depends on the CPU frequency and

the I/O block sizes. Both reading and writing energy costs increase slightly with the CPU fre-

quency. While the energy consumption due to reading is not affected by block size, the energy

consumption due to writing increases with the block size. The reading efficiency (expressed in

MB/J) is barely affected by the CPU frequency, while writing efficiency is a concave function

of the block size since it boosts the throughput of writing until a saturation value is reached.

The energy consumption and the efficiency of the NIC (Network Interface Card), both in trans-

mission and reception, depends on the CPU frequency, the packet size, and the transmission

rate. The efficiency of data transmission increases almost linearly with the transmission rate,

with steeper slopes corresponding to lower CPU frequencies. Although a linear relation be-

tween transmission rate and efficiency holds for data reception as well, small packet sizes yield

higher efficiency in reception.

Overall, supported by my measurements, I provide a holistic energy consumption model that

only requires a few calibration parameters for every different server architecture which I want to

evaluate (a universal energy model will be too simplistic and inaccurate). I validate my model by

means of a server computing the PageRank metric of a graph and a WordCount application in a
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Hadoop platform, first without network activity, next with bulky network activity, and finally in

the cloud. I will find that the error of my energy estimates is below 4.1% on average and never

worse than a 10%.

Finally, I challenge the common evaluation practices as they frequently adopt over-simplified

and unrealistic models for the estimation of the VM resource requirements and physical host re-

source availability. Hereafter, I identify a set of important system parameters, commonly ignored

in favor of simplicity. In addition, common evaluation methods not only ignore these properties,

but also rely on very small scale experiment. The properties are outlined below:

the dynamic energy consumption profiles of servers, which is highly correlated with the uti-

lization levels of individual hardware components;

the complexity in resource sharing between VMs in a single host (e.g. CPU, disk, network,

memory), as well as the virtualization overheads;

the performance characteristics of the underlying network infrastructure (topology, speed, con-

figuration) and the employed network protocols;

the cost of live VM migration in terms of energy, network traffic and application-level perfor-

mance;

complex performance behaviors of networked systems observed in large scale deployments.

I argue that underestimating the impact of the aforementioned system properties in the eval-

uation of VM consolidation algorithms introduces significant inaccuracies. The individual relo-

cation decisions are based on inaccurate performance predictions for co-hosted VMs, as well as

they overlook the overhead of large-scale VM migrations. As a result, the fundamental trade-off

between energy consumption and application performance is not sufficiently captured, and hence,

the estimated power-bill savings of the proposed consolidation strategies have limited practical

use.

In an effort to address the aforementioned issues, I point out how existing solutions can be

reused, combined and extended in order to create an evaluation framework that allows the reliable

exploration of the energy-performance trade-offs in VM consolidation strategies. Such a solution

is particularly useful, since only few researchers can access a real-sized data center infrastructure

for experimentation.

1.2. Publications

The research described in this dissertation resulted in four conference papers [8, 22, 25, 26],

three journal articles [9, 24, 63], and one poster [23]. In this section, I elaborate on the goal of

each paper and the author’s contribution.
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The following papers are related with the optimisation of the energy efficiency on ethernet and

I worked on this topic only with my advisor. They include (i) analytical models for the estimation

of the packet delay and the energy using EEE and its enhancement EEE with coalescing instead of

legacy ethernet, (ii) measurement results which validate my statements and (iii) new algorithms

for EEE which boost the energy efficiency with regard to delay constraints:

Angelos Chatzipapas, Vincenzo Mancuso, Measurement-Based Coalescing Control for

802.3az, in Proceeding of the IFIP Networking ’16, Vienna, Austria, May 2016.

Angelos Chatzipapas, Vincenzo Mancuso, An M/G/1 Model for Gigabit Energy Efficient Eth-

ernet Links With Coalescing and Real-Trace-Based Evaluation, IEEE/ACM Transactions on

Networking, September 2015.

Angelos Chatzipapas, Vincenzo Mancuso, Improving the Energy Benefit for 802.3az using

Dynamic Coalescing Techniques, in Proceeding of the IEEE ICDCS ’15, Columbus, OH, USA,

June 2015.

Angelos Chatzipapas, Vincenzo Mancuso, Modeling and real-trace-based Evaluation of

Static and Dynamic Coalescing for Energy Efficient Ethernet, in Proceeding of the ACM In-

ternational Conference on Future Energy Systems (e-Energy ’13), Berkeley, CA, USA, May

2013.

Vincenzo Mancuso, Angelos Chatzipapas, On IEEE 802.03az Energy Efficiency in Web Host-

ing Centers, IEEE Communication Letters, November 2012

The following papers are related with the energy efficiency and optimization in data and web

hosting centers. They include (i) analytical models for the estimation of the energy consump-

tion of a data center server taking into account the CPU, the disk and the network based on an

extensive measurement campaign and (ii) proposed enhancement which can reduce the energy

consumption of a data center server:

Jordi Arjona, Angelos Chatzipapas, Antonio Fernandez Anta, Vincenzo Mancuso, A

Measurement-based Characterization of the Energy Consumption in Data Center Servers,

IEEE Journal on Selected Areas in Communications, September 2015.

Jordi Arjona, Angelos Chatzipapas, Antonio Fernandez Anta, Vincenzo Mancuso, A

Measurement-based Analysis of the Energy Consumption of Data Center Servers, in Proceed-

ing of the ACM International Conference on Future Energy Systems (e-Energy ’14), Cam-

bridge, UK, June 2014.

Angelos Chatzipapas, Dimosthenis Pediaditakis, Charalampos Rotsos, Vincenzo Mancuso,

Jon Crowcroft, Andrew W. Moore, Challenge: Resolving Data Center Power Bill Disputes:

The Energy-Performance Trade-offs of Consolidation, in Proceeding of the ACM International

Conference on Future Energy Systems (e-Energy ’15), Bangalore, India, July 2015.
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1.3. Organization of the thesis

The thesis is divided in three parts. Part I contains all the background material which is re-

quired to follow the flow of the thesis. Part II is about Energy Efficient Ethernet and Part III is

about the energy efficiency in data centers. In particular, Part I consists from the introduction

and Chapters 2- 5. Chapter 2 contains all the background information regarding Energy Effi-

cient Ethernet and its enhancement, namely coalescing. Chapter 3 discusses about the problem

of resource provisioning in a data center. Chapter 4 describes the methodology I will use for

my experiments both with Energy Efficient Ethernet and data center servers. Chapter 5 provides

information about related work. Part II consists of Chapters 6- 8. Chapter 6 presents an ana-

lytical model which accurately estimates the energy consumption and the delay experienced by

Energy Efficient Ethernet links with static coalescing. Moreover a sensitivity analysis studies the

impact of the coalescing parameters to both the delay and the the energy consumption. Chap-

ter 7 describes two new families of dynamic coalescing algorithms. Chapter 8 is the evaluation of

the model and the comparison of static versus dynamic coalescing schemes. Part III consists of

Chapters 9 and 10. Chapter 9 presents my measurement campaign, for every single component

of the data center servers which I tested. In Chapter 10 I model the energy consumption of the

servers based on a few calibration parameters which I find during my measurement campaign and

I discuss my findings and their implications. Finally, Chapter 11 concludes and summarizes the

thesis.





Chapter 2

Background on Energy Efficient
Ethernet with gigabit Ethernet and
coalescing

Energy Efficient Ethernet 802.03az [47] was standardized in September 2010. It aims to

provide significant power saving in LANs. Formerly, the evolution of LANs led towards higher

link speeds for faster communication and higher bandwidth, in order to satisfy the increased

demand for data (link speeds from 10Mbps to 10Gbps) without power consumption concerns. In

fact, the electricity consumption of relatively “old” network interfaces remained in very low levels

so the main concern of Ethernet component producers was not to save power. For example, in

100Mbps Ethernet links, the Ethernet devices consume about 200mW of power [81]. However,

higher speed Ethernet links (1 Gbps or faster) require several Watts of power consumption [85]

for each network interface. Considering a usual server that consumes around 200 W , a simple

Ethernet device contributes to ∼ 10% of this amount. Indeed, data centers and web hosting

centers have a huge number of network interface cards which eventually generate a high cost (in

terms of electricity bills). Thus, the idea of reducing the power consumption of Ethernet devices

appears in the foreground.

Legacy Ethernet consumes a constant amount of power either with or without traffic, which

makes it totally inefficient with typical Ethernet traffic profiles. This behavior results in a huge

waste of power since it is well known that Ethernet links are inactive most of the time with utiliza-

tion factors from 5% for a home PC to 30% for heavy loaded data servers [63, 68, 72]. EEE aims

to reduce this waste of power and approach power proportionality, i.e., a power consumption pro-

portional to the served traffic. The EEE standard introduces four new states for the Ethernet link,

namely state “Active” (A) which corresponds to the busy period, state “Low Power Idle” (LPI)

in which there is no traffic and the link consumes substantially less power than in state A (∼ 90%

less power according to [79]), and states “Sleep” (S) and “WakeUp” (W ) which correspond to

the time spent during switching from state A to LPI and vice versa, respectively [64]. EEE spec-

13
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Figure 2.1: State transition diagram for EEE 1000Base-T links.
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Figure 2.2: Modified state transition diagram for EEE 1000Base-T links with coalescing.

ifications and state transition schemes are different for 100Base-T, 1000Base-T and 10GBase-T

links. In particular, since I focus on commonly deployed 1 Gbps links, in the following subsec-

tion I describe in detail how EEE 1000Base-T links behave, since they represent the only case in

which the EEE standard accounts for the bidirectional behavior of traffic.

2.1. Gigabit EEE Link Operation

Behavior of 1Gbps EEE links. EEE 1000Base-T links can be in one of the following four

states: Active (A), Sleep (S), WakeUp (W ) and Low Power Idle (LPI). The state transition

diagram is illustrated in Figure 2.1. Frame transmissions in either of the traffic directions only

occur in state A. When the two network cards connected to the link complete transmitting all
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the buffered frames, the link enters state S as a transition to state LPI . If no frame arrives

for Ts seconds while in state S, the link enters state LPI , during which power consumption

is minimized. A frame arrival in state LPI results in the link transitioning to state W which

lasts Tw seconds. After this wake interval, the link transitions to state A and any of the network

interfaces connected to the link can transmit. Standard values for Ts and Tw are 182 µs and

16 µs, respectively. Thus, the fact that a frame arrival in the sleep interval (state S) causes an

immediate transition to state A, avoids incurring in delays of up to 182 µs, which can be quite

large if compared to the transmission time of a single packet (e.g., 12 µs for a 1500-byte packet).

Behavior of 1Gbps EEE links with coalescing: Packet coalescing techniques have been

proposed to boost EEE performance when traffic is not scarce and packet arrivals have short

spacing. The basic idea behind coalescing is to aggregate packets in a buffer of limited size until

either the buffer is full or a timeout expires. When coalescing techniques are used, the transition

from state LPI to state W is delayed. Therefore, I fictitiously split state LPI into two states,

as shown in Figure 2.2: state L, which represents state LPI when there is no packet queued

in the coalescing buffers—and which is equivalent to LPI in systems with no coalescing—and

state C, in which coalescing buffers are not empty but neither the coalescing timer expired nor

the coalescing buffers were completely full. Indeed, the system transitions from state C to state

W as soon as one of the coalescing buffers gets full or the coalescing timeout expires. Remark

that the newly introduced state C is fictitious, since the transition L → C does not represents

a change of state for the EEE Ethernet hardware. State C simply represents the extension of an

LPI interval due to coalescing operations, counting from the arrival of the first packet in one

of the two coalescing queues. The time spent in state C, namely τc, is a random variable which

depends on the size Nc of the coalescing buffers, and it is limited by the coalescing timeout Tc.

2.1.1. Efficiency Problems of EEE

As shown in previous evaluation works, such as [81, 82], the problem of EEE links (and

especially in 1000Base-T links) is the transitioning time. When the traffic is scarse and packets

are spaced rather that bursty, the EEE mechanism rarely allows the link to complete the transition

to LPI . Thereby, the link spends more time transitioning than transmiting. Specifically, as I

said earlier, we can observe that for transmiting one big packet, 1 Gbps links require about 12 µs

while for transitioning they spend at least Ts + Tw = 182 + 16 = 198 µs. For smaller packets

the correspondence is even worst. In Table 2.1 I show the time which is required for waking up

Table 2.1: Time required for Wake Up, Sleep and Frame Transmission [µs]

Speed Min. Ts Min. Tw Transmission Time for Transmission Time for
1500 bytes (efficiency) 150 bytes (efficiency)

100Base-T 200 30 120 (48%) 12 (4.8%)
1000Base-T 182 16 12 (5.7%) 1.2 (0.57%)
10GBase-T 2.88 4.48 1.2 (14.6%) 0.12 (1.46%)
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the link, putting the link to Sleep state and transmitting a small and a big packet using different

link speeds, including in parenthesis the percentage of time that the link requires for transmitting

only a single packet over the cycle duration. The ratio for transmitting single small packets at any

link speed are excessive and for this reason, packet coalescing is proposed to avoid frequent state

transitions and prolong the duration of state LPI . Packet coalescing tends to approach energy

proportionality at the cost of additional delay to the packets. However, I will show in Chapter 8

that the delay is negligible if compared with the energy benefits.



Chapter 3

Background on resource provisioning
in data centers

Performing resource provisioning in a single data center infrastructure is a compound problem

with multiple competing objectives (see Figure 3.1 for a brief taxonomy).

Firstly, consolidation aims to compress workloads into as few physical hosts as possible, and

either turn off or leave idle the unused part of the infrastructure. During this step, the objective

is to maximize the energy saving, at the cost of performance. Some approaches use live VM mi-

gration to implement consolidation [14, 70], while some others steer new workloads to different

servers [95]. Secondly, the opposite to the process of consolidation, is the elimination of perfor-

mance hot-spots, which spreads VMs across the data center, increasing the active physical hosts.

Some techniques aim to remove network-related hot-spots [31], while others utilize end-host in-

formation to avoid high server utilization [89]. Lastly, a load-balancing process can run in the

background and relocate VMs aiming to smoothen the load variations across the infrastructure,

and therefore, better absorb the performance spikes of bursty workloads. Load-balancing solu-

tions may be based on software proxies [94], proprietary hardware designs [74] or they can be

built as software defined network applications [77].

Usually hot-spot removal and consolidation are used together, hand in hand. The two func-

tionalities have opposing goals, but are equally necessary to achieve an equilibrium between per-

formance and energy saving. Specifically, this is the most important aspect in designing greener

data center solutions: be in position to make informed decisions about the application-level per-

formance which is sacrificed in trade for lower energy consumption, and vice versa.

Energy-efficient VM placement algorithms: The energy/performance trade-off is controlled by

the VM placement algorithms, which implement the decision-making logic for the followings:

Choose a source host with average utilization above, in case of hotspot removal, or below, in

a case of consolidation, a threshold.

Choose a VM from the selected host based on its resource requirements. For example, during

17
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Figure 3.1: A brief taxonomy of resource provisioning functions for data center environments.

the evacuation of an under-utilized server, VMs are ordered based on their resource require-

ments.

Choose a destination host with sufficient available resources (e.g. disk, network, CPU, mem-

ory) to fulfill the resource requirements of the previously selected VM, determined by its SLA.

Numerous research efforts transform this decision making process into a vectorized bin pack-

ing problem [14, 70]. VMs are represented as n-dimensional vectors of estimated resource de-

mands, while each host is represented as an n-dimensional vector of available resources. VM

placement aims to fulfill the minimum guaranteed resources, specified by the service SLAs, while

minimizing the number of active hosts. Since the vector bin packing problem is NP-hard, a num-

ber of near-optimal solutions have been proposed using a variety of heuristics [84, 88] (e.g. first-

fit decreasing, best-fit decreasing, worst-fit decreasing, etc.). Alternative approaches towards the

placement problem use genetic algorithms [50] and dynamic programming [41].

3.1. Common pitfalls

The VM migration decisions use as inputs: (i) the resource requirements of a VM (given

an SLA), (ii) the expected load increase in the destination host, (iii) the available resources of

the physical hosts, and (iv) the expected level of performance for VM applications. The main

argument of this section states that the majority of the existing works does not accurately capture

the aforementioned decision criteria.

Next, I elaborate on the aforementioned evaluation and design pitfalls, related to the specific
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properties of large-scale data centers which tend to ignore: (i) the dynamic of the underlying

resource sharing model and the migration cost (§ 3.1.1) and (ii) the energy consumption profiles

under mixed workloads (§ 3.1.2).

3.1.1. Modeling the availability of resources

Cloud providers have been refraining from using consolidation algorithms on their infrastruc-

tures mainly because it is not easy to predict the performance penalties on hosted applications.

While the overhead of virtualization has been significantly reduced (e.g. paravirtualized I/O,

hardware support), the interaction model with a host’s physical resources has become more com-

plex. For example, Wang et al. [37], exemplify some interesting artifacts in the perceived CPU

and network resource availability by guest OS. Such performance variability has been measured

to significantly affect large-scale time-sensitive services [49]. This performance variability is a

direct consequence of the resource sharing functionality implementation between co-hosted VMs.

Nevertheless, most of the heuristics used in VM placement algorithms, assume that the virtual-

ization platforms provide perfect performance isolation. Hence, they suggest that VM resource

utilization, and consequently application-level performance, remains the same across different

hosts.

The above assumption, however, can lead to incorrect VM placement decisions. The amount

of the resources which each VM receives depends on three factors: the scheduling policy of the

hypervisor, the available resources of the hosting platform, and the activity of co-hosted VMs.

None of these three factors can be considered static, and moreover, they exhibit a high degree of

interdependencies. For example, consider many highly-utilized VMs collocated on a server, each

receiving a fair share of the CPU time. On a lower utilized server, the same VM would almost cer-

tainly reach a higher peak. Therefore, a typical hot spot removal algorithm would underestimate

the peak CPU requirements of a VM, and could potentially make sub-optimal decisions. From

the above it is clear that estimating the application level performance is a fairly difficult task.

Another over-simplifying assumption which is commonly made, is the inference of appli-

cation SLA violations, based on VM or host-level utilization metrics. First, the poor resource

sharing models which are used during evaluation, do not provide accurate utilization estimations.

Second, it is fairly unreliable to employ only the CPU utilization to infer SLA violations, since

this approach is susceptible to false negatives, especially for bursty workloads. This problem has

been pointed out by Wood et al. in [89], via extensive experiments.

Finally, the available network resources is another important factor which also determines the

application-level performance. This includes the available bandwidth at the end-hosts (includ-

ing the CPU overheads of packet processing), the employed protocols, the topology of the data

center’s networking infrastructure, the speed of physical links, and the scheduling algorithms at

intermediate devices.
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3.1.2. Accuracy of energy consumption models

Cloud computing is based on resource sharing of the available servers, i.e., CPU, disk, mem-

ory, network. In previous works (see the introduction of this chapter)the authors either theoret-

ically describe VM placement algorithms or they identify the cost of a placement considering a

dedicated use of the available resources. Consequently, the challenge is what happens when sim-

ulataneous VM placements happen and new jobs arrive and current jobs have to continue their

work. How can we estimate the energy needs and the performance degradation (or improvement)

using one technique over the other?

Many of the VM placement approaches, covered in the introduction of this chapter,provide

only gross insights on the resulting energy savings. The achieved accuracy in the estimated sav-

ings is usually limited at the level of accounting the number of powered-on servers over the unit

of time. This reduced level of detail does not allow users to effectively evaluate the energy-

performance trade-off.

Some research efforts, like [6, 14], consider the use of a more detailed energy model. Effec-

tively, they are based on the observation that CPU utilization is highly correlated with the overall

energy consumption of a server. As a result, they use linear models which are based on current

utilization levels to estimate the energy consumption.

The importance of the above facts has been pointed out by several studies (e.g. [5,8]), showing

that depending on the characteristics of a workload, the level of CPU-load alone might not be a

very accurate metric. This is especially true for storage and network devices which implement

energy saving features and have a wide and dynamic energy range. The system-level utilization is

not modeled accurately in the simulation frameworks which are commonly used to evaluate VM

consolidation algorithms. Hence, the input which is used in their linear energy/CPU-utilization

models, is not reliable.



Chapter 4

Methodology

In this chapter I explain the process I follow in order to perform the measurements. First, I

describe how I capture real data traces from a big data center and the topology and equipment

we require. Second, I expose the measurement techniques I used to characterize the energy con-

sumption of the main components of a data center server, i.e. the CPU, the disk and the network.

4.1. Network traces collection for the study of EEE with coalescing

Using the model like the one presented in [64] or the ones proposed in this thesis in Chapter 6,

I can estimate the EEE power saving by means of the average and standard deviation of the packet

interarrival time, the average packet size, and the offered load. The models use queuing theory,

and treat EEE state transitions as a renewal process. The analysis yields the average time that the

link spends in the four different EEE states: Active, Low Power Idle (LPI), Sleep, and Wake Up.

The time that the link remains in each state, times the power consumed in the corresponding state,

gives the total power consumption of the EEE link.

I can also simulate EEE operations by using real traces for packet arrivals. With a C++

simulator, I compute the exact EEE power saving, and compare this value to the estimate yielded

by the model. The simulator uses trace files containing, for each packet, the arrival timestamp and

the packet size. The input for my model and for simulations has been obtained by collecting real

traces in InterHost, an operational data center hosting web servers and located in Madrid, Spain.

In particular, to run simulations I modified the ns-3 simulator to implement EEE and packet

coalescing.1 First, I designed and coded a novel Ethernet channel object in ns-3. Such an Eth-

ernet channel can simulate the bidirectional behavior of Ethernet links. Second, I added on the

network devices the EEE functionality, i.e., I defined the EEE states. Third, I implemented packet

coalescing and coordinated packet transmission so that a simulated EEE link enters state L only

when both link directions are inactive for TS seconds, and exits state C only when coalescing

operations are complete either because the coalescing timeout expires or one of the coalescing

1Simulation code available at https://github.com/ferrarif50gr/ns3-dynamic/
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Figure 4.1: Measurement architecture with passive tap.

buffers fills up.

To take measurements, I deployed a monitoring server to capture and store the traffic flowing

through a link, and a tap to sniff and duplicate real packets without affecting the traffic, as shown

in Figure 4.1. I use a NetOptics passive device which is inserted in a 1000Base-TX Ethernet link

and duplicates each and every signal over the link [2]. The NetOptics device, as shown in the

figure, is also able to replicate uplink and downlink traffic over two separate cables connected to

the monitoring server. The two monitoring ports of the tap are connected to a digital capture card.

Specifically, a high accuracy two-port Endace DAG card [3] is mounted on the monitoring server.

The DAG card is a capture device with dedicated CPU and memory, able to capture 100% of the

traffic at up to 10 Gbps over each port. Furthermore, the DAG card has a unique timestamping

engine that guarantees clock synchronization to the nanosecond over the two monitoring ports.

The DAG is activated once per hour to collect at most 100 bytes per packet for 200 seconds. I

keep a remote ssh connection with the server, so that I can periodically transfer the collected

traces to a Linux server in Institute IMDEA Networks. Once the traces are in our lab, I post-

process the traces with the tshark 2 packet analyzer and create simplified and anonymous trace

files containing only arrival timestamps and packet sizes.

4.2. InterHost Measurements

This section presents traffic measurements that have been taken at InterHost. InterHost al-

lowed me to install traffic measurement tools in front of one of their firewalls, which protects part

of InterHost’s customer web servers. The goal of those measurements is to collect enough data

from a 1000Base-TX link to characterize the traffic behavior of a real commercial installation,

and to estimate the power saving that might be achieved at the hosting center by replacing exist-

ing Ethernet links with IEEE 802.3az EEE links. Savings are estimated by means of a simulator,

using real traces as input, and by means of a model previously proposed for EEE links [64]. Note

that the IEEE 802.3az standard specifies that 1 Gbps EEE links can go to low power state only

2https://www.wireshark.org/docs/man-pages/tshark.html

https://www.wireshark.org/docs/man-pages/tshark.html
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when no traffic is present in both link directions. Therefore, the correlation of traffic in the two

link directions is important for estimating the achievable power saving not captured by the model

in [64]. Note that, unless coalescing techniques are used, 1 Gbps EEE links save power by intro-

ducing negligible delay (few µs) to wake up interfaces in power saving mode [47], therefore, µs

accuracy is important in traffic measurements.

Since obtaining real data is usually very difficult, synthetic traffic generators are often utilized,

though they lead to less accurate results. In this case, InterHost allowed me to monitor the traffic

at the interface between Internet and one of their firewalls. This gives me the advantage of using

real data and real traffic that yields more realistic results.

However, in respect of user’s and company’s privacy and security, I only capture few bytes of

each packet, and I do not inspect the payload. Actually, my goal is to capture the arrival time of

the packet and its size, which is enough for my purposes.

To achieve my goal, I need to collect precise and clock-synchronized timestamps for packet

arrivals over the two link directions. Therefore I need precise measurement tools and a measurable

source of real traffic.

Similarly to [64], I use real traces to evaluate the potential EEE power saving, but I focus

exclusively on 1 Gbps links and on the impact of uplink/downlink traffic correlation on such

saving. With my measurements, I show that EEE might save more than 40% of the link power

most of the time, with peaks of 90% or more during night hours. I also unveil that high precision

timestamps are key to achieve high accuracy estimations via simulation, and to enable the use of

simplified analytical computations. In particular, noisy measurements severely impact the quality

of EEE power saving estimates as soon as the maximum timestamp deviation due to noise reaches

a few milliseconds, which is below the typical timestamp accuracy of non-dedicated network

hardware, i.e., of inexpensive but imprecise driver timestamping. This justifies using specialized

high accuracy timestamping hardware.

4.2.1. Trace-based Simulation and Analysis

I run EEE simulations based on the traces captured by the monitoring server. For the simula-

tion, I use the same C++ simulator used in [64]. I also extract the statistical parameters needed

to run the EEE model in [64], and estimate the EEE power saving through the model as well. In

particular, the model uses the average frame size, the average load, and the average and standard

deviation of frame interarrival times, to compute the expected energy consumption of EEE links.

In contrast, without EEE, the power consumption is constant.

I have captured traffic traces from November 2011 until March 2014, but I only show results

for February 2012, which are representative of the rest of my measurements. For that month I

observed a weekly periodic behavior, and a daily typical maximum traffic of about 4% in the

most loaded link direction, with the exceptional values of 9% and 11% on one traffic direction

on February 1st and 8th, respectively. Over the whole duration of my measurement campaign the

maximum values might change however the periodic behavior remains the same.
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(a) Power saving during the month of February 2012.
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(b) Power saving during the second week of February 2012.

Figure 4.2: Monthly and weekly plots for traffic and power saving (February 2012).

In Figure 4.2(a) I plot the monthly load in each link direction (rightmost y-axis), labeled as

“load 0” for one link direction and “load 1” for the other link direction. The figure also shows

the power saving that might be achieved by means of EEE links, computed through simulation

(leftmost y-axis). My first observation is that there is a maximum traffic load of about 11% in the

most loaded direction, whereas during weekends and overnight the peak load is below 2%. In the

figure, traffic patterns are quite regular, showing higher traffic activity over weekdays, followed

by lower traffic intensity over the weekend. It is also evident that overnight traffic is very low.

Figure 4.2(b) illustrates results for the second week of February. I choose this week because

it shows a traffic spike on February 8th. Daily spikes occurred at about 1 and 6 PM. This traffic

distribution over time clearly depends on the nature of the websites hosted at InterHost premises,

about which I have no information. However, the measured traffic patterns are qualitatively in

line with other patterns reported in literature (e.g., see [62] and references therein). Processing

the collected data with the EEE simulator reveals that overnight and during the weekend, EEE

might save 70-90% of the power with respect to legacy gigabit Ethernet. Noticeably, the power



4.2 InterHost Measurements 25

0

2

4

6

8

 0  24  48  72  96  120  144  168

In
te

ra
rr

iv
a
l 
ti
m

e
 [
m

s
]

  
  
  

time [hours]

WeekendPeak

Both directions
Direction 0
Direction 1

(a) Average interarrival time of packets (2nd week of February 2012).

2

4

6

8

10

12

14

16

 0  24  48  72  96  120  144  168

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [
m

s
]

  
  

time [hours]

WeekendPeak

Both directions
Direction 0
Direction 1

(b) Standard deviation of the interarrival times (2nd week of February 2012).

Figure 4.3: Weekly plots for the average and standard deviation of packet interarrival times
(February 2012).

saving exceeds 80% in more than 40% of the samples, and during weekdays the power saving is

larger than 40% in 99% of the samples.

Figures 4.3(a) and 4.3(b) give more information about the traffic arrival characteristics,

namely the average interarrival time of the packets and the standard deviation of interarrival

times, which are needed in order to run the model in [64] and analytically estimate the EEE

power saving. In each of the two subfigures, two of the lines correspond to the traffic in each

direction independently, whereas the third line corresponds to the overall link traffic. Both sub-

figures cover the same time interval covered by Figure 4.2(b). In Figure 4.3(a) I observe that the

packet interarrival pattern is similar for each day but the third day of the week, when I observe

a traffic spike (see Figure 4.2(b)), which corresponds to lower interarrival times. Similarly, the

pattern observed for the standard deviation of the interarrival time in Figure 4.3(b) is quite reg-
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(b) Simulation and model with noise in [-50, 50] ms.

Figure 4.4: Evaluation of EEE power saving with model and simulation, with and without noisy
timestamp measurements.

ular, and approaches zero in correspondence to the traffic spike observed during the third day of

the week. Note that, in both Figures 4.3(a) and 4.3(b), I observe higher values in the weekend,

which corresponds to lower traffic activity. As expected from the analysis in [64], Figures 4.2(b),

4.3(a), and 4.3(b) confirm that the higher the average and standard deviation of the interarrival

time, the higher the power saving. For instance, the valley in the power saving plot highlighted in

Figure 4.2(b), corresponds to the minimum of interarrival time (Figure 4.3(a)) and of its standard

deviation (Figure 4.3(b)). Similarly, peaks of power saving correspond to peaks of average and

standard deviation of the interarrival time.
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4.2.2. Impact of noisy measurements
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Figure 4.5: Standard deviation of packet interarrival times with and without noisy timestamp
measurements.

Here I use modified traffic traces to show the impact of noisy measurements on the quality of

EEE power saving estimates. In particular, I picked the day with the maximum traffic recorded

over the entire measurement campaign, which corresponds to February 8th, 2012, and perturbed

the originally collected timestamps by adding zero-mean uniformly distributed noise. For each

packet trace, I plot the EEE power saving based on simulation and model. However, since the

model runs for unidirectional traffic only, I feed the model with either the traffic of each link

direction separately, or with a single trace representing both traffic directions. Specifically, when

the model is computed over the aggregate traffic measured over the two link directions, I merge
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the traffic traces obtained for the two directions. Consequently, the model cannot completely

capture the correlation of traffic in the two directions. In fact, the IEEE 802.3az standard says

that link interfaces can enter the LPI state only when both link directions are idle. Instead, I use a

simplified model to cope with a unique link direction, resulting from the merging of the two real

link directions.

Figures 4.4(a) and 4.4(b) depict the EEE power saving computed via simulation and model.

Input traces were used both with the original high precision timestamp and with modified times-

tamps. In Figure 4.4(a), original timestamps have been altered by adding uniformly distributed

noise in the range [−5, 5] ms. In Figure 4.4(b), noise ranges in [−50, 50] ms.

Each plot contains the power saving estimates obtained with the model computed on the

aggregate link traffic (merging of the two traffic directions, labeled as “Model” in the figures),

with and without the artificially added noise. The figures also report the EEE power saving

as estimated by the model when considering only the traffic in the most loaded link direction

(“load 0” in the figures), with and without noise. Finally, the figures include the EEE power

saving computed through simulations, with and without noise. Therefore, in each plot, the values

obtained without noise are always the same, thus representing the benchmark for the experiment.

From the figures, I note that model and simulator report similar trends, with close but distinct

power saving estimates. Differences are well explained considering that the model does not cap-

ture the bidirectional nature of the EEE power saving mechanism. Limited differences are due to

the low load measured on both link directions. The model which only considers the most loaded

link is obviously the one reporting the highest power saving. Similarly, the model considering the

aggregate traffic yields the lower power saving, since it does not consider that packets belonging

to opposite traffic directions might be served in parallel.

Let’s now consider the impact of noise. In Figures 4.4(a) and 4.4(b), we can see that savings

estimated with noisy measurements tend to be higher. In fact, adding noise to timestamps con-

tributes to break the traffic correlation between the two directions, so that (i) simulator and model

yield very similar results, and (ii) power saving occurs with roughly the product of probabilities

of having each link direction idle. As a result, ∼ 80% power saving can be estimated even for the

peak hour.

I remark that noisy measurements cause erroneous power saving estimates, and conclude that

timestamp errors larger than few ms are not tolerable to achieve accurate estimates. Consider-

ing that ms accuracy in time-stamping is barely achievable with ordinary operating systems and

driver-operated time-stamping, which depends on system interrupts, I also conclude that dedi-

cated traffic measurement tools are needed, as the ones that I have used for the measurements.

Note that timestamping noise does not affect load, interarrival average and packet size. It

changes only the standard deviation of the interarrival time. Therefore, I show in Figures 4.5(a)

and 4.5(b) the standard deviation of interarrival times with and without noise, for the same time in-

terval used in Figures 4.4(a) and 4.4(b). Figure 4.5(a) illustrates the standard deviation with noise

uniformly distributed in [-5, 5]ms, and Figure 4.5(b) refers to uniform noise in [-50, 50]ms. The



4.3 Data center servers consumption measurements 29

figures report separately the interarrival statistics for each traffic direction, plus the statistics for

the overall arrival process (i.e., considering interarrivals between packets accessing the link, in-

dependently from their flow direction). I observe that the presence of noise in the timestamps can

induce to deal with packets separated by a short interval as if they were sent back-to-back (note

that I do not allow timestamp noise to induce packet sequence reordering), this error reducing

the standard deviation of interarrival times at particular measurement epochs. Most importantly, I

note that small errors in the estimate of the standard deviation of the interarrival time cause large

errors in the estimate of the EEE power saving.

Overall, we need a better model than [64] and this is my motivation for the work described in

Part II of this thesis.

4.3. Data center servers consumption measurements

In this section I introduce the measurement setup and techniques I used to characterize the en-

ergy consumption of CPU activity, disk access (read and write operations), and network activity.

I start my measurements by profiling the CPU energy consumption, from where I obtain infor-

mation about the baseline energy consumption of the servers and the energy consumption due to

CPU load. Afterwards, I profile the other two components, namely, disk and network. Note that

CPU and baseline measurements are of capital importance in order to evaluate the other compo-

nents, because every time that I run a script to profile the behavior of another component, some

CPU cycles are needed in order to execute it as well as to use the component that has to perform

the task. Therefore, to understand the contribution of any component, I first need to identify the

contribution of the CPU and the baseline and calculate the difference.

To explore the possible parameters which determine the energy consumption of a data center

server and to obtain statistical consistency, I run the experiments multiple times. Similarly, I

run these experiments in different server architectures in order to validate my results and give

consistency to my conclusions.

4.3.1. Devices and Setup

In order to monitor and store the instantaneous power used by a server during the different

experiments I used a Voltech PM1000+ power analyzer3, which is able to measure the total in-

stantaneous power used by the server under test on a per-second basis. In Figure 4.6 I show a

schematic representation of the setup I used and the components under testing. More specificaly,

in order to take my measurements I connected the server being measured to the power analyzer

and the latter to the power supply. In the case of servers with power redundancy one of the two

power sources was unplugged to ensure that the power measurement was correct. In the experi-

ments where the network was not involved (CPU and disk), I unplugged the network cable from

3More information about the PM1000 can be found in http://www.farnell.com/datasheets/
320316.pdf

http://www.farnell.com/datasheets/320316.pdf
http://www.farnell.com/datasheets/320316.pdf
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Table 4.1: Characteristics of the servers under study

Component Servers
Survivor Nemesis Erdos

CPU (#cores) 4 4 64
Freqs List 1.2, 1.333, 1.467, 1.6, 1.596, 1.729, 1.862, 1.995, 2.128, 2.261, 1.4, 1.6, 1.8,

([GHz]) 1.733, 1.867, 2.0, 2.133 2.394, 2.527, 2.666, 2.793, 2.794 1.8, 2.1,2.3
RAM 4 GB 4 GB 512 GB
Disk 2 TB 2+3 TB 2× 146 GB, 4× 1 TB

Network 1 Gbps 3× 1 Gbps 4× 1 Gbps, 2× 10 Gbps

Figure 4.6: Schematic representation of the setup when Nemesis is being measured. Red arrows
show the alternative scheme to measure Survivor (or Erdos).

the server, which has an impact on the power utilization as the port goes idle. In the network

based experiments I established an Ethernet connection between the server under study and a

second machine in order to study the server behavior, both as a receiver and as a sender.

I evaluated three different servers: Survivor, Nemesis, and Erdos. I will now present

these servers although their main characteristics, including their sets of available CPU frequen-

cies, can be also found in Table 4.1. Survivor has an Intel Xeon E5606 4-core processor4,

with 4 GB of RAM, a 2 TB Seagate Barracuda XT hard drive and a 1 Gigabit Ethernet card in-

tegrated in the motherboard. Nemesis is a Dell Precision T3500 with an Intel Xeon W3530

4-core processor, 4 GB of RAM, 2 hard drives (a 2 TB Seagate Barracuda XT and a 3 TB Seagate

Barracuda), a 1 Gigabit Ethernet card integrated in the motherboard, and a separate Ethernet card

with two 1 Gigabit ports. In this study I only evaluate the Seagate Barracuda XT disk and the

integrated Ethernet card. Both Survivor and Nemesis use the Ubuntu Server edition 10.4

LTS Linux distribution. Finally, Erdos is a Dell PowerEdge R815 with 4 AMD Opteron 6276

16-core processors (i.e., 64 cores in total), 512 GB of RAM, two 146 GB SAS hard drives config-

ured as a single RAID1 system (which is the “disk” analyzed here) and four 1 TB Near-line SAS

hard drives. It also includes four 1 Gigabit and two 10 Gigabit ports. Erdos is a high-end server

and uses Linux Debian 7 Wheezy.

4FSB frequency was fixed for all CPU frequencies in the experiments performed with Intel machines.
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4.3.2. Collecting System Data and Fixing Frequency Parameters

One prerequisite for those experiments is to have Linux machines because we can freely

modify and check the Linux kernel, for instance to add kernel modules and utilities5 which allow

to change CPU frequencies at will, or to log CPU activity stats so that I can periodically read the

core frequency and the number of active and passive CPU ticks at each core6. Once I have the

number of ticks and the core frequency, since a tick represents a hundredth of second, cycles can

be calculated as 100 ticks/frequency.

I use active cycles per second (ACPS) instead of CPU load percentage to characterize CPU

load because ACPS depend on the CPU frequency used, as the higher the frequency the more the

work that can be processed. In contrast, CPU load percentages cannot be compared when different

frequencies are used, while the amount of ACPS that can be processed can be considered as an

absolute magnitude. In order to get (set) information about the operative frequency of the system I

used the cpufrequtils package7. With those tools, I can monitor the CPU frequency at which

the system works and assign different frequencies to the cores. However, to limit the number of

possible combinations to characterize, I assign the same frequency to all cores.

4.3.3. CPU

In order to evaluate the CPU power utilization I prepared a script based on a benchmark

application, lookbusy.8 Note that lookbusy allows to load one or more CPU cores with the

same load. The lookbusy-based experiment follows the next steps: I first fix the CPU frequency

to the lowest possible frequency in the system; then I run lookbusy with fixed amount of load

for one core during timeslots of 30 seconds, starting with the maximum load and then decreasing

the load gradually. After the last lookbusy run I measure the power used during an additional

timeslot with no lookbusy load offered. I register the active cycles and the power used during

each timeslot.

After taking these different samples for one frequency I move to the immediately higher fre-

quency (we can list and change frequencies thanks to cpufrequtils) and repeat the previous

steps. After going through all the available frequencies, I restart the whole process but increasing

by one the number of active cores. I repeat this whole process until all the cores of the server are

active. Note that when I change the frequency of the cores I change it in all of them, active or not,

for consistency. Similarly, when more than one core is active, the load for all the active cores is

the same.

Once explained the scheme of the experiments, I must clarify the meaning of running a times-

lot with no load. Note that zero-load is clearly not possible as there is always going to be load in
5e.g., cpufrequtils, acpi-cpufreq.
6File /proc/stat reports the number of ticks since the server started, devoted to user, niced and system pro-

cesses, waiting (iowait), processing interrupts (i.e., irq and softirq), and idle. In the experiments I count both waiting
and idle ticks as passive ticks, while I denote the aggregated value of the rest of ticks as active.

7https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
8http://www.devin.com/lookbusy.

https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
http://www.devin.com/lookbusy
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the system due to, e.g., the operating system. However, during the timeslot in which I do not run

lookbusy, I measure the power corresponding to the operational conditions which are as close

as possible to the ones of an idle system. Moreover, the decision of using timeslots of 30 seconds

is to guarantee enough, yet not excessive, time for the measurements. In fact, as I start and stop

lookbusy at the beginning and end of the timeslots, I need to ignore the first and the last few

seconds of measurements in each timeslot to avoid measurement noise due to power ramps and

operational transitions.

The measured values of load (in ACPS) and power in each timeslot are used to obtain a least

squares polynomial fittings curve. These fittings characterize the CPU power utilization for each

combination of frequency and number of active cores. I will use as baseline power utilization

of each one of these configurations the zero-order coefficient of the polynomial of these fittings

curves.

4.3.4. Disks

The energy consumption of the hard drive was evaluated using two different scripts (for read-

ing and writing) based on the dd linux command.9 I chose dd as it allows to read files, write files

from scratch, control the size of the blocks I write (read), control the amount of blocks written

(read) and force the commit of writing operations after each block in order to reduce the effect

of operating system caches and memory. I combine this tool with flushing the RAM and caches

after each reading experiment.

In both the scripts I perform write (read) operations for a set of different I/O block sizes and

for different data volumes to be written (read). I record the CPU active cycles, the total power

and time used in each one of these operations for each combination of block size and available

frequency.

Finally, I identify the contribution of the disk to the total power utilization by subtracting the

contribution of both the baseline and the CPU from the measured total power.

Disk I/O experiments shed light on the relevance of the block sizes when reading or writing

as well as whether there is an influence of the frequency on these operations.

4.3.5. Network card

In order to evaluate the contribution of the network card (NIC) to the energy consumption of

a cloud data center server, I devised a set of experiments based on a client-server C script devised

on purpose for this task.

There are a few aspects that I consider relevant in order to characterize the impact of the NIC

on the total energy consumption of a server and that led me to choose these two tools. First, the

ability of performing tests in which the server under study acts as sender or as receiver during a

network connection, and therefore I can observe server’s energy consumption while sending data

9http://linux.die.net/man/1/dd.

http://linux.die.net/man/1/dd
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or receiving it. To clarify the terms, sender is the server which injects traffic to the network, and

receiver is the server which accepts traffic from the network. Second, the ability of those tools to

change several parameters that I consider relevant for the energy characterization of the servers,

namely, the packet size and the offered load, jointly with the frequency of the system.

The experiments consist, then, on measuring the achieved data rate, the CPU active cycles per

second (ACPS) and the total energy consumption of the server under study either as sender or as

receiver using different packet sizes and different transfer rates. I run each experiment multiple

times for statistical consistency.

Finally, using the CPU active cycles per second which were measured during the experiment,

I identify the energy consumption due to CPU. Subtracting both CPU energy consumption and the

baseline energy consumption from the total energy consumption of the experiment, I can isolate

the energy consumption of the network.





Chapter 5

Related Work

In this chapter, I focus on existing literature on EEE (§ 5.1) and energy efficiency in data

centers (§ 5.2). First, in § 5.1, I will cover works related to the modeling of EEE (§ 5.1.1) then

performance evaluation works for EEE (§ 5.1.2), existing coalescing-like techniques (§ 5.1.3)

and finally a limited amount of works on dynamic coalescing (§ 5.1.4). Second, in § 5.2 I will

summarize the works regarding the energy efficiency improvement of modern data centers and in

particular, I will analyze existing models for estimating the power consumption of data centers.

5.1. Energy Efficient Ethernet

5.1.1. Modeling of EEE

Various analytical models exist in the literature for unidirectional links. In [64] the authors

propose an analytical model that allows to compute fast the potential EEE energy saving, using

simple statistical parameters for unidirectional traffic. In [69], using parameters such as the packet

arrival time and the service rate of the coalescer, the model is able to compute the mean queue

length, the mean packet delay and the delay for the downstream queue for 10 Gbps links. A

two-state analytical model for 10GBASE-T links is presented in [58] which estimates the energy

consumption of EEE links. This is a modeling tool, but it is not very accurate in case of small

state transition intervals, like the standard ones. Herrerı́a-Alonso et al. [42] propose and analyze

a model for both legacy EEE and burst transmission with 10 Gbps cards. Their model estimates

the energy saving using the arrival rate for Poisson traffic and the average service rate. They also

propose a model with GI/G/1 queues for both packet and burst transmissions [43]. The model

allows to compute the average delay of packets and the energy saving of the link using Poisson

and deterministic traffic, but it is specifically designed for the case of 10 Gbps links and thus it

cannot be used to estimate the energy saving of the widely used 1 Gbps links. Bolla et al. [17]

show a complete framework, which accounts for the bidirectional behavior of 1 Gbps links. The

model is evaluated with real traces but the traces are downsampled by a factor of 4 since short

packet interarrivals were not allowing EEE to enter in state LPI . The main drawback of this

35
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model is that it requires as input the a priori knowledge of the packet size distribution of the trace.

In contrast to previous works I study in this thesis the special case of gigabit links, which are

the most commonly used in modern data centers. I propose two models using M/G/1 queues

which take into account the bidirectional behavior of gigabit links and estimate the energy con-

sumption and the delay experienced by the link due to coalescing.

5.1.2. EEE performance evaluation

A few number of EEE evaluations and extension proposals have appeared during the last few

years to study and improve EEE’s performance. Reviriego et al. proved initially the inefficiency

of EEE by simulating the standard on ns-2 for 100Base-T, 1000Base-T and 10GBase-T links [81].

In [79] the authors provide a first evaluation on newly released EEE NIC cards for 1 Gbps links.

They measure the energy consumption of the cards with real traffic and prove that: (i) the en-

ergy consumption during transitions is similar to the energy consumption in “Active” state and,

(ii) great energy saving can be achieved but for very low loads, reporting saving up to 30% for

100 Mbps links and up to 70% for 1 Gbps links. In [75] and [83] the authors measure the energy

consumption of 1 Gbps EEE switches. As can be seen in their paper, state LPI consumes about

40-50% fewer energy than the active state. Additionally, both papers state that traffic loads more

than 40% per port do not allow any energy saving.

My EEE model for gigabit links is evaluated using real traffic traces to feed the ns-3 simulator.

I also present an economical analysis which shows the saving which we can achieve if we replace

legacy Ethernet links with EEE links with coalescing.

5.1.3. Coalescing-like techniques

A few methods have been proposed to tackle the inefficiency of EEE in medium and high

loads. Among them, coordinated transmission with EEE in 10 Gbps links is analyzed by Re-

viriego et al. [80]. They show that for links with loads less than 50% this method can reduce

the energy consumption by powering down some PHY layer components. Adaptive Link Rate

(ALR) [40] is another solution that changes the link speed in low loads and therefore the link

requires less energy to operate. Packet coalescing (or burst transmission) allows to extend state

LPI using packet buffers in the two link edges [29]. Packet coalescing, has attracted the interest

of research community since it does not require any power down of the electronics which intro-

duces long delays. One of the first evaluations of packet coalescing for EEE is presented in [29]

for 10 Gbps Ethernet links. The results show that packet coalescing outperforms legacy EEE in

terms of energy consumption and it overcomes the major problem of EEE, namely the overhead

due to protocol state transitions (which correspond to hardware operational states). However,

EEE introduces additional delay for the packets to cross the Ethernet link due to packet coalesc-

ing. For the measurements in [29], only two pairs of timeout-buffer size values are used (buffer

size of 10 packets with a 12 µs timeout and buffer size of 100 packets with 120 µs timeout). The
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authors of [82] perform more extensive simulations on packet coalescing by using a timeout of

10 µs for testing 100 Mbps, 1 Gbps and 10 Gbps Ethernet links. In [45] the authors approximate

the energy saving and the delay that the packets suffer due to coalescing over 10Gbps links. Kim

et al. [53] present a similar mathematical analysis and evaluation based on synthetic traffic but

instead they use an M/G/1 model.

In all the above performance evaluation works, it is assumed that traffic is unidirectional and

energy saving is operated independently over the two link directions. In this thesis instead, I

consider the bidirectional behavior of gigabit EEE links with coalescing.

5.1.4. Dynamic Coalescing

EEE with packet coalescing is still far from achieving energy consumption proportional to

the load, i.e., energy proportionality. A couple of dynamic schemes tried to improve the results

without success. In [44] the authors propose a dynamic scheme that tunes the coalescing buffer

size. The buffer size can be adapted based on the energy consumption difference between the

ideal energy proportional model (without considering transition time among states), and the actual

model allowing some degree of freedom. If the degree of freedom is exceeded then the buffer size

grows otherwise it shrinks.

In this thesis, I evaluate two classes of dynamic coalescing algorithms. In the first class,

the dynamic coalescing algorithm adapts either the coalescing timeout or the coalescing buffer

size. The event that triggers the adaptation of the corresponding parameter is either the timeout

expiration, or the fill-up of one of the buffers, with no further considerations on the network

performance. Moreover I study various parameters used to increase and decrease the timeout and

the buffer size and conclude that this class of dynamic algorithms (based on timeout expiration

or buffer fill-up) does not outperform static coalescing schemes. In the second class I design and

study measurement-based coalescing control solutions that tune the coalescing parameters on-the-

fly, according to the instantaneous load and the coalescing delay experienced by the packets. My

results show that, by relying on run-time delay measurements, this dynamic coalescing scheme

outperforms traditional static and dynamic coalescing. Notably, this scheme doubles the energy

saving benefit of static EEE coalescing and allows to control the coalescing delay.

5.2. Energy Efficiency in Data centers

There is a large body of work in the field of modeling server energy consumption and its

components, both theoretically and empirically. In available models, the consumption of servers

follow a linear or not linear behavior depending on the load or utilization of the machine, in fact,

we can find theoretical works e.g., by Wang et al. [92], Mishra et al. [65] or Beloglazov et al. [4],

who assumed models in which energy consumption mainly depends linearly on CPU utilization.

Based on the models, they proposed bin-packing-like algorithms to reduce energy consumption.

Other works like the ones from Andrews et al. [7] or Irani et al. [48] proposed non-linear models,
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claiming that energy could be saved by running processes at the lowest possible speed. However,

I experimentally show that current data center servers exhibit non-linear behaviors in terms of

energy consumption and that the impact of frequency is not straightforward in modern servers.

Moving to the empirical field, we first classify works in two different groups, depending on

whether they consider the effect of frequency in their analysis. I start with works not considering

frequency. In this category we find articles proposing models where server components follow

a linear behavior, like in [55, 61, 91] or more complex ones, like in [12, 33, 60]. In [61] Liu et

al. proposed a simple linear model and evaluate different hardware configurations and types of

workloads by varying the number of available cores, the available memory, and considering also

the contribution of other components such as disks. Vasan et al. [91] monitored multiple servers

on a datacenter as well as the energy consumption of several of the internal elements of a server.

However, they considered that the behavior of this server could be approximated by a model based

only on CPU utilization. Similarly, Krishnan et al. [55] explored the feasibility of lightweight

virtual machine power metering methods and examined the contribution of some of the elements

that consume energy in a server like CPU, memory and disks. Their model depends linearly

on each of these components. In [33], Economou et al. proposed a non-intrusive method for

modeling full-system energy consumption by stressing its components with different workloads.

Their resulting model is also linear on the utilization of server components. Finally, Lewis et

al. [60] and Basmasjian et al. [12] presented much more complex models which, apart from the

contribution of different components of the server, consider extra parameters like temperature and

cache misses as well as multiple cores. In particular, Lewis et al. [60] reported also an extensive

study on the behavior of reading and writing operations in hard disk and solid state drives. I

go beyond existing work by showing that, in data centers, non-linear models and a new load

metric are required to improve the accuracy of energy consumption estimation. Furthermore, I

complement existing studies by showing both individual and joint effects of load, I/O block sizes,

network activity and CPU frequencies.

Next, I move to the works which also consider frequency in their analysis. Miyoshi et al. [66]

analyzed the runtime effects of frequency scaling on power and energy. Brihi et al. [18] presented

an exhaustive study of DVFS using a cpufrequtils as I do. Main differences with my work

were that they studied four different power management policies under DVFS and centered their

study on the relationship between CPU and power utilization. However, they also presented inter-

esting results about disk consumption that match partially my results, showing a flat consumption

in reading operations and variations in the writing ones that they attribute to the size of the files

being written. Although it was not the main objective of their work, Raghavendra et al. [78]

performed a per-frequency and core CPU power characterization of two different blade servers.

However, they claimed that CPU power depends linearly on its utilization. The main difference

with my analysis is that I consider that the load supported by a server increases with the number

of active cores and, hence, this load should not be represented in percentage. Gandhi et al. [5]

published the analysis of global energy consumption versus frequency, based on DVFS and DFS
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and gave some intuition about the non-linearity of this relation. However, so far there has been

no work like ours, i.e., presenting a per-component analysis that allows me to enter into deeper

details on the energy versus frequency analysis.

Moreover, there are studies that model the energy consumption behavior for clouds and try

to balance the load in order to operate the cluster in its most efficient load-power combination.

MUSE [21] is one of the first works that consider a resource management architecture for data

centers. Its energy efficient approach dynamically assigns jobs to the servers based on the work-

load (for CPU and disk) and the potential energy consumption. The authors measure the energy

consumption of servers and switches involved in the cluster and conclude that at least 29% of

the energy can be saved by MUSE for typical web workloads. In [86] the authors proposed a

consolidation algorithm that considers the workloads of the servers in the cloud in order to find

the least possible energy consumption point. Their study shows that the energy consumption of

a server using variable loads for CPU and disks has an optimal operating point. Given the data

from the various servers the algorithm can estimate the ideal load distribution among the servers.

The authors in [10] modeled the energy consumption of data centers equipment (i.e., servers,

storage, switches) for cloud computing based on existing energy consumption measurements or

publicly available data sheets for each of the components (CPU, disk, network, switches). The

model estimates the energy consumption per bit from the data center to the user and further an-

alyzes the energy consumption for different types of services, i.e., storage, software, processing.

However, existing works on clouds lack experimental inputs on energy consumption. Moreover,

not only in my experiments I had a complete control of servers and network and I was able to cor-

relate activity and consumption of different components, but also I unveiled that baseline energy

consumption is key to achieve good analytical estimates.

I conclude with some works that also consider frequency but do not model the energy con-

sumption of a server. First of them, the work from Le Sueur et al. [87] presented an analysis of the

evolution of the effectiveness of DVFS and how it is reduced in the newest and most optimized

servers. They show that DVSF might be soon obsoleted by the adoption of ultra low power sleep

modes. Ge et al. proposed PowerPack [39], a framework that includes a set of toolkits to perform

an exhaustive profiling of the power utilization of servers and its components. Their analysis is

centered in showing the contribution of multicore system to the efficiency of several applications

and, hence, no power characterization is presented. Finally, Basmadjian et al. [13] published an

in deep analysis of the components of a processor and its contribution to the energy consumption

of the CPU, shedding some light on the behavior of multicore servers. Some of their conclusions

are very relevant to my work, as they show, for instance, that the energy consumption of multiple

cores performing parallel computations is not equal to the sum of the power of each of those ac-

tive cores. The experiments and model of this thesis support their findings and shed light on the

nature of such effect.
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Energy Efficient Ethernet
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Chapter 6

EEE modeling with static coalescing

The goal of using EEE is to reduce the power consumption of Ethernet links; therefore, it is

of great interest to evaluate the performance of EEE under different working conditions. I derive

an analytical model for EEE with bidirectional traffic with and without coalescing in § 6.1 and its

extended version in § 6.2. The importance of considering bidirectional traffic, rather than a mere

superposition of the two traffic flows, stems from the fact that models considering superposition

of traffic cannot capture the effect of simultaneous transmissions in the two directions (e.g., they

introduce delay due to the serialization of packet service for packets arriving from different di-

rections). Moreover coalescing state C is not the superposition of the two directions but it is the

same coalescing state for the two directions.

Next, based on the model of § 6.1, I will proceed with a study on the sensitivity analysis of

EEE performance with respect to the coalescing parameters in § 6.3. Specifically, I want to study

the impact in both energy saving and average packet delay when I modify either Tc or Nc. Thus,

I apply the method of partial derivatives with respect to Tc and Nc.

6.1. Analytical Model for 1 Gbps EEE links and Coalescing

I model the behavior of EEE links with coalescing assuming two steady-state M/G/1 queue-

ing systems, Q1 and Q2 (one per link direction). To control the duration of the coalescing period

I combine a buffer of Nc packets (“N policy” according to [96]) and a timeout Tc counting from

the first packet that initiates coalescing (“T policy” according to [46]). I use the expression “NT

policy” to refer to this class of coalescing algorithms, and I make the following assumptions for

my system:

1. The system uses Poisson arrival processes with arrival rate λi, where i corresponds to link

direction 1 or 2.

2. I consider average packet size, E[S
(i)
p ], in each link direction i ∈ {1, 2} and R is the

constant link speed.
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Figure 6.1: System cycle with coalescing.

3. Service times, σi = E[S
(i)
p ]/R, are i.d. random variables with mean E[σi] = 1/µi. The

traffic load ρi in the link direction i ∈ {1, 2} is ρi = λi/µi.

4. FIFO service discipline with infinite waiting space.

Note that using Poisson arrivals is appropriate for highly aggregated traffic, e.g., when multi-

ple TCP flows mix and cause large bursts of big packets in one link direction and small acknowl-

edgments evenly spaced-out in the other direction [52]. The sample path of the queue can be

viewed as a sequence of cycles as illustrated in Figure 6.1. A cycle starts with the packet arrival

that induces the transition from state L to state C. Then, when the coalescing timer Tc expires or

the number of coalesced packets reachesNc, the link transitions to stateW . Note that both transi-

tions L→C and C→W can be caused by arrivals in either link directions. Note also that setting

Tc = 0 and/or Nc = 1 yields the legacy EEE operation with no coalescing (i.e., the duration of

state C is 0). In particular, transition L→C happens because of an arrival to queue Q1 (namely,

an arrival in direction 1) with probability P1 = λ1/(λ1 + λ2), or because of an arrival to Q2 (i.e.,

in direction 2) with probability P2 = 1− P1.

The coalescing interval is followed by a busy period with the link in stateA, whose duration is

denoted byB0. This initial busy period is followed by a random number ψ of sleep/active interval

pairs, with each pair corresponding to an arrival in state S in either direction 1 or 2, before a time

Ts has elapsed.

Note that the sleep time is then reduced to the random time interval between the start of state

S and the next frame arrival, i.e., it is upper bounded by Ts. Finally, a sleep interval of duration

Ts precedes the idle period TL, whose random duration corresponds to the time interval before
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the beginning of a new cycle, i.e., before the next arrival in the system. I denote the length of a

cycle by Tcycle and its average by E[Tcycle].

Using results from renewal theory [54], I can focus on the system cycle, and compute the

fraction of time spent in each link state as the ratio between the average time in each state in a

cycle and the average cycle duration. I denote the average fraction of time spent in state α as ηα,

for α ∈ {A,C,L, S,W} and ηLPI = ηL + ηC is the fraction of time spent in power save mode.

These fractions of time represent state probabilities in an ergodic system. The following theorem

shows how to compute the average duration of a system cycle.

Theorem 1. For bidirectional EEE links in which arrivals in S are served immediately, the aver-

age cycle duration is given by:

E[Tcycle]= (Tw+E[τC ])

[
1+

1

λ1+λ2

(
λ1ρ1

1−ρ1
+
λ2ρ2

1−ρ2

)]
+

e(λ1+λ2)Ts

λ1+λ2

[
1+

ρ1

1−ρ1
+
ρ2

1(2− ρ1)(λ1ρ2 + λ2)

2λ1(1− ρ1ρ2)(1− ρ1)2

+
ρ2

1−ρ2
+
ρ2

2(2− ρ2)(λ2ρ1 + λ1)

2λ2(1− ρ1ρ2)(1− ρ2)2

]
(6.1)

with ρi = λi/µi, and µi = R/E[S
(i)
p ], i ∈ {1, 2}.

Proof : Consider the different intervals included in Tcycle, starting with the beginning of an L

interval. The cycle is composed by the following elements: (i) an interval in state L, with random

duration TL until the first arrival to Q1 or Q2; (ii) a coalescing interval C of duration τC ≤ Tc;

(iii) a wake-up interval of fixed duration Tw; (iv) an interval B0 lasting till the first epoch at

which both queues Q1 and Q2 are empty; (v) an interval X < Ts with exactly one arrival at

time X , followed by an interval B1 lasting until both queues are empty again; (vi) and finally a

sleep interval of fixed duration Ts which triggers a new state L. Element (v) is optional, since it

occurs only if there is one arrival within Ts seconds after B0. Moreover, element (v) can repeat

ψ ≥ 0 times, until the idle interval following B1 is longer than Ts. Each repetition of X and B1

exhibits the same distribution because of the memoryless property of Poisson arrivals. However,

busy intervals B0 and B1 can start either because of Q1 or Q2 activities, the two cases leading to

different conditional average durations, as I will discuss in the following. Overall, the total cycle

duration is:

Tcycle = TL + τC + Tw +B0 + ψ(X +B1) + Ts. (6.2)

Note that TL + τC is the time spent in state LPI during a cycle, while B0 +ψB1 is the total time

during which the link is active, and Ts + ψX is the time spent in state S. Let me now compute

the average value for each of the elements composing the system cycle.

Interval TL. State L lasts until the first packet arrival to Q1 or Q2. Since both arrival pro-

cesses are Poisson, the first arrival behaves as the first of a Poisson flow with rate λ1 + λ2, i.e.,
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with the following probability distribution:

fTL(t) = (λ1 + λ2)e−(λ1+λ2)t, t ≥ 0; (6.3)

and its average is then:

E[TL] =
1

λ1 + λ2
. (6.4)

Interval τC . For large values ofNc, I can approximate the duration of stateC as the minimum

time before Nc− 1 packet arrivals occur in either direction 1 or 2, and Tc. Let me denote with τc1
and τc2 the time before Nc − 1 arrivals appear in direction 1 or 2, respectively. Thereby, the time

spent in coalescing is τC = min{τc1 , τc2 , Tc}. Recalling that the cumulative distribution function

(CDF) of the minimum of n independent random variables is given by the following formula:

F min
i=1...n

{Xi}(x) = 1−
n∏
i=1

(1− FXi(x)), (6.5)

and considering that the distributions of τc1 , τc2 , and Tc are as follows:

Fτc1 (t) = u(t)

[
1−

Nc−2∑
k=0

(λ1 t)
k

k!
e−λ1 t

]
; (6.6)

Fτc2 (t) = u(t)

[
1−

Nc−2∑
k=0

(λ2 t)
k

k!
e−λ2 t

]
; (6.7)

FTc(t) = u(t− Tc); (6.8)

where u(t) is the unit step function, then the CDF of τC is given by:

FτC (t)=1−u(Tc−t)

[
Nc−2∑
k=0

(λ1t)
k

k!
e−λ1t

][
Nc−2∑
k=0

(λ2t)
k

k!
e−λ2t

]
, (6.9)

where I used 1− u(t) = u(−t). The average coalescing time is then as follows:

E[τC ] =

∫ Tc

0
t · dFτC (t). (6.10)

However, assuming that I can tune Nc and Tc in a way that the coalescing queues do not fill

completely with probability almost one, then E[τC ] ' Tc. Note that the latter assumption is

realistic for actual implementations since the power saving increases with Nc, although delay

increases too and I want to bound it to Tc.

Interval Tw. The wake-up interval which precedes the first busy interval has fixed duration

Tw.

Interval B0. This interval is composed of various subparts, as shown in Figure 6.1. After the
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link transitions to state A from state C, at least one queue is not empty. The system remains busy

until both queues are empty again. Let me observe the system from the viewpoint of the queue

that received the packet that caused the beginning of the the coalescing state (transition L→ C). I

denote withB(i)
c , i ∈ {1, 2}, the first busy period seen at queue i only, after the transition C → A.

This is the busy period of an M/G/1 queue, for which the average depends on the arrival rate λi,

the mean service timeE[S
(i)
p ]/R, and the queue size Z(i)

c at the beginning of the busy period [54]:

E[B(i)
c ] =

E
[
Z

(i)
c

]
E
[
S

(i)
p

]
/R

1− ρi
=
E
[
Z

(i)
c

]
ρi

λi(1− ρi)
. (6.11)

If queue i is the one who received the packet that triggered the transition L→ C, thenE
[
Z

(i)
c

]
=

1 + λi (Tw + E[τC ]), i.e., the initial queue size equals the arrival that triggers the coalescing

timer, plus the average number of Poisson arrivals during the average coalescing time E[τC ] and

the wake-up interval Tw. The probability that queue Q1 is the one who initiates the coalescing

procedure is simply given by the probability of having a Poisson arrival with rate λ1 before a

Poisson arrival with rate λ2, counting from the beginning of state L. I.e.:

Pr(Q1 triggers coalescing) =
λ1

λ1 + λ2
; (6.12)

Pr(Q2 triggers coalescing) =
λ2

λ1 + λ2
. (6.13)

With no loss of generality, assume now that queue Q1 triggers the coalescing. Therefore, as

observed from Q1, the system goes through a busy period B(1)
c , at the end of which Q1 is empty

with probability 1, while Q2 is empty with probability 1− ρ2. If Q2 is not empty, let me observe

the followup in the evolution of the system from the viewpoint of Q2: there is a busy period B(2)

forQ2, at the end of whichQ2 will be empty, whileQ1 can be empty with probability 1−ρ1. The

process can replicate by alternating busy intervals B(1) and B(2), i.e., I alternate the observation

of the system from the viewpoint of a queue or the other, until the observation of the queue status

at the end of a busy period reveals that both queues are empty. At that point we have a transition

A → S. Busy periods B(i) have different average duration with respect to B(i)
c . In fact, the

initial backlog of the queue in B(i) is not Z(i)
c . Using the Pollaczek-Khinchin mean formula to

estimate the average backlog of an M/G/1 queue at a random observation point, I would have

λiE [Sp] /R +
λ2i E[S2

p]/R2

2(1−ρi) as initial backlog. However, I am interested in the conditional initial

backlog Z(i), given that the observed queue is not empty (otherwise there is no busy period),

which happens with probability ρi. Therefore I have E
[
Z(i)

]
= 1 + ρi

2(1−ρi) , and the observed

busy periods are given by:

E
[
B(i)

]
= ρi

2− ρi
2λi(1− ρi)2

. (6.14)

Following the above procedure, one can compute the average duration of the first period after
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state C during which either queue 1 or 2 are busy:

E[B0]=
1

λ1 + λ2

[
λ1E

[
B(1)
c

]
+ λ2E

[
B(2)
c

]
+

ρ1(λ1ρ2 + λ2)E
[
B(1)

]
1− ρ1ρ2

+
ρ2(λ2ρ1 + λ1)E

[
B(2)

]
1− ρ1ρ2

]
. (6.15)

Interval X . The interval X between the end of a busy period and the beginning of the next

busy period is exponentially distributed with rate λ1 +λ2, given that the next arrival occurs within

Ts seconds:

fX(t) =
(λ1 + λ2)e−(λ1+λ2)t

1− e−(λ1+λ2)Ts
, t ∈ [0, Ts].

Accordingly, the average of X is as follows:

E[X] =
1

λ1 + λ2
− Ts

e(λ1+λ2)Ts − 1
.

Interval B1. Similarly to the case of B0, this interval is composed by various subparts. The

first part is B(i)
s , which is the first busy interval on either Q1 or Q2 after the period X . Since

packets are served immediately when they arrive in state S, the initial backlog is exactly 1. For

the rest, the computation of B(i)
s is analogue to the one of B(i)

c :

E[B(i)
s ] =

ρi
λi(1− ρi)

.

The following alternating busy intervals are exactly like for the case of B0, i.e., we have

intervals B(1) and B(2).

Considering that each interval B1 starts because of an arrival in Q1 or Q2 before Ts expires,

and since arrivals for Q1 and Q2 in state S are independent and both follow a Poisson process,

the probability of starting an interval B1 due to arrivals for Qi is λi
λ1+λ2

.

Putting together the pieces, the average of B1 is as follows:

E[B1]=
1

λ1 + λ2

[
λ1E

[
B(1)
s

]
+λ2E

[
B(2)
s

]
+

ρ1(λ1ρ2+λ2)E
[
B(1)

]
1−ρ1ρ2

+
ρ2(λ2ρ1+λ1)E

[
B(2)

]
1−ρ1ρ2

]
. (6.16)

Number of repetitions ψ. Busy intervals B1 occur if the residual interarrival time at the

end of the previous busy interval is shorter than Ts. Since arrivals are Poisson, the probability of

having no arrivals in any link direction in Ts is P0 = e−(λ1+λ2)Ts . Thereby, the number ψ ≥ 0 of

busy periods of typeB1 in a cycle, i.e., not countingB0, can be seen as the number of consecutive

successes of a geometric random variable ψ with success probability 1 − P0. Hence, its average
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value is:

E[ψ] =
1− P0

P0
= e(λ1+λ2)Ts − 1.

Interval Ts. The sleep interval which follows the last busy interval before entering state L

has fixed duration Ts.

Average cycle duration. Putting together the results obtained for the cycle components, after

some algebraic elaboration, result (6.1) follows.

�

Corollary 1. The fraction of time spent in LPI is:

ηLPI =
1

λ1+λ2
+ E[τC ]

E[Tcycle]
. (6.17)

Proof : The time spent in LPI corresponds to states L and C, i.e., intervals TL and τC , as

described in the proof of Theorem 1; therefore the proof follows. �

Corollary 2. The fraction of time spent in WakeUp state is given by:

ηW =
Tw

E[Tcycle]
. (6.18)

Proof : The time spent in WakeUp state is constant in each cycle and corresponds to the

interval Tw. Therefore the proof follows. �

Corollary 3. The fraction of time spent in Sleep state is given by:

ηS =
E[X]E[ψ] + Ts

E[Tcycle]
. (6.19)

Proof : The time spent in Sleep state corresponds to intervals X , which are repeated ψ times,

plus a complete sleep interval of Ts seconds, occurring once in a cycle, just before entering state

L. Considering the proof of Theorem 1, the proof follows. �

Corollary 4. The fraction of time spent in Active state is given by:

ηA =
E[B0] + E[B1]E[ψ]

E[Tcycle]
. (6.20)

Proof : The time spent in Active state is given by the sum of busy intervals during which at

least one network interface transmits. Therefore, considering the proof of Theorem 1, the proof

follows. �
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6.1.1. Power Saving

Using the results of the analysis carried out for the cycle duration, I can now compute the

power saving factor Φ achieved by EEE with or without coalescing.

Theorem 2. The average power consumption achieved by EEE is proportional to the fraction of

time spent in LPI:

Φ ∝ ηLPI . (6.21)

Proof : The average power consumption over a system cycle, is computed by considering that

the power consumption in statesW (namely P (W )) and S (namely P (S)) is practically the same as

in state A (namely P (A)), while in LPI (i.e., P (LPI) in states L and C), the power consumption

decreases by a factor k ' 10, as experimentally shown by Reviriego et al. [79]. In legacy gigabit

cards, the power consumption P (legacy) is practically constant and equals the one consumed in

state A in an EEE card. Therefore I have the following expression for the power saving factor Φ:

Φ = 1−
∑

α∈{A,S,LPI,W} ηαP
(α)

P (legacy)
' k − 1

k
·ηLPI . (6.22)

Φ is thus shown to be proportional to ηLPI with a proportionality factor (k − 1)/k ' 0.9. �

The power saving achieved with EEE is proportional to ηLPI and the values of Φ and ηLPI
are similar. As a consequence, in the rest of the paper I will refer to power saving performance

either in case of actual power saving figures or when discussing ηLPI values.

6.1.2. Packet Delay

Theorem 3. The average packet delay in Qi is given by:

D(i) =

∑
α∈A,S,W,L,C n

(i)
α D

(i)
α

n
(i)
cycle

, i ∈ 1, 2; (6.23)

where n(i)
α is the amount of packets received in each state α ∈ {A,S,W,L,C} and link direction

i ∈ {1, 2} and n(i)
cycle is the total amount of packets received per link direction i ∈ {1, 2}.

Proof : Next, I identify the average packet delay of a packet in the queue depending on the

state α at arrival time. Note that the resulting delays are different in the two link directions.

Delay DA of packets arriving in A. If a packet arrives in state A, I can use results for

M/G/1 queues. Therefore, the average waiting time can be simply computed by means of the P-K

formula [54]:

D
(i)
A =

λiE[σ2
i ]

2(1− ρi)
, i ∈ {1, 2}, (6.24)
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where σi = S
(i)
p /R is the random service time, withE[σi] = 1/µi. The statistics of σi depends on

the packet size distribution. For the sake of simplicity, here I assume that packet size is constant

and equal to 1/µi, so that I use E[σ2
i ] = 1/µ2

i , which yields D(i)
A = ρi

2µi(1−ρi) .

Delay DS of packets arriving in S. If a packet arrives while the device is in state S, the

device will directly transition to state A and the packet is immediately served. Thus, the delay is

DS = 0.

DelayDL of packets arriving in L. Only one packet can arrive while the device is in state L,

which triggers an immediate transmission to state C. The delay of this packet is at most Tc +Tw,

in case of scarce traffic which yields the expiration of the coalescing timeout. More in general,

the average queuing delay experienced by this packet is the sum of the average coalescing time,

given in Eq. (6.10), plus the constant wake-up time Tw:

DL = E[τC ] + Tw. (6.25)

Delay DC of packets arriving in C. When a packet arrives in state C, it suffers from (i) the

residual coalescing interval, (ii) the constant wake-up interval Tw, and (iii) the time to process

and transmit packets already present in the queue at the arrival epoch of the new packet.

Considering that Poisson arrivals are uniformly distributed over time, I estimate the average

residual coalescing time as E[τC ]/2. Correspondingly, the average queue size at the arrival epoch

is λiE[τC ] + λi
λ1+λ2

for an arrival in direction i ∈ {1, 2}, where the second term represents the

probability that the packet triggering the L→C transition belongs to direction i. The average cu-

mulative serving time for those packets is then ρi
(
E[τC ]

2 + 1
λ1+λ2

)
. Therefore, the delay suffered

by a packet arriving in state C is, on average:

D
(i)
C =Tw+

E[τC ]

2
+ρi

(
E[τC ]

2
+

1

λ1+λ2

)
, i ∈ {1, 2}. (6.26)

Considering that the delay DC is affected by the arrival rate, this delay assumes different average

values for packets sent in the two different link directions.

Delay DW of packets arriving in W . If a packet arrives while the device is in state W , the

delay is composed of (i) the average residual wake-up time (for uniformly distributed Poisson

arrivals, this equals Tw/2), and (ii) the required time to serve all packets arrived earlier, since the

beginning of state C: λi
λ1+λ2

+ λi(E[τC ] + Tw/2) packets, on average (again the first term is due

to the packet which triggers the L→C transition). Therefore, the delay is:

D
(i)
W =

Tw
2

+ ρi

(
1

λ1 + λ2
+ E[τC ] + Tw/2

)
, i ∈ {1, 2}. (6.27)

This delay is different for different traffic directions, as it was the case for DA and DC .

Average delay of a packet. To find the average delay that a packet can suffer, I need to

compute the probability that a packet arrives in any of the possible EEE states. For each link
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direction, these probabilities can be seen as the average number of packets received in each of the

different states divided by the average number of arrivals in a system cycle.

There is only one packet per cycle arriving in state L: it belongs to link direction i with

probability λi/(λ1 + λ2), which is then the average number of packets received in state L in

direction i, namely n(i)
L . Similarly, since there are ψ arrivals per cycle in state S, the average

number of packet arrivals in direction i in state S is given by n(i)
S = λi

λ1+λ2
E[ψ].

Since arrivals follow a Poisson process, packets received in link direction i during the fixed-

length wake-up interval, which is present only once in a cycle, are nW = λiTw, on average.

Similarly, the number of arrivals in direction i during the coalescing interval (state C) is nC =

λiE[τC ], on average. Eventually, arrivals in direction i in stateA are the total number of (Poisson)

arrivals in a cycle less the arrivals in the other states, i.e., n(i)
A = λiE[Tcycle]−n

(i)
S −n

(i)
W −n

(i)
L −

n
(i)
C . As a result, the corresponding average delay that a packet suffers in direction i is as follows:

Di =

∑
α∈{A,S,L,C,W} n

(i)
α D

(i)
α

λiE[Tcycle]
, i ∈ {1, 2}. (6.28)

�

6.1.3. Impact of EEE parameters

I use here the model to establish a reference for the evaluation of energy saving in the system.

To achieve this goal, consider that an ideal, energy proportional system, would allow to switch

instantaneously to state L (A → L) as soon as there is no traffic to serve. Similarly, an ideal

system would allow to switch back to state A (C→A) as soon as a packet arrives. Therefore, an

ideal system would be characterized by Tw = Ts = 0. In contrast, a real system has non-zero

transition times Tw and Ts and therefore it experiences less energy saving and less chances to

enter state L. In Figures 6.2(a) and 6.2(b) I use the model results to depict the impact of Tw
and Ts on the energy saving performance stretching their values from 0 to 5 times their standard

value. Figures 6.2(a) and 6.2(b) refer to two specific cases, respectively: a typical off-peak hour,

during which the load in the most loaded link direction is ∼1% of the link capacity, and a typical

peak-hour load, during which the link load is ∼ 11% of its capacity. Noticeably, the achievable

energy saving (expressed in terms of time spent in states L and C, which is ηLPI ) is not much

affected by the wake-up transition time Tw, while the sleep transition time Ts has a strong impact.

From the figures, I notice that small values of Ts would dramatically boost the energy saving

performance. However, due to technology constraints, the EEE standard specifies that Ts cannot

be smaller that 182 µs. Similarly, the standard imposes Tw ≥ 16 µs. In the following, when

evaluating the energy saving achieved with EEE, I use the minimum standard values Tw = 16 µs

and Ts = 182 µs, and I show that coalescing techniques can be used to reduce the gap between

real and ideal energy saving performances without imposing stringent hardware requirements.
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Figure 6.2: Energy saving versus the transitioning parameters.

6.1.4. Performance dependency on E[τC ]

With the model described above, it is straightforward to establish a direct relation between

average delay and average time spent in coalescing. The resulting expression has the following

quadratic form:

D = α1 + α2E[τC ] + α3E
2[τC ]; (6.29)
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where α1, α2, and α3 are non-negative coefficients that do not depend on E[τC ]. Similarly, it is

possible to compute a direct relation between the gain Φ and E[τC ]:

Φ = (1−m)(ηL + ηC) = (1−m)
β1 + E[τC ]

β2 + β3E[τC ]
; (6.30)

where m ∈ [0, 1], 0 < β1 � β2, and β3 > 1 (so that β3 < β2/β1, which guarantees that
dΦ

dE[τC ] > 0 and d2Φ
dE2[τC ]

< 0) are parameters that do not depend on E[τC ]. As a consequence,

both average delay and gain are increasing functions of E[τC ]. Therefore, to maximize the gain,

it is also necessary to maximize the average delay.

The above results, although computed from a model for static coalescing, reveal that changing

E[τC ] is the only way to tune delay and power saving. In fact, adapting the coalescing parameters

online only affects directly E[τC ], while the structure of the system cycle remains the same,

including the dependencies on E[τC ]. However, in that case, the averages used in the model

should be computed over Nc and/or Tc seen as random variables, which is out of the scope of this

work.

Another important observation from Eqs. (6.29) and (6.30) is the tradeoff between E[τC ] and

the delay, and between E[τC ] and ηLPI = ηL+ηC . The formulas reveal that increasing E[τC ]

increases the delay D super-linearly, while the gain Φ (and therefore the energy saving ηLPI )

increases to the asymptotic value (1 − m)/β3 according to a concave downward function. So,

I conclude that the more energy saving I achieve the higher the delay introduced to the pack-

ets on average and vice versa, and small energy saving increases can cause large delays when

approaching the asymptotic achievable gain.

6.2. Extended EEE model with Coalescing for 1 Gbps links

This section presents an improved version of the analytical model presented in § 6.1. In this

new model I modify the way I compute the average time in which the link remains in each of

the different states of the system cycle and propose a new and more accurate expression for the

computation of the time in which the link remains in the coalescing state. The new model allows

to improve the delay estimation, study the impact of EEE parameters on energy saving, and show

the intrinsic dependency of achieved gain from average delay. Moreover, I compare the results of

the two models.

Let me assume that the cycle starts after the end of state A (“Active”). After the interval

Ts elapses the link enters in state L until the reception of the first packet, in either of the two

link directions, which triggers the transition to state C (“Coalescing”). After coalescing, the link

wakes up and resumes, serving the buffered packets and the ones that arrive during service time.

Upon completion of the service the cycle ends and a new cycle starts. Differently from what

presented in § 6.1, here I consider renewal cycles that might not include states L, C and W (their

duration can be zero).
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Indeed, leaving state A represents a renewal point [54] in the system, since at that point the

process evolves with no memory of the past activity. Therefore, I can analyze the system in cycles,

starting from state S (transition A→ S) instead of starting from state C (transition L→ C) like

I presented in § 6.1.

6.2.1. Derivation of E[τα] for α ∈ {A,L,C, S,W}

Mean duration of state S, E[τS ]. State S lasts at most Ts. However, according to the stan-

dard, if a packet arrives during state S the link resumes immediately its service without complying

the restrictions of the NT policy (i.e., without passing through states L and C) and without any

wake-up delay (state W ). To estimate the average time spent in state S in a cycle, I consider that

arrivals in both link directions are independent Poisson processes, so that the interval between

any two packet arrivals in the system is exponential with rate λ1+λ2. Therefore, with probability

PS = e−(λ1+λ2)Ts there are no arrivals in Ts, which causes the transition S→L. Instead, with

probability 1 − PS the time spent in state S is a truncated exponential. The resulting average is

as follows:

E[τS ]=PSTs+

∫ Ts
0 I(λ1 + λ2)e−(λ1+λ2)IdI∫ Ts
0 (λ1 + λ2)e−(λ1+λ2)IdI

· (1− PS)

=
1

λ1 + λ2

(
1− e−(λ1+λ2)Ts

)
. (6.31)

Mean duration of state L, E[τL]. The link will remain in state L as long as there is no arrival

in either of the two link directions. The resulting mean duration, considering that with probability

1− PS there is no state L at all in a cycle, is:

E[τL]=
1

λ1 + λ2
PS + 0 · (1− Ps) =

1

λ1 + λ2
e−(λ1+λ2)Ts. (6.32)

Mean duration of state C, E[τC ]. To control the duration of the coalescing period I combine

a buffer of Nc packets (“N policy” according to [96]) and a timeout Tc counting from the first

packet that initiates coalescing (“T policy” according to [46]). I use the expression “NT policy”

to refer to this type of coalescing. The duration of the coalescing period is limited by the NT

policy according to the following two cases: (i) a coalescing buffer fills up due to Nc−1 arrivals

in the link direction that triggered the transition L→C or Nc arrivals in the other direction (N-

event, see bottom of Figure 6.3); (ii) a timeout occurs: no more than Nc−2 packets arrive in the

link direction that triggered the transition L→C and no more than Nc−1 packets arrive in the

other direction (T-event, see top of Figure 6.3).

With Poisson arrivals, the probability F (i)
n (t) to have at least n arrivals in queue Qi in interval
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Q
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τL Tc

Q

Nc

τL Tc

Figure 6.3: T-policy (top) and N-policy (bottom) in state C.

[0, t ≥ 0] is given by the following formula:

F (i)
n (t)=1−

n−1∑
k=0

(λit)
k

k!
e−λit=Pr(N (i)(t)≥n), i ∈ {1,2}. (6.33)

The probability of having exactly n packets in t seconds is given by Pr(N (i)(t) = n) = F
(i)
n (t)−

F
(i)
n+1(t). With the above, as shown in Appendix B, the time spent in state C, given that there is

no arrival in Ts (transition W→A), is:

E[τC |W→A] =
λ1E[τC |W→A, Q1]

λ1 + λ2
+
λ2E[τC |W→A, Q2]

λ1 + λ2

=
λ1

λ1 + λ2

[
Nc−1∑
k=0

∫ Tc

0

λNc−1
1 λk2 t

Nc−1+ke−(λ1+λ2)t

(Nc − 2)! k!
dt

+

Nc−2∑
k=0

∫ Tc

0

λk1 λ
Nc
2 tNc+ke−(λ1+λ2)t

(Nc − 1)! k!
dt

+ Tc

Nc−2∑
n=0

(λ1t)
ne−λ1t

n!

Nc−1∑
m=0

(λ2t)
me−λ2t

m!

]

+
λ2

λ1 + λ2

[
Nc−1∑
k=0

∫ Tc

0

λk1 λ
Nc−1
2 tNc−1+ke−(λ1+λ2)t

(Nc − 2)! k!
dt

+

Nc−2∑
k=0

∫ Tc

0

λNc1 λk2 t
Nc+ke−(λ1+λ2)t

(Nc − 1)! k!
dt

+ Tc

Nc−1∑
n=0

(λ1t)
ne−λ1t

n!

Nc−2∑
m=0

(λ2t)
me−λ2t

m!

]
, (6.34)
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where E[τC |W→A, Qi] is the average duration of τC when the arrival that triggers state C occurs

in queue Qi.

To estimate the average coalescing duration during a cycle I consider that the probability of

no arrival is PS and that with probability 1− PS the duration of state C will be zero:

E[τC ] = E[τC |W→A] · e−(λ1+λ2)Ts . (6.35)

Mean duration of state W , E[τW ]. With probability PS the link does not have arrivals in

state S and the duration of state W is Tw, otherwise is zero. Thus, on average I have:

E[τW ] = Tw · e−(λ1+λ2)Ts . (6.36)

Mean duration of stateA,E[τA]. The link can transit to stateA either from stateW (W→A)

or from state S (S→A). In both cases, state A is composed by various busy sub-parts in either of

the two link directions. The analytic expression for E[τA] is derived in Appendix C, based on the

observation that, since arrivals are uncorrelated, once a busy period of Q1 or Q2 starts, it evolves

like in a legacyM/G/1 queue between two vacations [59], that is like in normalM/G/1 queues.

With the above consideration, I can compute the average time to complete the initial busy periods

for either Q1 or Q2. Assume I start with Q1, then, if Q2 is still not empty at the end of the busy

period of Q1, I switch the system observation point to Q2. At that instant, I assume that Q2 is

busy with probability ρ2. Using such probability represents an approximation with little impact

on the performance of the model. More precisely, as illustrated in Appendix A, the model yields a

lower bound of E[τA], although such lower bound is very close to the upper bound for E[τA] and

hence to its correct value. Then I keep switching observation point until both queues are empty,

which triggers a transition to state S. The resulting expressions for the time spent in state A when

there are no arrivals in state S is as follows:

E[τA|W→A]=
1

λ1 + λ2

{
λ1E

[
B(1)
c

]
+ λ2E

[
B(2)
c

]
+
ρ1(λ1ρ2+λ2)E

[
B(1)

]
1− ρ1ρ2

+
ρ2(λ2ρ1+λ1)E

[
B(2)

]
1− ρ1ρ2

}
; (6.37)

where I have used the following definitions, for i ∈ {1, 2}:

E
[
B(i)
c

]
,

1+λi(E[τC |W→A, Qi] + Tw)

µi − λi
; (6.38)

E
[
B(i)

]
, ρi

2− ρi
2λi(1− ρi)2

. (6.39)
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Similarly, when there are arrivals in state S, the expression for the time spent in state A is:

E[τA|S→A]=
1

λ1 + λ2

{
λ1E

[
B(1)
s

]
+λ2E

[
B(2)
s

]
+
ρ1(λ1ρ2+λ2)E

[
B(1)

]
1−ρ1ρ2

+
ρ2(λ2ρ1+λ1)E

[
B(2)

]
1−ρ1ρ2

}
, (6.40)

where E[B
(i)
s ] , (µi−λi)−1, i∈{1, 2}. Since with probability PS there is no arrival during Ts,

the average state duration is:

E[τA]=PSE[τA|W→A] + (1− PS)E[τA|S→A]

=
1

λ1 + λ2

{
λ1E[B

(1)
1 ] + λ2E[B

(2)
1 ]

+
ρ1(λ1ρ2+λ2)E[B(1)]

1− ρ1ρ2
+
ρ2(λ2ρ1+λ1)E[B(2)]

1− ρ1ρ2

}
, (6.41)

with E[B
(i)
1 ],E[B

(i)
c ]e−(λ1+λ2)Ts+E[B

(i)
s ](1−e−(λ1+λ2)Ts).

6.2.2. State probabilities ηα

With the model derived in this chapter, the mean cycle duration E[Tcycle] is the sum of the

above described cycle components, i.e.:

E[Tcycle] = E[τS ] + E[τL] + E[τC ] + E[τW ] + E[τA], (6.42)

while the coefficients ηα for α ∈ {A,L,C, S,W} are given by ηα = E[τα]/E[Tcycle].

6.2.3. Mean waiting time per packet D(i)
α

The mean waiting time for a packet in Qi is given by Eq. 6.28 also for the model presented in

this section.

Next, I identify the mean waiting time of a packet in the queue depending on the state α

at arrival time according to this more accurate model presented in this section. Note that the

resulting delays are different in the two link directions.

Waiting time D(i)
A for packets arriving in state A. If a packet arrives in state A, I can

use results for M/G/1 queues. Therefore, the average waiting time can be simply computed by

means of the P-K formula [54]:

D
(i)
A =

λiE[σ2
i ]

2(1− ρi)
, i ∈ {1, 2}. (6.43)
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The statistics of σi depend on the packet size distribution. For the sake of simplicity, here I assume

that packet size is constant and its service time equals to 1/µi, so that I use E[σ2
i ] = 1/µ2

i , which

yields:

D
(i)
A =

ρi
2µi(1− ρi)

, i ∈ {1, 2}. (6.44)

Waiting time D(i)
S for packets arriving in state S. As it has been described in § 5.1, packets

that arrive in state S will immediately cause a transition to state A and the packets will be served

with no further delay and thus D(i)
S equals zero:

D
(i)
S = 0, i ∈ {1, 2}. (6.45)

Waiting time D(i)
L for packets arriving in state L. In state L only one packet will arrive in

either of the two link directions, which causes the transition to state C. The waiting time of the

packet received in state L is the sum of the time that the link remains in both state C and state W

given by Eq. (6.35) and Eq. (6.36), respectively:

D
(i)
L = E[τC |W→A, Qi] + Tw, i ∈ {1, 2}. (6.46)

Waiting time D(i)
C for packets arriving in state C. When a packet arrives in state C, it

suffers from (i) the residual coalescing interval, (ii) the constant wake-up interval Tw, and (iii)

the time to process and transmit packets already present in the queue at the arrival epoch of the

new packet.

Poisson arrivals have uniform distribution over time. Therefore, the residual coalescing in-

terval is given as E[τC ]/2. Similarly, the mean number of packets in the queue depends on

the link direction i in which the packet arrival triggered the transition from state L to state

C (which is 1 with probability λi
λ1+λ2

and 0 otherwise) and on the average number of packets

which arrived afterward, i.e., λiE[τC ]/2. The average service time for those packets is therefore
1
µi

(
λiE[τC ]

2 + λi
λ1+λ2

)
. Consequently, the mean waiting time D(i)

C for packets arriving in state C

is:

D
(i)
C =Tw +

E[τC ]

2
+ ρi

(
E[τC ]

2
+

1

λ1+λ2

)
, i ∈ {1, 2}. (6.47)

Waiting time D(i)
W for packets arriving in state W . For a packet that arrives when the link

is in state W the mean delay depends on two main parameters: the mean residual wake-up time

and the time to serve previously received packets (during states L, C and W ). Since I assume

Poisson arrivals the mean residual wake-up time is Tw/2. The time to serve previously received

packets is
(

λi
λ1+λ2

+ λi
(
E[τC ] + Tw

2

))
/µ1. So, the mean waiting time D(i)

W for packets received

in state W is given by:

D
(i)
W =

Tw
2

+ ρi

(
1

λ1+λ2
+E[τC ]+

Tw
2

)
, i ∈ {1, 2}. (6.48)
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Mean number of packets n(i)
α for α ∈ {A,S, L,C,W}. To identify the mean waiting time

of the packets, I need to model the amount of packets that the link receives in any of the states.

Since the arrival rate is different in the two link directions the mean number of packets will be

different for the two link directions.

Let me first see the total amount of packets that the link receives over a cycle and then I can

calculate the packets received in the separate states. Since arrivals are Poisson, the number of

received packets over a cycle in each link direction is simply given by:

n
(i)
cycle = λiE[Tcycle], i ∈ {1, 2}. (6.49)

In state A, both link queues behave as independent M/G/1 systems with vacations [59] in a

generic interval between two vacations.1 Therefore, the EEE link will receive λiE[τA] packets in

each of the two link directions i = 1, 2, i.e.:

n
(i)
A = λiE[τA] =

λi
λ1 + λ2

{
λ1E[B

(1)
0 ] + λ2E[B

(2)
0 ]

+
ρ1(λ1ρ2+λ2)E[B(1)]

1− ρ1ρ2
+
ρ2(λ2ρ1+λ1)E[B(2)]

1− ρ1ρ2

}
. (6.50)

While the EEE link is in state S there will be at most one arrival in only one link direction

i = 1, 2, i.e.:

n
(i)
S = Pr(arrival in link direction i) · (1− PS) · 1

=
λi

λ1 + λ2

(
1−e−(λ1+λ2)Ts

)
= λiE[τS ]. (6.51)

Similarly, while the EEE link is in state L it will receive exactly one packet in only one link

direction, i.e.:

n
(i)
L = Pr(arrival in link direction i) · PS · 1

=
λi

λ1 + λ2
e−(λ1+λ2)Ts = λiE[τL], i ∈ {1, 2}. (6.52)

In state W , since τW is either 0 or Tw, the EEE link will receive either 0 or λiTw Poisson

arrivals in each of the two link directions, i.e.:

n
(i)
W =λiTwe

−(λ1+λ2)Ts =λiE[τW ], i ∈ {1, 2}. (6.53)

Eventually, the remaining packets arrive in stateC, so that, as it is from Eqs. (6.42) and (6.49)–

1Note that vacations are correlated (i.e., they have to coincide), whereas arrivals and service processes are indepen-
dent. So, between any two vacations, the two link queues behave as normal and independent M/G/1 queues.
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(6.53) I have, for i = 1, 2:

n
(i)
C = n

(i)
cycle−n

(i)
S −n

(i)
A −n

(i)
L −n

(i)
W = λiE[τC ]. (6.54)

As a corollary, note that the computation of nα reveals that the average number of arrivals in

each system state behaves like in the case of Poisson processes not only for the overall cycle, but

also for each interval between any two state transitions.

6.3. Sensitivity Analysis of EEE with Coalescing

The partial derivatives with respect to either Tc orNc for both ηLPI andDi show a dependence

on the partial derivative ofE[τC ] as can be seen, e.g., from the analysis presented in § 6.1.4. Thus,

next I report the partial derivative of E[τC ] (and E[Tcycle]), the rest is mere calculation.

6.3.1. Partial derivatives with respect to Tc

The partial derivative of E[τC ] with respect to Tc is

∂E[τC ]

∂Tc
=

Nc−2∑
k=0

Nc−2∑
j=0

λk1λ
j
2

k!j!
T k+j
c e−(λ1+λ2)Tc>0, ∀Tc>0; (6.55)

and the partial derivative of E[Tcycle] with respect to Tc is given by the following expression:

∂E[Tcycle]

∂Tc
=

∂

∂Tc

{
E[τC ]

[
1 +

1

λ1+λ2

(
λ1ρ1

1−ρ1
+
λ2ρ2

1−ρ2

)]}
=

[
1+

1

λ1+λ2

(
λ1ρ1

1−ρ1
+
λ2ρ2

1−ρ2

)]
∂E[τC ]

∂Tc
(6.56)

= b
∂E[τC ]

∂Tc
> 0, ∀Tc>0. (6.57)

Finally, I get the partial derivative of the energy saving ηLPI with respect to Tc as follows:

∂ηLPI
∂Tc

=

∂E[τC ]
∂Tc

E[Tcycle]−
∂E[Tcycle]

∂Tc

(
1

λ1+λ2
+ E[τC ]

)
E2[Tcycle]

=
a− b

λ1+λ2

(a+ b E[τC ])2

∂E[τC ]

∂Tc
. (6.58)

From the above expressions, it is clear that the energy saving is a monotonic function of Tc, and

moreover ∂ηLPI∂Tc
> 0,∀Tc > 0. Therefore the delay monotonically increases with Tc.
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Table 6.1: Maximum ηLPI for Dtarget ≤ 1 ms (ρ1, ρ2,λ1, λ2 are taken from real traffic traces)

ρ1 ρ2 λ1 λ2 Max{ T ′c N ′c Max{ T ′′c N ′′c
[%] [%] [pkts/s] [pkts/s] η′LPI}[%] [ms] [pkts] η′′LPI}[%] [ms] [pkts]
0.11 5.25 2186 4343 82.09 ≥ 3 ≥ 32 82.09 =2 100
10.54 0.66 10410 5324 62.84 ≥ 7 ≥ 22 60.02 =2 100
0.57 32.68 10051 27459 15.34 ≥ 9 = 205 8.74 ≥ 5 100
1.01 40.52 17091 34042 1.80 ≥ 10 = 255 0.75 ≥ 4 100
5.06 0.5 5409 3809 77.50 ≥ 5 ≥ 15 66.55 = 1 100
1.14 17.93 9639 17320 37.59 ≥ 7 ≥ 75 31.17 = 3 100
0.20 0.06 310 268 92.72 = 1 ≥ 15 92.72 = 1 100

Similarly, the partial derivative of the delay Di with respect to Tc is:

∂Di

∂Tc
=

(
ρi

2µi(1−ρi) −Di

)
∂E[Tcycle]

∂Tc
− ρi

2µi(1−ρi)
∂E[τC ]
∂Tc

E[Tcycle]

+

(
1

λ1+λ2
+ Tw + E[τC ]

)
(1 + ρi)

∂E[τC ]
∂Tc

E[Tcycle]
. (6.59)

Also in this case it is possible to show that ∂Di∂Tc
> 0,∀Tc > 0 as far as loads are not extremely

high. In practice, high loads prevent any significant EEE benefit [22, 29, 82], and therefore I can

safely assume that the delay monotonically increases with Tc under the circumstances in which

energy saving can be achieved.

6.3.2. Partial derivative with respect to Nc

Regarding the partial derivative of E[τC ] with respect to Nc, since Nc takes only integer

values (it refers to packets) I consider the forward difference between E[τC ] computed at Nc + 1

and at Nc:

∂E[τC ]

∂Nc
≈∆Nc [E[τC ]](Nc) =

E[τC ](Nc + 1)− E[τC ](Nc)

1

=

Nc−2∑
j=0

gλ1λ2(Nc − 1, j) +

Nc−2∑
k=0

gλ1λ2(k,Nc − 1)

+ gλ1λ2(Nc − 1, Nc − 1) > 0, ∀Nc ≥ 2; (6.60)

where gλ1λ2(k, j) =
λk1λ

j
2

k!j!

∫ Tc
t=0 t

k+je−(λ1+λ2)t>0, ∀Tc>0.

With the above, the partial derivatives of E[Tcycle], ηLPI , and Di with respect to Nc have the

same form as their partial derivatives with respect to Tc. Therefore, I can conclude that energy

saving and delay grow monotonically with Nc as well.
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Figure 6.4: Coalescing delay, energy saving, and their partial derivatives with respect to Tc and
Nc. Since the delay due to coalescing is higher in the least loaded link direction, I show only the
delay for packets transmitted in that direction (D2).

6.3.3. Analysis

The partial derivatives with respect to either Tc or Nc show the strong dependency of Di and

ηLPI on E[τC ] (and on E[Tcycle] but this also depends on E[τC ]). Furthermore, the value of

E[τC ] grows with Tc and Nc, and I have shown that both ηLPI and Di monotonically grow with
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Tc and Nc.

To graphically see the impact of Tc and Nc on the delay, Di, and the energy saving, ηLPI ,

I plot in Figure 6.4 an example of partial derivatives, representing the behavior of ηLPI and Di

for different Tc and Nc values when the offered load is ρ1 = 5.06% and ρ2 = 0.5%. These loads

correspond to a load profile of a traffic trace I collected on a gigabit link in InterHost. Moreover,

this is a representative link load since, according to [15], about 80% of the links operate with less

than 10% of load, so that the selected case represents a medium load case.

Specifically, Figure 6.4(a) illustrates the behavior of the delay experienced in the most loaded

link direction (which is the highest of the two average delays). The figure shows that the delay

quickly grows to unacceptable values with both Tc and Nc. The energy saving ηLPI also grows,

but it does it faster with small values of Tc and Nc, and afterwards it saturates. Overall, the

impact of Tc and Nc seems similar. However, the study of the partial derivatives presented in

Figure 6.4 unveils that both delay and energy saving are more sensitive to changes in Tc rather

than in Nc. Indeed, Figures 6.4(c), 6.4(d), 6.4(e), and 6.4(f) point out that the partial derivatives

with respect to Tc are up to three orders of magnitude higher than the ones with respect to Nc. I

have observed the same behavior for a large range of load combinations. Therefore, I can say that

Tc is more important thanNc in the control of delay and energy saving in EEE. Another important

observation is that the impact of Nc saturates for relatively small values of the coalescing buffer

size, i.e., implementing buffer sizes of 100 packets allows to achieve the highest possible energy

saving.

To validate the above observations, I report in Table 6.1 a few representative study cases

corresponding to different combinations of average loads ρ1 and ρ2 as observed in real traffic

traces for the two link directions. In the table, for each case, I report the maximum energy

saving that can be achieved by manually searching the optimal Tc and Nc subject to an average

delay below 1 ms (I denote with η′LPI the energy saving factor that can be achieved subject to a

given delay contraint). Additionally, I report the values T ′c and N ′c at which η′LPI is maximized.

Moreover, for the case without delay constraints but still the delay is below 1ms, I fix the value of

Nc to N ′′c =100 packets (larger values do not improve the energy saving gain) and I check again

the maximum value of the energy saving factor, which I denote as η′′LPI , achievable by varying

Tc only. In the table, I report the value T ′′c of the coalescing timer which maximizes the energy

saving.

From Table 6.1, I can observe that energy saving in the two cases is not far, so that I can

think of fixing the size of the coalescing buffer and using an adaptive coalescing algorithm that,

by adjusting the sole coalescing timer Tc, is able to achieve near optimal energy savings while

keeping bounded the average delay of the packets due to coalescing. Noticeably, Table 6.1 also

shows that small values of Tc are needed to achieve optimal (or near-optimal) performance figures,

so that the optimal value of Tc can be searched in a small range. In Chapter 7, I use the results of

this chapter to design two families of dynamic coalescing control mechanisms: a low complexity

family of mechanisms based on coalescing timeouts and buffer fill up events, and another family
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based on run-time delay measurements. In Chapter 8 I will evaluate the performance of EEE

systems with real traffic traces and validate the models against packet-level simulations.

6.4. Summary

In this chapter, I presented an analytical model for 1 Gbps bidirectional EEE links with coa-

lescing. The model is able to estimate both the energy saving and the mean waiting time of the

packets in each link direction, due to coalescing, compared to legacy Ethernet links. The model

is unique in the literature since only unidirectional EEE links with coalescing were considered so

far. Moreover I have used sensitivity analysis to understand the impact of coalescing parameters,

such as timer Tc and buffer size Nc, on the energy saving and the delay experienced over En-

ergy Efficient Ethernet (EEE) links with coalescing. The analysis reveals that optimizing energy

saving subject to delay constraints is possible by simply adapting Tc.





Chapter 7

Dynamic coalescing strategies

In this chapter I present two families of algorithms that can be used to dynamically match

the coalescing parameters to the traffic conditions. These algorithms will allow me to explore

the performance of dynamic packet coalescing, which has not been addressed so far in the liter-

ature. The first family of algorithms follows the NT policy paradigm and, as in legacy adaptive

approaches, it adjusts the coalescing parameters based on the sole occurrence of timeouts and

buffer fill-ups [51] (NT coalescing cotrol - NTCC). The suitability of the coalescing parameters

is judged based on the estimate of average delay and not on the instantaneous variations of delay.

In the second family of algorithms, I design and study a measurement-based coalescing control

solution (MBCC) that tunes the coalescing parameters on-the-fly, according to the instantaneous

load and the coalescing delay experienced by the packets.

The rationale behind proposing dynamic coalescing is that static configurations might incur

in high delays when the traffic is low. For instance, to increase energy saving, coalescing tech-

niques try to avoid short and frequent transmission bursts by means of large Tc and Nc values.

However, as soon as the traffic intensity causes frequent coalescing timeouts, the latency often

exceeds Tc. Therefore, in a static configuration, one cannot use very large values of Tc when

the traffic intensity can be low with non-negligible probability. Similarly, large values of Nc in-

crease the achievable energy saving, but cause high latency due to queue backlog to be served

after the coalescing period. Using a static configuration for all traffic conditions might incur in

the following problem: when the traffic is low the coalescing timeout expires frequently, while

when the traffic is high one or both coalescing buffers fill up too quickly. In the former case, the

experienced delay might be too high, while in the latter case, the achieved energy saving might

be far from optimal.

In the following sections I present the two families of dynamic coalescing algorithms for

EEE. In the first family, I propose Dynamic Timeout Algorithm which uses tunable coalescing

timeouts of duration Tc and Dynamic Queue Size Algorithm which uses coalescing buffers of

variable size Nc. In the second family, I design a simple measurement-based delay-controlled

distributed adaptive coalescing scheme in which network cards at the edge of the link coordinate

67
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Algorithm 1: Dynamic Timeout Algorithm.
Data: δup or γup, δdown or γdown, Tmin

c , Tmax
c , Nc

if Transition C→ A then
if Coalescing timeout expired then

if Tc < Tmax
c then

increase Tc;
else

if Tc > Tmin
c then

decrease Tc;
restart the coalescing timeout with new Tc;

by running a simple distributed algorithm to sense the delay incurred by packets. My proposal

uses the sensed delay as control signal to trigger the dynamic adaptation of the coalescing timer

in the direction identified through the sensitivity analysis derived in § 6.3.

7.1. NT-policy Coalescing Control

In this family of algorithms I use the expression “NT-policy” (see § 6.2 and therein) and there-

fore the name “NT-policy Coalescing Control” refers to this class of coalescing algorithms. The

duration of the coalescing period is limited according to the following two cases: (i) a coalescing

buffer fills up due to Nc−1 arrivals in the link direction that triggered the transition L→ C or

Nc arrivals in the other direction (N-event according to [96], see bottom of Figure 6.3); (ii) a

timeout occurs: no more than Nc−2 packets arrive in the link direction that triggered the tran-

sition L→ C and no more than Nc−1 packets arrive in the other direction (T-event according

to [46], see top of Figure 6.3). In the following subsections I present two classes of algorithms,

Dynamic Timeout Algorithm which dynamically tunes the coalescing timeouts Tc and Dynamic

Queue Size Algorithm which dynamically tunes the coalescing buffers Nc.

7.1.1. Dynamic Timeout

In this class of algorithms, as indicated by its name, the adjustable parameter is the coalescing

timeout Tc, while the coalescing buffers have fixed size Nc. Recall that Tc is defined as the

maximum interval that EEE network cards can remain in state C after the arrival of the first

packet in state L, thus extending the normal EEE energy saving interval. As stated before, when

the coalescing timeout expires, both Ethernet interfaces start transmitting the queued packets to

the other link edge. The goal of this first class of algorithms is to keep the system in state C for as

long as it is needed to fill up at least one coalescing buffer, i.e., to adjust Tc so that the coalescing

operation (i.e., the duration of state C) lasts ∼ Tc seconds and the maximum coalescing gain is

achieved by filling up the coalescing buffer.

The algorithm’s behavior is described by means of pseudocode in Algorithm 1. In this algo-

rithm, the value of Tc keeps changing when the transition C→A occurs. If the transition occurs
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Algorithm 2: Dynamic Queue Size Algorithm.
Data: δup or γup, δdown or γdown, Nmin

c , Nmax
c , Tc

if Transition C→ A then
if Coalescing timeout expired then

if Nc > Nmin
c then

decrease Nc;
else

if Nc < Nmax
c then

increase Nc;
restart the Tc;

because of a timeout expiration, then Tc is incremented, unless it reaches a maximum value Tmax
c .

Its maximum value may depend on various factors but the most important is the maximum delay

tolerance that is allowed either by applications, or by quality of service constraints. Similarly, if

the transitionC→A occurs because one of the coalescing buffers fills up, then Tc is decremented,

unless it reaches its minimum allowable value Tmin
c . Therefore, the algorithm tries to adjust Tc

in a way that state C lasts approximately Tc seconds while trying both to avoid unnecessary long

timeouts and to fill up coalescing buffers.

In Algorithm 1, increments and decrements of Tc can follow different strategies. In particular,

I consider that both increments and decrements can be either additive or multiplicative. Therefore,

to fully specify the behavior of Algorithm 1, I need to specify (i) whether additive or multiplica-

tive increments and decrements are used, (ii) the steps used in case of additive operation (δup for

increments and/or δdown for decrements), or the multiplicative factors used in case of multiplica-

tive operation (γup for increments and/or γdown for decrements), and (iii) the range [Tmin
c , Tmax

c ]

in which Tc can be adjusted.

The performance of Algorithm 1 depends on the target Nc value adopted. Throughout the

experiments presented in Chapter 8, I use Tmin
c = 0.1 ms and Tmax

c = 100 ms which cover a

wide range of delays acceptable in practical LAN deployments, while I test all combinations of

additive and multiplicative increments and decrements, with various values for δup, δdown, γup,

and γdown.

7.1.2. Dynamic Queue Size

The second algorithm is similar to the first, but it adjusts the coalescing buffer size Nc instead

of the coalescing timeout Tc. In Algorithm 2, Nc is dynamically and automatically tuned in

order to adapt the coalescing operation to achieve a target coalescing delay Tc. I.e., the target

of Algorithm 2 is to keep the system in state C for about Tc seconds and during this interval

accumulate as many packets as possible.

In Algorithm 2, when the traffic intensity is so low that the coalescing timeout expires before

Nc packets are queued in any of the two coalescing buffers, the algorithm decreases Nc. The

minimum value for Nc is Nmin
c = 2, since smaller values would not result in any coalescing
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operation. Conversely, when the traffic increases and at least one coalescing buffer fills up be-

fore the coalescing timeout expires, the algorithm increases Nc up to its maximum value Nmax
c .

Similarly to what stated for Algorithm 1, increments and decrements can be either additive or

multiplicative, with parameters that I keep calling δup, δdown, γup, and γdown, like in the previous

algorithm.

The performance of Algorithm 2 depends on the target value of Tc fixed in the system which

I keep in the same range as for Algorithm 1. In the experiments, I use Nmin
c = 2 and Nmax

c =

10, 000, while I tested all combinations of additive and multiplicative increments and decrements,

with various values for δup, δdown, γup, and γdown.

7.2. Measurement-based Coalescing Control

Differently from what described for NTCC, here I use analytical results on the sensitivity of

Di and ηLPI to make run-time educated decisions on how to adapt the coalescing parameters to

meet a maximum target delay Dtarget.

The analysis tells that Tc and Nc behave qualitatively in a similar way. Specifically, fixing

one of the two parameters limits the maximum achievable energy saving, although, by tuning

the other parameter, it is possible to adjust the energy saving from zero to the maximum while

increasing the delay monotonically. Therefore, to implement an adaptive coalescing algorithm, it

is enough to fix one parameter between Tc and Nc to a sufficiently high value (which guarantees

that near-maximal energy saving can be achieved), and adapt the remaining parameter.

The analysis also unveils that ηLPI and Di values are more sensitive to Tc rather than toNc.

With the above consideration, jointly to the fact that Nc is limited to integer values, Tc results to

be a better candidate for the fine tuning of energy and delay tradeoff when coalescing is adopted.

Therefore, I design an adaptive coalescing algorithm in which only Tc is adjusted. Moreover,

in this algorithm, I implement a simple yet effective mechanism to detect when the coalescing

is causing excessive delay and timely react. What I include in the algorithm is a low-pass filter

to estimate the average coalescing delay Di. When the link switches to state W, the dynamic

timer algorithm tunes Tc ∈ [Tmin
c , Tmax

c ] based on the experienced (measured) average delay

and Dtarget. The way Tc is adapted can folow additive or multiplicative laws, as for NTCC,

but trigered by delay measurements rather than by an NT-policy. Thus, I obtain a family of

Measurement Based Coalescing Control (MBCC) mechanisms. The pseudocode of an MBCC

heuristic using additive increases and multiplicative decreases for Tc is reported in Algorithm 3.

The analysis says that increasing Tc increases both ηLPI and delay at any load, so when the

average delay is below or above the target, the algorithm increments or decrements the Tc value,

respectively. The advantages of my approach are twofold: (i) given that Tc is tuned after exiting

state C, the delay adaptation procedure is almost immediate (a few milliseconds), which allows

to instantly react to changes in packet delay; (ii) my adaptive algorithm adapts quickly to any

changes in traffic load simply by estimating the packet delay. Load variations occur very often in
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the daily patterns and so my simple Tc adaptation mechanism can produce great benefit for EEE.

Algorithm 3: MBCC: Adaptive Coalescing Timer
Input: run-time average estimate of delays D1 and D2

while C→ W do
if (D1&&D2) ≤ Dtarget then

if Tc < Tmax
c then

Tc = max{Tc + δ, Tmax
c }

else
if Tc > Tmin

c then
Tc = max{Tc − δ, Tmin

c } or Tc = max{(1− γ)Tc, T
min
c }

With the above, I have defined not one but an entire class of delay-controlled MBCC algo-

rithms, which differ in the way the value of Tc is tuned. For example, additive or multiplicative

increases and decreases can be used. For what concerns performance evaluation, in Chapter 8, I

simply use either (i) an additive increase/decrease approach with fixed step δ or (ii) an additive

increase/multiplicative decrease approach with fixed additive step δ and multiplicative decrease

percentage γ. I only focus on those two schemes because, first, multiple increase schemes pro-

vide less fairness than additive increase schemes and second, multiple increase schemes wildly

oscillate and are a source of instability, thus leading to poor performance [27, 51]. Note that, due

to the high sensitivity of delay and energy saving with respect to variations of Tc, the possible

values of δ and γ have to be small enough to cause small changes in the adaptive timer.

Note that, in gigabit EEE links, the two directions are correlated and therefore the algorithm

has to run distributed over the two network cards at the edge of the link, although this requires

only a few overhead messages to be transmitted from one card to the other to signal state transition

events. However, such messages can be piggybacked by regular EEE state control messages,

since each link edge just needs to send one bit to tell the other edge whether the measured delay

is exceeding Dtarget or not.

7.3. Summary

In this chapter I presented two families of algorithms that dynamically tune the coalescing

parameters to the traffic conditions. The first family of algorithms adapts its coalescing parameters

based on the event of timeouts and buffer fill-ups (NT coalescing control - NTCC). The average
delay at the end of the process will judge the effectiveness and suitability of the coalescing

parameters. The second family of algorithms is based on the coalescing properties analytically

studied: I have designed MBCC, a class of adaptive coalescing algorithms which continuously

adapts Tc according to the delay sensed by the link.





Chapter 8

Performance evaluation with real traffic
traces of EEE with coalescing

In this chapter I begin with § 8.1-8.3 where I use ns-3 [1] simulations and the models described

in § 6.1 and § 6.2 to assess the performance of coalescing techniques over 1 Gbps EEE links.

Note that the model cannot be used for dynamic coalescing, so that I will use simulations for

the performance assessment of the Dynamic Timeout and the Dynamic Queue Size algorithms.

However, I will show that static coalescing performs almost as well as NTCC algorithms.

In § 8.4 I investigate on the power saving and on the delay of the packets by using different

δup, δdown and γup, γdown parameters for MBCC algorithms and for various values of Nc and Tc.

In the model validation I do not address the properties of MBCC but I try to understand the limits

on energy saving and delay by applying dynamic strategies. In fact, we will observe for MBCC

algorithm the trade-off between ηLPI and delay while adjusting fast or slowly the corresponding

tunable parameter (higher or lower values for γ, δ).

In § 8.5 I present a simple economical analysis using a typical large data center in order to

show the imediate economical benefits, achievable only by replacing the legacy Ethernet links

with EEE links.

8.1. EEE without Coalescing

I first consider a plain EEE scenario, with no coalescing, for a typical daily profile. In Fig-

ure 8.1(a), I depict ηLPI and the average packet delay computed via the modified ns-3 simulator

and via the analytical model which I presented in § 6.1. Small error bars show the deviation of

ηLPI and of the average delay since the offered traffic is based on real traffic traces and there-

fore it is not constant over the sample. Figure 8.1(b) illustrates the measured traffic (ρi) sampled

once every 60 minutes in each of the directions for a typical day with the corresponding standard

deviation for each sample. Moreover, for the same traffic I show the burstiness of the packets as

indicated by the interrival time (Ii) and its standard deviation. Although not explicitly reported in

73
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Figure 8.1: EEE model and simulation results with real traces, sampling a one-day traffic pattern
(without coalescing).

the figure, when traffic is very low, in the traces I have measured slightly higher burstiness with

respect to ideal Poisson interarrivals. This is due to the fact that with low load only a few and

bursty TCP flows populate the link.

For those figures I have used the traces of February 8th.The load is very low most of the time,

i.e., less than 1%, but I observed an exceptional peak value of medium traffic (∼ 11%) which

shows the energy degradation for this load. This traffic behavior is in line with typical data center

loads as described in [15].

We can observe that the model I previously presented estimates the energy saving with a good

accuracy in either low (0−1%) or medium (∼ 11%) traffic conditions. Indeed we can see that

the model clearly captures the trend of energy saving when the traffic load increases/decreases,

even though a few discrepancies appear because the model underestimates the effect of burstiness.

Neglecting the burstiness of the packets leads the model to give a “pessimistic” estimation about

ηLPI . Moreover, in Figure 8.1(a), EEE can save most of the time more than 50% of energy.

In extreme cases (but not infrequently, since they constitute about 1/3 of the day’s samples) the

time spent in energy saving, ηLPI , exceeds 90%. Remarkably, EEE enables substantial energy

saving (ηLPI>90%) when the traffic is limited to few percents of the link capacity. However,

EEE does not appear to be able to save much energy when the traffic surges to relatively low

peaks, e.g., to 10% of the link capacity. With higher loads, I can safely assume that a plain EEE

approach would bring negligible energy saving. This justifies the research for EEE enhancements

that would allow significant savings even when traffic reaches typical utilization levels such as

11% of the link capacity.

In Figure 8.1(a) I also evaluate the accuracy of the model, in terms of delay performance

over the same traffic traces studied in Figure 8.1(b). The figure reports the delay suffered in the

link direction over which the delay due to EEE state transitions is higher. Results achieved with

model and simulation differ by at most 2 µs, which is a negligible quantity. The figure also shows

that packet delay is higher when the traffic offered to the link is lower. Moreover, delays due to
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Table 8.1: ηLPI and average delays computed with the model and via simulation

ρ1 ρ2 E[S
(1)
p ]E[S

(2)
p ] λ1 λ2 Tc Nc ηLPI [%] D(1) [ms] D(2) [ms]

[%] [%] [bytes] [bytes] [pkts/s][pkts/s] [ms][pkts] simul.model-1model-2 simul. model-1model-2 simul. model-1model-2

0.20 0.06 802 281 310 268

5 50 97.45 96.84 96.84 3.157 3.067 3.060 3.383 3.063 3.064
5 100 97.45 96.84 96.84 3.157 3.067 3.060 3.383 3.062 3.064

10 50 98.29 98.11 98.11 5.925 5.657 5.647 6.140 5.652 5.655
10 100 98.30 98.11 98.11 5.942 5.660 5.647 6.147 5.652 5.655
20 100 98.92 98.91 98.91 11.130 10.725 10.700 11.306 10.710 10.714

0.7139.69 67 1512 13187 32815

5 50 1.69 0.85 0.88 0.002 0.001 0.007 0.002 0.011 0.011
5 100 1.69 1.74 1.75 0.001 0.026 0.027 0.001 0.039 0.039

10 50 1.72 0.88 0.89 0.003 0.006 0.007 0.004 0.011 0.011
10 100 1.79 1.74 1.75 0.005 0.027 0.027 0.005 0.039 0.039
20 100 1.85 1.75 1.75 0.007 0.027 0.027 0.009 0.039 0.039

0.8729.64 83 1477 13048 25084

5 50 7.87 4.56 4.59 0.025 0.046 0.046 0.020 0.060 0.061
5 100 7.97 8.64 8.66 0.028 0.174 0.175 0.023 0.225 0.226

10 50 7.93 4.57 4.59 0.041 0.046 0.047 0.029 0.060 0.061
10 100 8.71 8.65 8.67 0.068 0.174 0.175 0.058 0.225 0.226
20 100 9.20 8.66 8.76 0.101 0.175 0.165 0.082 0.225 0.226

0.9853.66 69 1500 17769 44719

5 50 0.10 0.03 0.03 < 1µs < 1µs < 1µs 0.001 0.004 0.004
5 100 0.14 0.06 0.06 0.001 < 1µs 0.001 0.003 0.005 0.005

10 50 0.10 0.03 0.04 < 1µs < 1µs < 1µs 0.001 0.004 0.004
10 100 0.14 0.06 0.06 0.001 < 1µs 0.001 0.003 0.005 0.005
20 100 0.14 0.06 0.06 0.001 < 1µs 0.001 0.003 0.005 0.005

3.72 0.37 1180 165 3938 2778

5 50 85.03 90.90 90.89 1.896 2.442 2.361 2.123 2.363 2.440
5 100 85.29 90.90 90.89 1.954 2.442 2.361 2.153 2.364 2.440

10 50 88.26 94.08 94.08 3.971 4.946 4.944 3.819 4.786 4.784
10 100 90.10 94.10 94.09 4.331 4.972 4.806 4.453 4.811 4.967
20 100 91.90 95.82 94.82 8.926 9.031 9.022 8.256 9.707 9.698

5.06 0.50 1170 165 5408 3809

5 50 78.76 88.10 88.09 1.727 2.380 2.377 1.869 2.277 2.274
5 100 79.21 88.10 88.09 1.815 2.380 2.274 1.922 2.277 2.377

10 50 82.05 91.63 91.67 3.854 4.334 4.172 3.160 4.146 3.360
10 100 85.52 92.18 92.18 4.079 4.914 4.696 4.109 4.701 4.909
20 100 87.54 94.17 94.18 7.700 8.029 9.060 6.910 8.642 8.668

0.4023.11 66 1511 7517 19116

5 50 17.17 27.31 27.40 0.164 0.361 0.364 0.235 0.443 0.446
5 100 26.50 39.80 39.81 0.510 0.988 0.988 0.711 1.212 1.212

10 50 17.73 27. 32 27.40 0.181 0.361 0.364 0.254 0.444 0.446
10 100 31.54 41.05 41.10 0.745 1.082 1.085 1.002 1.327 1.331
20 100 31.47 41.07 41.10 0.744 1.084 1.085 1.001 1.329 1.331

1.1417.93 148 1294 9639 17320

5 50 28.38 30.03 30.16 0.310 0.440 0.445 0.295 0.513 0.519
5 100 29.90 41.77 41.75 0.398 1.066 1.065 0.433 1.243 1.242

10 50 29.90 30.04 30.16 0.428 0.440 0.445 0.384 0.514 0.519
10 100 35.38 44.77 44.84 0.819 1.310 1.316 0.818 1.528 1.535
20 100 36.42 44.79 44.84 0.988 1.312 1.316 1.029 1.530 1.535

EEE are never relevant, since they are comparable to or shorter than the duration a single packet

transmission time.

In general, I have shown that my model can be safely used to estimate the EEE performance

in terms of both energy saving and delay when no coalescing is adopted. In the next section I

will show the correctness of my model also for the case of EEE with static coalescing. Before

that, in light of the traffic measurements and energy saving estimates, I enlighten the potential

economical benefit of EEE.
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8.2. EEE links with Static Coalescing

In contrast to other works, I am the first to consider packet coalescing for EEE 1000BASE-T

links taking into account that a simple energy saving mechanism regulates both link directions

in a coordinated way. In Table 8.1 I list some representative results achieved with model and

simulation. Since Chapter 6 is based on two models I report the results computed using the model

in § 6.1 as “model-1” and the results of § 6.2 as “model-2”.

For each trace I report loads, arrival rates and average packet sizes for each link direction. I

simulate the coalescing algorithm for multiple combinations ofNc and Tc, and report the achieved

results for the fraction of energy saving, ηLPI , and for the mean packet waiting time in the two

link directions, D(i). I also use the average traffic descriptors reported in Table 8.1 to evaluate

ηLPI , and D(i) through my model.

We observe that there is high traffic in one link direction and low traffic in the other link

direction in all traces. Note that high loads correspond to large packet sizes, which, in turn,

correspond to the typical behavior of TCP traffic, i.e., large packets in one link direction and

small acknowledgments in the other link direction. From Table 8.1, we can also observe that

the model approximates very well both the time spent in Low Power Idle, ηLPI , and the average

delay in the two link directions. ηLPI is estimated with±5% deviation in most of the cases (90%),

while average delay estimations are subject to an error which is of the order of 10% for high delay

cases (less than half ms), and a few µs for the case of low delays (tens of µs or less). Moreover,

observing the table, we can say that model-2 performs slightly better than model-1 in most of the

cases, while model-2 yields more accurate results when the error of model-1 is large.

Overall, under any of the tested traffic conditions and coalescing configurations, the results

achieved through the model are accurate enough with respect to simulations. However, running

simulations requires much more time and computational resources than the model. Hence, my

model results in a suitable tool for the quick evaluation of EEE potentials and coalescing effec-

tiveness, under any traffic condition.

8.3. Static vs. NT-policy Coalescing Control

I now compare the performance of static and dynamic coalescing. I use simulation only, since

the model was not designed to predict the behavior of dynamic coalescing schemes. However,

I will show that static and dynamic coalescing achieve very similar results, so that developing a

model for EEE with dynamic coalescing in which the tuning of the parameters is based on NT

policy events (like timeouts and buffer fill-ups) is unnecessary.

8.3.1. Static Coalescing

Table 8.1 reveals that coalescing enables high energy saving opportunities in a variety of load

conditions. In particular, even in presence of loads of the order of 10%, energy saving ranges
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between 60% and 80%. High values of Nc and Tc would even allow for relevant energy saving

(∼ 10%) under high traffic (∼ 30%). The table also reveals that delays grow fast with Nc and

Tc. However, under high load, the achieved average delay assumes values not greater than a few

hundreds of µs. High delays can be suffered only when traffic is low and coalescing parameters

are high.

Notably, using Nc ∈ [50, 100] packets and Tc = 10ms yields high energy saving under all

reported cases, with quite limited and acceptable delays. Hence, static coalescing appears to be

near-optimal under a wide range of traffic conditions.

In addition to what reported in Table 8.1, I tested many possible combinations for many traffic

traces, with Nc ranging from 2 to 10,000 packets, and Tc ranging from 0.1 to 100 ms. I omit here

a complete description of the results with static coalescing and - since configurations resulting in

high delay are undesirable - I limit the discussion only to cases with average delay below 1 ms.

Specifically, I selected four different traffic traces, corresponding to the most typical traffic loads.

Figure 8.2 reports the results for both static and dynamic algorithms under the following traffic

conditions: Figure 8.2(a) is for ρ1 = 0.2% and ρ2 = 0.06%, Figure 8.2(b) for ρ1 = 5.1% and

ρ2 = 0.1%, Figure 8.2(c) for ρ1 = 10.9% and ρ2 = 0.2% and Figure 8.2(d) for ρ1 = 39.7% and

ρ2 =0.7%. Since we are interested in the potential performance of coalescing in terms of energy

saving and delay, Figure 8.2 plots the values for the highest delay over the two link directions as

a function of the achieved ηLPI . Each blue “∗” marker in the figure is obtained under a different

coalescing configuration for Nc and Tc.

Figures 8.2(a) to 8.2(d) show that higher energy saving corresponds to higher delay. However,

delay can be minimized in exchange of small energy saving reduction. Under low loads, as in

Figure 8.2(a), the value of ηLPI stays well above 90% in all cases, which means that coalescing

of a very few packets (e.g., Nc = 2), combined with a short coalescing timeout (e.g., Tc = 1ms),

is more than enough to achieve high energy saving with very limited packet delay. Conversely,

under high load (e.g., Figure 8.2(d)), there is no static configuration that can bring high energy

saving with bounded delay (ηLPI < 1.52%).

8.3.2. Dynamic Timeout

The Dynamic Timeout Algorithm “helps” the EEE coalescer to adapt its Tc value to the traffic

conditions. In Figure 8.2, in addition to the results for static coalescing, I plot the average delay

(the maximum in the two link directions) versus ηLPI for Nc ∈ [2, 10000], δup and δdown from

0.1 to 10 ms, and γup and γdown from 1 to 100%. Adopted traffic traces are the same as for the

evaluation of static coalescing. Similarly to the static coalescing case, I report results for the cases

in which the average added delay per packet is below 1 ms only.

For all four traces used in Figure 8.2, we can see that Dynamic Timeout achieves almost the

same results as for the static coalescing. Under low load conditions ηLPI is slightly higher than

90% while for loads equal to ∼ 5%, ∼ 10% and ∼ 40% ηLPI is ∼ 50%, ∼ 10% and ∼ 1.5%,

respectively. Within each figure, it is possible to observe that there are no huge differences in the
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Figure 8.2: ηLPI vs. delay performance using different coalescing algorithms under various
traffic conditions (δ ∈ [1, 10] packets or δ ∈ [0.1, 10] ms, γ ∈ [1, 100] %, Nc ∈ [2, 10000]
packets, Tc ∈ [0.1, 100] ms).

energy saving and delay performance achieved under different configurations for the same traffic

trace analysis.

I conclude that dynamically adjusting the coalescing timeout does not outperform static coa-

lescing when the coalescing delay has to be kept low under all traffic conditions.

8.3.3. Dynamic Queue Size

The Dynamic Queue Size algorithm adapts Nc to the traffic conditions and slightly outper-

forms the other tested algorithms in terms of energy saving. This behavior is shown in Figure 8.2,

which also includes results for the Dynamic Queue Size algorithm, tested for Tc ∈ [0.1, 100]ms,

additive parameter δup and δdown from 1 to 10 packets, and multiplicative parameter γup and

γdown from 1 to 100%. Similarly to what I did for the other algorithms, I simulate EEE with

coalescing using the Dynamic Queue Size algorithm over the same traffic traces as before. Each

green “×” marker in Figures 8.2(a) to 8.2(d) corresponds to a different configuration for the Dy-

namic Queue Size algorithm.

In terms of achievable energy saving, results for the Dynamic Queue Size case are, in general,
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slightly better than for static coalescing and for the Dynamic Timeout algorithm. Specifically, in

Figure 8.2(a), under very low load, ηLPI improvements due to Dynamic Queue Size are relatively

low. Instead, under medium/high loads (see Figures 8.2(b) and 8.2(c)) we observe an improve-

ment of a few percents in ηLPI , with respect to the other algorithms. Finally, under very high

loads (e.g., see Figure 8.2(d)), ηLPI is very small under any algorithm and configuration. In all

cases, the (slightly) higher energy saving is achieved at the expenses of slightly higher delay.

Summing up I can say that the differences in both energy saving and delay can be huge if I

compare the different configurations in static or dynamic coalescing strategies. Nevertheless, if I

compare the best configurations for static and dynamic coalescing I can safely infer that dynam-

ically adjusting the coalescing parameters does not allow to achieve significantly better perfor-

mance with respect to static coalescing. This result can be explained by recalling Eqs. (6.29) and

(6.30), which reveal that the performance only depends on the average duration of the coalescing

state. Therefore, the performance of any algorithm that attempts to boost the power saving gain is

bounded by the achieved value of E[τC ], which, in turn, is bounded by the maximum allowable

average delay. Indeed, having shown that static coalescing and dynamic coalescing algorithms

achieve similar energy saving and delay tradeoffs under a variety of traffic configurations, I con-

clude that static coalescers are preferable with respect to NTCC schemes for real implementation

due to their low complexity. In fact, dynamic coalescing requires extra tuning (for γ and/or δ).

8.4. Measurement-based Coalescing Control

In this section I evaluate MBCC by implementing a delay-controlled adaptive coalescing timer

algorithm. I benchmark MBCC against static coalescing algorithms, since as known in § 8.3,

NTCC does not improve performance if a target delay has to be guaranteed [22]. In the follow-

ing, I first evaluate the achievable energy savings obtained by different configurations of static

coalescing and MBCC for a set of representative traffic traces. Afterwards, I illustrate the behav-

ior of energy savings and delays over time, when the load keeps changing. For the experiments,

I use the real traffic traces I have been allowed to collect in Satec, a large web hosting center in

Madrid, Spain.

8.4.1. Experimental setup

In this study, static coalescing schemes require the calibration of Tc and Nc based on the

expected traffic characteristics or based on, e.g., the peak traffic. However, to guarantee low

delay under low load conditions, both Tc and Nc have to be tuned to values well below the ones

that achieve the best energy performance under medium or high traffic. In particular, since the

criterion is to regulate the average coalescing delay of the packets crossing the EEE link under all

traffic conditions, a (Tc, Nc) combination with small values has to be universally adopted to cope

with the delay under scarce traffic conditions (∼0.1% in the less loaded direction). Therefore,

static coalescing has the disadvantage that it needs to be tuned on the off-peak traffic conditions.
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Figure 8.3: Achievable energy saving for MBCC vs. Static coalescing with Dtarget ≤ 1 ms.

Apparently, so far, this has not been considered a great disadvantage for EEE links. In fact, energy

savings are expected to be harvested only under low to medium traffic conditions. However, I

argue that even though low loaded links represent about 40% of a data center links, there is still

another 60% of the links from which additional energy savings could be potentially obtained.

To evaluate static coalescing, I test a range of values for Tc and Nc, as reported in Table 8.2,

under different traffic conditions. In contrast, for MBCC with the delay-controlled adaptive timer

heuristic (Algorithm 3), I consider a fixed Nc value, such as the one selected based on the results

reported in Table 6.1 (i.e., we could select the value Nc =100 packets), whereas the Tc value is

automatically adapted according to the traffic. I assign Dtarget as initial value for the timer Tc.

Other configuration parameters for MBCC are the adaptation coefficients δ and γ. The range of

values for Nc, δ and γ can be read in Table 8.3.

All tested parameters span over large intervals, to thoroughly explore their impact by means

of simulations.
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Table 8.2: Static Coalescing: list of Tc and Nc combinations

Parameter Value
Tc [µs] 200/500/700/1000/1200/1300/1400/1500/1700/2000

Nc [packets] 2/5/10/11/13/15/17/20/25/30/40/50/60/70/80/90/100

Table 8.3: MBCC with Adaptive Coalescing Timer (Algorithm 3): list of parameters

Parameter Value
δ [µs] 10/30/100/300/1000
γ [%] 10/25/50/75

Nc [packets] 2/5/10/20/50/75/100/200/500/1000

8.4.2. Achievable energy saving

Here I compare static coalescing and MBCC under a variety of configuration choices, as

reported in Tables 8.2 and 8.3. In particular, I report the results for energy saving subject to

average coalescing delay, Dtarget, not exceeding 1 ms. I think that this is a reasonable upper

bound for the average delay in a point-to-point link. Indeed, according to [28] a connection

between East and West coast in the US has at least four hops that create 28.4ms of average delay.

Thus, I consider that adding 1 ms due to the use of EEE in a data center connected to such a

network is acceptable.

In Figure 8.3 I plot ηLPI for three different load combinations (ρ1, ρ2). For static coalescing I

run the simulation of a trace with a given combination (Tc, Nc) and I get the average delay of the

packets in both directions and ηLPI . The delay can be higher or lower than Dtarget but I report

the energy saving only for those combinations that give average coalescing delay below Dtarget

(Table 8.2). For MBCC, since it guarantees that the delay is below Dtarget, I report all points

corresponding to all the tested combinations of parameters (Table 8.3). Notably, the best results

achieved with static coalescing in any of the depicted scenarios are very far from the best results

of MBCC. Indeed, MBCC practically doubles the gain achieved by static coalescing.

Moreover, in the experiments I have observed that a particular combination performs best for

static coalescing under any of the tested load combinations, i.e., (Tc =1300 µs, Nc =10 pack-

ets), reported in boldface in Table 8.2. In contrast, for the case of MBCC, I have observed high

variability in the configuration that achieves the best results in the various cases. In particular,

considering that in each subfigure of Figure 8.3 the first 50 samples for MBCC use only the pa-

rameter δ to adapt Tc (additive increase/decrease), while the remaining 200 samples use both δ

and γ (additive increase, multiplicative decrease) for the adaptation of Tc, I can conclude that

using both δ and γ is slightly more convenient. However, I have also observed that many config-

urations are equivalent, in particular when Nc is small (below 20), the performance is determined

by Nc only, and changing δ and γ does not affect the results. In contrast, with higher Nc values

δ and γ can be responsible for a fluctuation of 10-15% of energy saving. More in general, the

results indicate that bigger values of δ and Nc allow bigger energy saving. Instead, a bigger value

of γ reduces the energy benefit. The topmost points in all the cases correspond to the combination
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Figure 8.4: Low load (ρ1 =0.2%, ρ2 =0.06%). MBCC and static coalescing practically save the
same amount of energy.

(Nc = 1000 packets, δ = 1000 µs, γ = 10%), which is reported in boldface in Table 8.3.

Now I select a near-optimal configuration for MBCC, and I compare its performance with the

best configuration of the static coalescing scheme. I use an additive increase, additive decrease

scheme with δ =100 µs, and Nc =100 packets for MBCC, and Tc = 1300 µs, and Nc =10

packets for static coalescing. With those configurations, in Figures 8.4, 8.5, and 8.6 I plot the

behavior over time of ηLPI and the higher of the two delays Di for three different load com-

binations. In these figures, in addition to the performance MBCC and static coalescing, I also

report the performance of EEE links without coalescing. Figure 8.4 illustrates the case of low

load. Specifically, as shown in Figure 8.4(a), the load in either link direction does not exceed 1%,

and energy saving of 90-95% can be achieved with or without coalescing (see Figure 8.4(b)). As

concerns delay, Figure 8.4(c) shows that coalescing introduces considerable delay with respect

to the case of plain EEE without coalescing. However, the delay, Dtarget, is below 1 ms. The

medium load case of Figure 8.5 shows how MBCC manages to tradeoff delay for energy saving,

while keeping the delay below 1 ms. Indeed, Figure 8.5(b) shows the huge energy saving gain

due to the delay-controlled coalescing operation of my proposal. In Figure 8.6 I show a very dy-

namic case which combines high load with frequent and rapid load changes. We can still observe
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Figure 8.5: Medium load (ρ1 =0.11%, ρ2 =5.3%). MBCC largely outperforms static coalescing
at the expenses of delay (without exceeding the available delay budget).

that my MBCC approach achieves a sevenfold gain with respect to plain EEE and a twofold gain

with respect to static coalescing, while retaining the caused delay well below 1 ms. The impact

of traffic variability is clear in the behavior of ηLPI and in the experienced delay. Interestingly,

the performance comparison shows that MBCC is able to maintain a constant gain over time with

respect to the other schemes.

In conclusion, the energy benefit due to delay-aware MBCC is remarkable under any traffic

condition, including under quickly variable traffic conditions. Configuring MBCC schemes is

easy, since it only requires to make reasonably simple decisions on the maximum size of the coa-

lescing buffer (in the order of 100 packets) and on the δ parameter (in the order of milliseconds).

The γ parameter is optional and, if used, has to be chosen as a small factor (in the order of 10%).

8.5. Economical Impact

The importance of EEE with MBCC can be seen using the following simple economical anal-

ysis. Let me consider a large data center, e.g., the one of OVH1. This data center contains 360,000

1OVH.com presentation: http://www.youtube.com/watch?v=4e97g7_qSxA

http://www.youtube.com/watch?v=4e97g7_qSxA
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Figure 8.6: Highly variable load (ρ1 =1.44%, ρ2 =18.0%). MBCC doubles energy savings with
respect to static coalescing.

physical servers, and each server has on average 3 connected network ports [11]. Assuming that

all network ports have gigabit links, each port may consume between 2W and 13W using legacy

Ethernet [85]. Typical load distributions are ∼ 40% of the links at almost zero load (≤ 0.1%),

∼ 40% between 0.1% and 10% of load, and the rest of the links operate at higher loads [15].

Therefore I can use the results of Figures 8.4, 8.5 and 8.6 for an approximated economical analy-

sis. Moreover, considering that the average cost of electricity in USA is about $0.1/KWh, I can

roughly estimate the cost of electricity for the network equipment of the servers of the aforemen-

tioned data center, using legacy Ethernet, plain EEE, EEE with static coalescing, or EEE with

MBCC.

Thus, I will consider that on average an Ethernet card consumes 5W and I further consider as

averaged load values the ones I have in Figures 8.4, 8.5 and 8.6. With my calculations, the annual

electricity bill of data center servers just due to the network would be ∼$4.73M using legacy

Ethernet. This amount could be reduced almost by half accounting to∼$2.23M by adopting EEE.

EEE with static coalescing could further deduct another∼$133K from the bill and, finally, MBCC

could allow to save another ∼$400K resulting in a final bill of ∼$1.7M per year. Therefore, the

adoption of MBCC could potentially reduce the electricity cost of a data center by ∼ 65% if
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compared with legacy Ethernet and by ∼ 25% if compared with plain EEE. Practically, MBCC

would quadruplicate the cost saving attainable with static coalescing.

In this simple estimate I exclude switches and other equipment such as air conditioning, CPU

processing or server fans which could further contribute to the electricity cost reduction. More-

over faster Ethernet cards, i.e., 10, 40 and 100 Gbps, consume even more energy (at least two,

three and five times more, respectively), so that the potential for energy saving is greater for higher

data rates.

The cost of implementing coalescing is just adding a buffer to the NIC to support the packet

aggregation but this might not be a problem since NICs have already integrated memory buffers

and thus all we need is to reserve some space for coalescing. The cost of measurement-based

coalescing control is negligible since it only requires software modifications on the driver side

in order to apply the timer adaptation. Therefore, I believe that EEE with MBCC adjusting the

coalescing timer is worth further research interest.

8.6. Summary

In this Chapter I estimated the potential savings that can be achieved by adopting the recently

released IEEE Standard 802.3az and its enhancement (coalescing) instead of the legacy Ethernet.

Overall, I observed traffic patterns yielding the possibility to save at least 40%, and up to more

than 90%, in each gigabit link. Such a power saving would represent a non-negligible operational

cost reduction for a data center, in the order of several millions of Dollars per year. Moreover, I

evaluated my analytical model using a modified version of ns-3 simulator which integrates EEE

compliant links. I further proposed an exhaustive performance evaluation to observe the im-

pact of packet coalescing techniques to the energy saving and the packet delay. Specifically, I

tested legacy EEE and coalescing algorithms using as input the collected packet traces. My study

showed that EEE needs to be endowed with packet coalescing to achieve significant energy sav-

ing. Surprisingly, the first family of dynamic coalescing - NTCC - does not outperform static

coalescing. However, MBCC achieves dramatic gain with respect to both static and NTCC coa-

lescing algorithms.Specifically, I validated the superiority of MBCC using the real traffic traces I

have captured, and I showed that my proposal can even double the energy saving benefit with re-

spect to static and NTCC coalescing schemes. Moreover, from a purely economical point of view,

MBCC can reduce the electricity cost of a data center by 65%. Notably, if compared to EEE with

static coalescing, MBCC would quadruplicate cost savings on large data centers’ electricity bill.
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Chapter 9

Measurements and Empirical Modeling

In this chapter, I focus on the characterization of data center servers’ energy consumption.

Indeed, in order to obtain full benefit of energy efficient techniques proposed in the litera-

ture [56, 67], it is crucial to profile the utilization of the data center servers’ components. More-

over, it is necessary to understand the energy consumption of servers and how it is affected by

different load configurations. There is a large body of work on characterizing servers’ energy con-

sumption. However, the existing literature does not jointly consider phenomena like the irruption

of multicore servers and dynamic voltage and frequency scaling (DVFS) [93], which are key to

achieve scalability and flexibility in the architecture of a server. Therefore, more complex/com-

plete models which study the energy consumed by a server are needed. To be consistent, these

models have to be based on empirical values. However, I found that there is a lack of empirical

works studying servers’ energy behavior.

In particular, I present an exhaustive empirical characterization of the power requirements of

multiple components of data center servers. To do so, I devise different experiments to stress these

components, taking into account the multiple available frequencies and the fact that I am working

with multicore servers. In these experiments, I measure energy consumption of server components

and identify their optimal operational points. My study proves that the curve defining the minimal

CPU power utilization, as a function of the load in Active Cycles Per Second, is neither concave

nor purely convex. Instead, it definitively shows a super-linear dependence on the load. Similarly,

I present results on how to improve the efficiency of network cards and disks.

9.1. Baseline and CPU

As I mentioned in Chapter 4, for each server I have measured the power it uses with neither

disk accesses nor network traffic. I assume that the power utilization observed is the sum of the

baseline consumption plus the power used by the CPU. I have obtained samples of the power con-

sumed under different configurations that vary in the number of active cores used, the frequency

at which the CPU operates (all cores operate at the same frequency), and the active cores load

89
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(all active cores are equally loaded). The list of available and tested CPU frequencies and cores

can be found in Table 4.1. I tune the total load ρ by using lookbusy, as described in Chapter 4.

Each experiment lasts 30 s and it is repeated 10 times. Results are summarized in terms of average

and standard deviation. Specifically, in the figures reported in this section, the power utilization

for each tested configuration is depicted by means of a vertical segment centered on the average

power utilization measured, and with segment size equal to two times the standard deviation of

the samples.

The results of these experiments for each of the 3 servers analyzed (Nemesis, Survivor

and Erdos) are presented in Figure 9.1 (the measurements for some frequencies and some num-

ber of cores are omitted for clarity). Here, for each configuration of number of active cores,

frequency, and load in ACPS, the mean and standard deviation of all the experiments with that

configuration are presented. Also the least squares polynomial fitting curve for the samples is

shown for each number of cores and frequency. The curves shown are for polynomials of degree

7, but I observed that using a degree 3 polynomial instead does not reduce drastically the quality

of the fit (e.g., the relative average error of the fitting increases from 0.7% with 7-th degree poly-

nomials to 1.5% with degree equal to 3 for Erdos, while it remains practically stable and below

0.7% for Nemesis). In general, I can use an expression like the following to characterize the

CPU power utilization:

PBC(ρ) =

n∑
k=0

αkρ
k, n ≤ 7, (9.1)

where PBC includes both the baseline power utilization of the servers and the power used by the

CPU, and ρ is the load expressed in active cycles per second. Therefore, coefficient α0 in Eq. 9.1

represents the consumption of the system when the CPU activity tends to 0, and I can thereby

interpret α0 as the baseline power utilization of the system. Note that the polynomial fitting, and

hence the baseline power utilization α0, depends on the particular combination of number of cores

and frequency adopted. However, for sake of readability, I do not explicitly account for such a

dependency in the notation.

A first observation of the fitting curves for each particular server in Figure 9.1 reveals that the

power for near-zero load is almost the same in all curves (e.g., for Nemesis this value is between

84 and 85 W). Observe that it is impossible to run an experiment in which the load of the CPU is

actually zero to obtain the baseline power utilization of a server. However, all the fitting curves

converge to a similar value for ρ → 0, which can be assumed to represent the baseline power

utilization.

A second observation is that for one core the curves grow linearly with the load. However, as

soon as two or more cores are used, the curves are clearly concave, which implies that for a fixed

frequency the efficiency grows with the load (I will discuss later the efficiency in terms of number

of active cycles per energy unit).

A third observation is that frequency does not significantly impact the power utilization when
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Figure 9.1: Power utilization of 3 servers (Survivor, Nemesis, and Erdos) for baseline and
CPU characterization experiments. In each figure, the color of the curve identifies the frequency
used.
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Figure 9.2: CPU performance bounds of Nemesis.

the load is low. In contrast, at high load, the power clearly increases with the CPU frequency.

More precisely, the power grows superlinearly with the frequency, for a fixed load and number of

cores. This is particularly evident in the curves characterizing Erdos, which is the most powerful

among all three servers.

From the previous figures it emerges that the power utilization due to CPU and baseline can be

minimized by selecting the right number of active cores and a suitable CPU frequency. Similarly,

I can expect that the energy efficiency, defined as number of active cycles per energy unit, can

be maximized by tuning the same operational parameters. I graphically represent the impact

of operation parameters on power utilization and energy efficiency in Figures 9.2, 9.3 and 9.4

respectively for Nemesis, Survivor and Erdos. In particular, Figures 9.2(a), 9.3(a) and

9.4(a) report all possible fitting curves for the power measurements, plus a curve marking the
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Figure 9.3: CPU performance bounds of Survivor.

lowest achievable power utilization at a given load. I name such a curve “minimal power curve”

Pmin(ρ), and I observe that (i) it only depends on the load ρ, and (ii) it is a piecewise concave

function, which makes it suitable to formulate power optimization problems. Finally, to evaluate

the energy efficiency of the CPU, I report in Figures 9.2(b), 9.3(b) and 9.4(b) the number of active

cycles per energy unit obtained from the measurements respectively for Nemesis, Survivor

and Erdos. I compute the power due to active cycles as the power PBC −α0, i.e., by subtracting

the baseline consumption from PBC , and I obtain the efficiency ηC by dividing the load (in active

cycles per second) by the power due to active cycles, i.e., ηC = ρ
PBC(ρ)−α0

. Also in this case I

show the curve that maximizes the efficiency at a given load, which I name “Maximal efficiency

curve” ηmax(ρ). Interestingly, I observe that (i) ηmax(ρ) presents multiple local maxima, (ii) for

a given configuration of frequency and number of active cores, the efficiency is maximized at the
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Figure 9.4: CPU performance bounds of Erdos.

highest achievable load, (iii) all local maxima corresponds to the use of all available active cores,

but (iv) the absolute maximum is not achieved neither at the highest CPU frequency nor at the

lowest.

9.2. Disks

I now characterize the power and energy consumption of disk I/O operations. During the

experiments, I continuously commit either read or write operations, while keeping the CPU load

ρ as low as possible (i.e., disconnecting the network and not running other tasks). Still, the power

measurements obtained during the disk experiments contain both the power used by the disk and

power due to CPU and baseline. Indeed, Figures 9.5 and 9.6 show, for each experiment, the total
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Figure 9.5: Instantaneous power utilization for a reading/writing operations (Survivor). Re-
sults are presented for every frequency and for 4 different block sizes for each one of the servers.

measured power Pt, the power PBC computed according to Eq. 9.1 at the load ρ measured during

the experiment, and the power due to disk operations, computed as P xD = Pt − PBC(ρ), x ∈
{r, w}, where r and w refer to reading and writing operations, respectively. I test sequentially

all the available frequencies for each server (see Table 4.1), and I/O block sizes ranging from 10

KB to 100 MB. Figures 9.5 and 9.6 show average and standard deviation of the measures over

10 experiment repetitions. Results for Nemesis are omitted since they are like Survivor’

results. Indeed, Survivor and Nemesis have similar disks and file systems, while Erdos is
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Figure 9.6: Instantaneous power utilization for a reading/writing operations (Erdos). Results
are presented for every frequency and for 4 different block sizes for each one of the servers.

equipped with SAS disks with RAID. In all cases shown in the figure, the disk power is small but

not negligible with respect to the baseline consumption. Furthermore, I can observe that the two

servers presented behave differently. Indeed, while the power utilization due to writing is affected

by the block size B for both machines, I observe that Survivor’ disk writing power PwD is not

affected by the CPU frequency, while Erdos’ results show an increase with the frequency. A

similar behavior is also observed for the reading power of the disk. The main difference is that

reading is a more costly operation since the power consumption in reading is approximately 30%

higher as can be observed in Figures 9.5(a),9.5(b) and Figures 9.6(a),9.6(b).

Moreover, the results obtained with Erdos are affected by a substantial amount of variability
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Figure 9.7: Disk reading and writing efficiencies for Erdos (red dotted lines) and Nemesis
(blue solid lines).

in the measurements, which I believe is due to the caching operations enforced by the RAID

mechanism in Erdos. Furthermore, Erdos shows a baseline plus CPU power decrease for

both reading and writing. This behavior is because Erdos is very powerful and higher CPU

frequencies finish the workload faster (keep in mind that disks are the bottleneck for disk-intensive

tasks) and therefore in accordance with Figure 9.1 the average load ρ will be lower when higher

frequencies are used.

Similarly to what was described for the CPU, I can also compute the energy efficiencies ηrD
and ηwD of disk reading and writing operations, respectively. Figure 9.7 reports efficiency as a

function of the I/O block size, and shows one line per each CPU frequency. This efficiency can be

computed by subtracting the baseline power from the total power, and by measuring the volume

V of data read or written in an interval T as ηxD = V
PxDT

, x ∈ {r, w}. I can observe that

results are similar for all the servers. Specifically, reading efficiency is almost constant at any

frequency and for each block size, while writing is more efficient with large block sizes. Also,

the efficiency changes very little with the adopted CPU frequency. Efficiency, however, saturates

to a disk-dependent asymptotic value, which is due to the mechanical constraints of the disk (e.g.,

due to the non-negligible seek time, the number of read/write operations per second is limited). In

addition, although not visible in the figure due to the log-scale adopted, ηwD is a concave function

of the block size B.

9.3. Network

The last server component that I characterize via measurements is the NIC. Similarly to CPU

and disk, I run experiments in which only the operating system and the test scripts are active.
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(c) Receiver efficiency (1470-B packets).
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Figure 9.8: Network efficiencies for different frequencies and 64-B
(upper) and 1470-B (bottom) packets (Survivor).
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(c) Receiver efficiency (1470-B packets).
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Figure 9.9: Network efficiencies for different frequencies and 64-B
(upper) and 1470-B (bottom) packets (Nemesis).
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Figure 9.10: Network efficiencies for different frequencies and 64-B
(upper) and 1470-B (bottom) packets (Erdos).

For the network, I run the scripts described in § 4.3.5 to transmit (receive) traffic over a gigabit

Ethernet connection and count the system active cycles ρ. I measure the total power utilization

Pt during the experiment, so that the power due to network activity can be then estimated as

P xN = Pt−PBC(ρ), x ∈ {tx, rx}, where P txN and P rxN refer to the power consumed when acting

as a sender and as a receiver, respectively.

In the experiments, I sequentially test all the available frequencies for each server (see Ta-

ble 4.1), and fix the packet size and transmission rate within the achievable set of rates (which

depends on the packet size, e.g., < 950 Mbps for 1470-B packets). I report the results for the net-

work energy in terms of efficiencies ηtxN and ηrxN (volume of data transferred per unit of energy).

These efficiencies are computed as ηxN = R
PxN

, x ∈ {tx, rx}, where R is the transmission rate

during the experiment.

Figures 9.8, 9.9 and 9.10 show the network efficiencies of Survivor, Nemesis and Erdos

averaged over 5 samples per transmission rate R1. For the sake of readability, the figures only

shows results for the biggest and smallest packet sizes, i.e., 64-B and 1470-B packets. For

Nemesis and Survivor I report four CPU frequencies: the lowest, the highest, the most

efficient (according to Figures 9.2(b) and 9.3(b)) and an intermediate one, while all five available

frequencies for Erdos are shown. The figure also reports the polynomial fitting curves for effi-

1Network results are obtained by using a point-to-point Ethernet connection between two controlled servers.
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ciency, which I found to be at most of second order. Since the efficiency is represented in terms

of network activity only, in the fitting I force the zero-order coefficient of the polynomials to be

0. Therefore, I can characterize the network efficiencies of the servers as ηxN = β1R + β2R
2,

x ∈ {tx, rx}, where the βi coefficients are computed by minimizing the least square error of the

fitting.

It can be observed in Figures 9.8, 9.9 and 9.10 that efficiencies are almost linear or slightly

superlinear with the transfer rate, e.g., the receiving efficiency of Survivor exhibits an evident

quadratic behavior (Figures 9.8(a) and 9.8(c)). Indeed, my measurements show that the network

power utilization is independent from the throughput, which is a well known result for legacy

Ethernet devices. In fact, the NICs of the servers are not equipped with power saving features

like, e.g., the recently standardized IEEE 802.3az I have studied in Part II of this thesis.

In all cases, the efficiency is strongly affected by the selected CPU frequency. Moreover,

efficiency is also affected by packet size, although the impact of packet size changes from server

to server, e.g., Survivor sending efficiency is only slightly affected by it.

Another observation is that, depending on the packet size and frequency used, sending can be

more energy efficient than receiving at a given transmission rate, and using the highest CPU fre-

quency is never the most efficient solution. Note also that the efficiency decreases with the packet

size, although this effect is particularly evident at the receiver side, while it only slightly impacts

the efficiency of the packet sender. However, network activity causes non-negligible CPU activ-

ity, as shown in Figure 9.11 for a few experiment configurations for all three servers. Overall, the

lowest CPU frequency yields the lowest total power utilization during network activity periods.

9.4. Summary

In this chapter I have reported my measurement-based characterization of energy and energy

consumption in a server. I have exhaustively measured the energy consumed by CPU, disk, and

NIC under different configurations, identifying the optimal operational levels, which usually do

not correspond to the static system configurations commonly adopted. I found that, besides the

baseline component, which does not changes significantly with the operational parameters, the

CPU has the largest impact on energy consumption among all the three components. I observe

that CPU consumption is neither linear nor concave with the load, i.e., the systems are not energy

proportional. Disk I/O is the second larger contributor to energy consumption, although perfor-

mance changes sensibly with the I/O block size used by the applications. Finally, the NIC activity

is responsible for a small but not negligible fraction of energy consumption, which scales almost

linearly with the network transmission rate. In general, most of the energy/power performance

figures do not scale linearly with the utilization, in contrast to what is commonly assumed in

the literature. In the next chapter, I first show how to use the characterization described in this

chapter to predict power consumption for real applications running on the servers. Afterwards, I

experimentally validate the derived model.
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Figure 9.11: Power utilization with network activity for Survivor, Nemesis, Erdos and (64-
B experiments were run with a transmission rate R = 150 Mbps, while R = 400 Mbps for the
experiments with 1470-B packets).



Chapter 10

Energy Consumption Estimation and
Model Validation

While the results presented in the previous chapter are useful to understand the energy con-

sumption pattern of CPU, disk and network, I believe that a much more important use of these

results is being able to estimate the energy consumption of applications. In this chapter I describe

how this can be done from simple data about the application. Moreover, I validate the accuracy

of the model derived from my characterization by comparing the real energy consumed by two

Hadoop applications - PageRank and WordCount - with the estimation from my model, obtaining

errors below 4.1% on average.

10.1. Energy Estimation Hypothesis

The approach I propose to estimate the energy Eapp consumed by an application lays on the

basic assumption that the energy is essentially the sum of the baseline energy EB (baseline power

times application running time), the energy consumed by the CPU EC , the energy consumed by

the disk ED, and the energy consumed by the network interface EN :

Eapp = EB + EC + ED + EN . (10.1)

Hence, the process of estimating Eapp is reduced to estimating these four terms. In order to

estimate the first two terms, I need to know the total number of active cycles that the application

will execute, Capp, and the load ρapp (in ACPS) that the execution will incur in the CPU. From

this, the total running time Tapp can be computed as Tapp = Capp/ρapp. Then, once the number

of cores and the frequency that will be used have been defined, it is also possible to estimate the

baseline plus the CPU energy consumption EB +EC . For this estimation, I use the fitting curves

in Figure 9.1 to extract the power utilization, PBC , and multiplying by the execution time of the

103
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application, Tapp, I get the corresponding energy consumption:

EB + EC = PBCTapp = PBCCapp/ρapp. (10.2)

The energy consumed by the disk is simply the energy consumed while reading and writing,

i.e., ED = ErD +EwD. To estimate these latter values, the block size to be used has to be decided,

from which I can obtain an estimate of the efficiency of reading, ηrD, and writing, ηwD. These,

combined with the total volume of data read and written by the application, denoted as V r
D and

V w
D respectively, allow to obtain the estimate energy as

ED =
V r
D

ηrD
+
V w
D

ηwD
. (10.3)

Finally, to estimate EN , the transfer rate R and the packet size S have to be chosen, which

combined with the frequency used, yield sending and receiving efficiencies ηtxN and ηrxN (see

Figures 9.8, 9.9 and 9.10). Then, if the total volumes of data to be sent and received are V tx
N and

V rx
N , respectively, the energy spent due to network is as follows:

EN =
V tx
N

ηtxN
+
V rx
N

ηrxN
. (10.4)

Summing up Eqs. 10.2, 10.3, and 10.4 I obtain the estimated Eapp.

10.1.1. Applications and Scenarios for Validation

In this subsection I present the applications and scenarios I experimented with in order to

validate the model presented in § 10.1. My goal was to be able to estimate the energy consumed

by an application deployed on a data center based on the usage of its different components. For

that, I executed two different Hadoop applications, PageRank and WordCount, in three different

scenarios: first with no network, second with a server connected to the network, and finally with a

two-server cloud. For the first two scenarios I used Nemesis, whereas, for the cloud case, I used

both Nemesis and Survivor. I describe the applications and the scenarios in detail below.

My first application is a Hadoop Map-Reduce PageRank based application that follows the

approach from Castagna [20]. This application, that I denote PageRank for simplicity, computes

several iterations of the pagerank algorithm on an Erdos-Renyi random (directed) graph with 1

million nodes and average degree 51. The execution of the PageRank application has three phases:

preprocessing, map-reduce, and postprocessing. On its side, the map-reduce phase is a sequence

of several homogeneous iterations of the PageRank algorithm that runs until a certain threshold

is met. For simplicity, I only estimate the energy consumed during the map-reduce phase of the

pagerank algorithm, which I force to run 10 times.

1My PageRank algorithm assigns one input graph to each mapper so, in order to have one map task in each machine,
two instances of this graph had to be used in the cluster scenario.
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My second application is the Hadoop Map-Reduce WordCount. This is a simple program

that reads text files and counts how often words occur. For WordCount I use a few hundreds of

books as input and estimate the energy consumed for the whole map-reduce process.

As I have mentioned above, these applications are run in 3 different scenarios. In the first

scenario, denoted as Isolated Server, I run Hadoop in Nemesis keeping it disconnected from

the network. When I run my applications in this scenario I am basically measuring the impact on

the energy consumption of the baseline, CPU and hard disk.

In the second scenario, denoted as Connected Server, I run Hadoop in Nemesis while it

exchanges data on a gigabit LAN. In order to measure the effect of the network on the energy

consumption, I evaluate 4 different cases for each application. These cases result from combining

2 different behaviors, depending on whether Nemesis acts as a sender or as a receiver of data,

with 2 different packet sizes, 64 and 1470 bytes. To do so, I run Iperf, as a server or as a client

according to the case, in parallel with Hadoop.

Finally, in the third scenario, denoted as Cloud, I set up a two-server Hadoop cluster with

Nemesis and Survivor. In this scenario Nemesis is configured as the master node of the

cluster and Survivor as a slave node. The execution of the applications is shared by both nodes

so Hadoop itself exchanges traffic between both servers, and I do not insert additional network

traffic in this case. Finally, in order to have a better control of the experiment, I force the reduce

tasks to be mandatorily run in Nemesis, which also conditions the way the data is exchanged

between Nemesis and Survivor.

Observe that all 3 scenarios are based on Hadoop. This implies that, apart from the map and

reduce tasks due to the applications being run, there are some extra processes executed in the

servers I am using. The most important processes that I can find in Nemesis are NameNode

(the process that keeps the directory tree of all files in the file system, and tracks where across

the cluster the file data is kept), Secondary NameNode (that performs periodic checkpoints of the

NameNode), DataNode (the process that is in charge of storing data in the Hadoop File System

(HDFS)), JobTracker (that receives the jobs and submits MapReduce tasks to the cluster nodes)

and TaskTracker (a per node process that can accept a determined number of MapReduce tasks).

On its side, Survivor runs, in the cloud scenario, DataNode and TaskTracker.

10.2. Experiments and Observed Results

For the sake of consistency in the results, I ran both applications 10 times per frequency for

each one of the considered scenarios and averaged the results.

I start by describing the Isolated Server scenario. For each run i I record the total number

of active cycles executed Ciapp, the time spent T iapp and the volume of data read (written), V r,i
D

(V w,i
D ). Since I cannot measure the instantaneous CPU load, I assume that the CPU load is the

same during the run for a given frequency. Hence, it can be estimated as ρiapp = Ciapp/T
i
app.

Then, from ρiapp I obtain the estimate of the instantaneous power P iBC using the fitting curves
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Figure 10.1: Energy consumption of Nemesis in the Isolated Server scenario.

as described in § 4.1. Finally, using Eq. 10.2 I compute the estimate EiB + EiC . In order to

estimate the energy consumed by the disk operations, I use the fact that Hadoop uses a block size

of 64 MB. This allows to estimate the reading (writing) efficiencies, ηr,iD (ηw,iD ) that I compute, in

Joules per byte. Combining these values with the measured volume of data read and written (V r,i
D

and V w,i
D ), as described in Eq. 10.3, I obtain EiD.

The total estimated energy of the application, Eiapp, is obtained by summing up the energy

of the different components used in run i, as stated in Eq. 10.1 (remember that, in the Isolated
Server the network is not used). I sum the values of the ten runs of an experiment and I get the

estimated Eapp =
∑10

i=1E
i
app. The (approximated) total real energy Êiapp consumed in run i is

computed by the average value of the power samples which I registered with the power analyzer

during the run, and I multiply it with the run time Tapp. Then, the total energy consumed by the

experiment is obtained as Êapp =
∑10

i=1 Ê
i
app. The estimation error for each experiment is then

computed as Êapp − Eapp.
I show the results obtained for the Isolated Server scenario with the minimum, the maximum,

and the most efficient2 frequencies (the results for the remaining frequencies are similar) in Figure

10.1. The figure shows the results for both PageRank and WordCount. As can be seen, the error

is relatively small, except for the case when I run WordCount at the maximum frequency. Errors

are of 4%, 4%, 7%, 5%, 7% and 10% respectively, following the same order as in Figure 10.1.

I move now to the Connected Server scenario. As I described in the previous section, this

scenario is studied in 4 different cases depending on whether Nemesis acts as sender or receiver

and whether the size of the packets is of 64 or 1470 bytes. Of course, another relevant parameter

is the rate at which these packets are sent. The rates used are 150 and 400 Mbps when using

packets of 64 or 1470 bytes, respectively.

The total energy consumed in these cases is computed in the same way as I did for the Iso-
lated Server scenario but adding the contribution of the network. In order to estimate the network

consumption in one run with Nemesis sending traffic (resp., receiving traffic), the sending ef-

2Respectively 1.596, 2.128 and 2.794 GHz, according to the results shown in § 4.1.
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(a) PageRank, sender side. (b) PageRank, receiver side.

Figure 10.2: Energy consumption of Nemesis running PageRank in the Connected Server
scenario, with either small or big packets.

(a) WordCount, sender side. (b) WordCount, receiver side.

Figure 10.3: Energy consumption of Nemesis running WordCount in the Connected Server
scenario, with either small or big packets.

ficiency ηtxN , (resp., receiving efficiency ηrxN ) is obtained from the transfer rate R, the frequency

and packet size used (see Figures 9.8, 9.9 and 9.10). The amount of data sent (resp., received)

can be obtained from the server itself by consulting the OS registers3. Therefore, the energy of

the network for an run i, EiN , is obtained using Eq. 10.4. Then, including EiN for each run in the

computation of Eiapp I can obtain the total energy consumed by the application. Following the

same steps as in the previous scenario, I get the results shown in Figure 10.2 and 10.3. The error

measured is again relatively smaller for PageRank than for WordCount. The error measured for

each of the cases can be found in Table 10.1.

I finally analyze the Cloud scenario. In this scenario I set up a cluster with two servers,

Nemesis and Survivor, and run the 2 aforementioned Hadoop applications in it. This sce-

nario may seem relatively similar to the Connected Server scenario, but it has is a major differ-

3We can read the registers rx bytes, rx packets, tx bytes or tx packets from
/sys/class/net/eth0/statistics.
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Table 10.1: Error measured in the different cases of the Connected Server scenario.

Packet Size Freq Cases
PR - Send PR - Rec WC - Send WC - Rec

64-B
1.596 0.5% 6.0% 2.9% 2.7%
2.128 2.0% 4.7% 6.4% 1.5%
2.794 0.5% 2.9% 4.0% 2.9%

1470-B
1.596 0.7% 6.9% 1.6% 6.5%
2.128 1.1% 6.5% 5.8% 5.8%
2.794 3.8% 0.3% 0.9% 1.5%
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ence. While in the previous scenario I was the one controlling the network traffic, here the traffic

is controlled by Hadoop. Specifically, I know that, in this scenario, there are two main sources

of traffic: requesting input data when it is not present in a server, and sending the mapper tasks

outputs to the reducer tasks. The only condition I impose in the server to have some control over

the traffic is related to this later aspect, I force the reducers to be always in Nemesis.

Although I am able to retrieve the total amount of data received or sent by each server, I

know neither the size of the packets used nor the rate. Therefore, I can compute neither the

sending efficiency ηtxN nor the receiving efficiency ηrxN . In order to be able to compute both the

sending and receiving efficiencies I analyze the traffic exchanged by both servers for each one of

the applications. Figure 10.4 shows the amount of packets of each size that were exchanged by

both servers (and the direction of the exchange) for both applications. The results show the vast

majority of packets are either small (64 bytes) or big (1470 bytes). Moreover, it shows that most

of the packets sent from Nemesis to Survivor are small packets for both applications, while

big packets are sent in the opposite direction.

Given these results, I approximate the energy consumed by the network assuming that all the

packets exchanged are of the same size and that the rate is the maximum achievable rate for each

packet size according to the results from § 4.1. For instance, I consider roughly 30 Mbps when

Survivor receives 64-Byte packets and roughly 970 Mbps if it sends 1470-Byte packets. These

assumptions allow me to compute now ηtxN and ηrxN . The remaining parameters are computed as
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(a) Nemesis (b) Survivor

Figure 10.5: Energy consumption of Nemesis and Survivor in the Cloud scenario.

for the other scenarios, so to determine Êapp and Eapp. The results are shown in Figure 10.5.

As in the previous scenarios, errors are relatively low. In particular, the error in Nemesis when

running PageRank is 3.1% and 1.4% for 2.128 GHz and 2.794 GHz, respectively, and of a 9.7%

and a 6.5% for 2.128 GHz and 2.794 GHz when running WordCount. On the other hand, the

measured errors for Survivor are 3.3% and 3.6% for 1.867 GHz and 2.133 GHz when running

PageRank and 5.1% and 5.2%, respectively, when running WordCount.

10.3. Discussion

I discuss now some of the implications of those results. I start with consolidation as a tech-

nique for energy saving. It has been often assumed that the best way of saving energy is by using

the highest frequency available and applying consolidation (which is to fill servers as much as

possible). This reduces the total number of servers being used, allowing to switch off the rest.

This assumption has led to proposing bin-packing based solutions [4, 65, 71, 92]. However, the

results presented in Figures 9.2(b), 9.3(b) and 9.4(b) show that the highest frequency is not al-

ways the most efficient one, and this has been found to be true for two different architectures

(Intel and AMD). This implies that, by running servers at the optimal amount of load, and the

right frequency, a considerable amount of energy could be saved.

A second relevant aspect is the baseline consumption of servers. The results presented for all

three servers show that their baselines are within a 30-50% of the maximum consumption. Then,

it is obvious that more effort has to be done for reducing baseline consumption. For instance, a

solution could consist in switching off cores in real time, not just disabling them, or in introducing

very fast transitions between active and lower energy states, i.e., to achieve real suspension in idle

state.

There is another relevant issue related to the CPU load associated to disk and network activity.

It can be observed in Figures 9.5 and 9.6 that disks do not incur much CPU overhead. In fact, the

power used by the CPU plus baseline does not change much across the experiments. Instead, the
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energy consumed by the CPU due to network operations is even larger than the energy consumed

by the NIC (see Figure 9.11). Some works [38] have already pointed out that the way packets are

handled by the protocol stack is not energy efficient. The results reinforce this feeling and point

out that building a more efficient protocol stack would certainly reduce the amount of energy

consumed due to the network.

Finally, it is worth to mention that in this work I have assumed that the power utilization of

the RAM memory is included in the baseline. The characterization experiments have been run in

such a way that there were few memory accesses, so its power utilization did not affect my mea-

surements. However, RAM memory became an uncontrolled source of power utilization in §10.2

when I validated my proposed model. In fact, all the Hadoop processes that run in the servers con-

sume significant RAM memory. This impacts more significantly the memory used by the cluster’s

master node, since it runs internal Hadoop processes (such as the NameNode or the JobTracker)

whose memory requirement increases with the number of mappers and reducers. This cost is,

therefore, paid only in Nemesis, the master node of the cluster, and not in Survivor, which

explains the different accuracy of the model for the two servers. This error is particularly evident

although small when WordCount is run, due to the fact that the required number of mappers for

WordCount is larger than for PageRank and, therefore, the RAM required in Nemesis increases

and so does the uncontrolled energy consumption.

10.4. Summary

In this chapter I have shown how to predict and optimize the energy consumed by an ap-

plication via a concrete example using network activity plus PageRank computation in Hadoop.

Moreover, I validated the accuracy of the model derived from the per component characterization

by comparing the real energy consumed by two Hadoop applications - PageRank and WordCount

- with the estimation from my model, achieving very accurate energy estimates with errors below

4.1% on average from the measured total energy consumption.



Chapter 11

Summary and Conclusions

In this thesis, I have carried out a detailed analysis of the energy saving in data and web

hosting centers. I have focused on the energy optimization of the networking part of data centers

and also I developped a model to estimate and optimize the energy consumption of the data center

servers. Performance evaluation shows that my approaches provide substantial improvements

over existing state-of-the-art solutions.

In the first part of this thesis, I outlined all the background information which is needed for

the rest of the thesis. In particular, in Chapter 1 I provide data on current CPU technologies, VM

techniques and energy consumptions of the various components of data center servers. Moreover,

I highlight my main results and the contribution of this thesis explosing my list of publications. In

Chapter 2 I explained IEEE Standard 802.3az which is the energy efficient alternative of Ethernet,

namely Energy Efficient Ethernet (EEE), and its energy efficient enhancement packet coalescing.

In a nutshell, EEE has been recently introduced to reduce the power consumed in LANs. Since

then, researchers have proposed various traffic shaping techniques to leverage EEE in order to

boost power saving. Packet coalescing is a promising mechanism which can be used on top of

EEE to tradeoff power saving and packet delay. In Chapter 3 I gave a background on existing

methods for resource provisioning in data centers and the most common assumptions/mistakes

that research community makes regarding VM migration. Moreover, I challenged common evalu-

ation practices employed in past VM consolidation studies, such as simulation and small testbeds,

which fail to capture the fundamental properties of real systems. Specifically, I identified a se-

ries of over-simplifying assumptions regarding energy consumption and performance characteris-

tics with respect to virtualized infrastructures. Therefore, more complex/complete models which

study the energy consumed by a server are needed. To be consistent, these models have to be

based on empirical values. However, I found that there is a lack of empirical works studying

servers’ energy behavior. In Chapter 4 I analyse the methodology which I follow in this thesis,

from gathering real data traces (devices, topology, data capturing) and power measurements, to a

break down analysis of the measured server components and the benchmarks used for each of the

components. Finally, in Chapter 5 I gave the details of existing literature on EEE and on energy
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efficiency in data centers.

In the second part of this thesis, I have focused exclusively on EEE. In Chapters 6-8, I ana-

lyzed the interesting and special case of 1000Base-T EEE links, in which power saving operations

are triggered only when links are inactive in both transmission directions. I am the first to provide

an analytical model for EEE 1000Base-T which accounts for the bidirectional nature of LAN

traffic. My model allows to compute the power saving achieved by EEE, with and without packet

coalescing, by using a few significant traffic descriptors. Furthermore, I used real traffic traces to

investigate on the performance of static as well as two families of dynamic coalescing schemes.

My results showed that the first family of algorithms - NTCC - which adapts its coalescing pa-

rameters based on the event of timeouts and buffer fill-ups does not significantly outperform static

coalescing in terms of power save and delay. The second family of algorithms - MBCC - adapts

its coalescing timer according to the delay sensed by packets in the link and my evaluations

showed that the energy saving benefit can be doubled with respect to static coalescing schemes

and therefore with respect to NTCC.

Specifically, in Chapter 6, I have presented a model for bidirectional EEE links with static or

no coalescing which can be used to accurately estimate power saving and packet delay over EEE

gigabit links. This model is unique in the existing literature, in which only unidirectional EEE

links are accounted for. Although this study can be extended to EEE links operating at different

speeds, I focused on 1 Gbps links since they are the most commonly adopted links in nowadays

data centers. Moreover I have used sensitivity analysis to understand the impact of coalescing

parameters, such as timer Tc and buffer size Nc, on the energy saving and the delay experienced

over EEE links with coalescing. The analysis reveals that optimizing energy saving subject to

delay constraints is possible by simply adapting Tc.

In Chapter 7 I proposed two families of dynamic algorithms. In the first family I adapt the

coalescing parameters based on timeouts and buffer overflows during coalescing. Notably, I have

shown that static coalescing algorithms, in which the coalescing queue sizeNc and the coalescing

timeout Tc are fixed, can achieve results as good as dynamic coalescing algorithms, in which

either Nc and Tc can be dynamically adapted to the traffic characteristics. However in the second

family of dynamic algorithms the energy saving that can be achieved is doubled while keeping

the coalescing delay within specific bounds.

In Chapter 8 I performed a performance evaluation of my analytic model and my dynamic

algorithms. In particular, I have modified the ns-3 simulator to implement (i) the EEE standard

and (ii) static as well as dynamic coalescing algorithms, and thus validate my model. Further-

more, I have proposed an exhaustive performance evaluation on the impact of packet coalescing

techniques over EEE power saving and delay performances. Specifically, I have tested EEE and

coalescing algorithms by means of real packet traces I collected at the firewall interfaces of a large

web hosting center in Madrid, Spain. Moreover, my model can be used to estimate the potential

power saving vs. delay tradeoff of EEE with static or dynamic coalescing. This study has shown

that the sole EEE standard (without coalescing) works fine under scarce traffic (1%). In contrast,
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as soon as the traffic exceeds a few percents of the link capacity, EEE needs to be endowed with

packet coalescing to achieve significant power saving. Thanks to coalescing, significant economy

can be achieved with link loads as high as 40-50%, while plain EEE would not allow to achieve

detectable power saving with loads higher than a few percents of the link capacity.

In the third part of the thesis, i.e. Chapters 9- 10, I concentrate on the characterization of

data center servers’ energy consumption. Indeed, in order to obtain full benefit of energy efficient

techniques proposed in the literature [56, 67], it is crucial to profile the utilization of the data

center servers’ components. Moreover, it is necessary to understand the energy consumption of

servers and how it is affected by different load configurations. There is a large body of work

on characterizing servers’ energy consumption. However, the existing literature does not jointly

consider phenomena like the irruption of multicore servers and dynamic voltage and frequency

scaling (DVFS) [93], which are key to achieve scalability and flexibility in the architecture of a

server. To address this problem, I designed an evaluation framework which incorporates more

accurate models for data center systems and their available resources. In particular, I proposed

a measurement-based power characterization methodology for servers, which accepts as input

the load of individual hardware components and estimates the energy consumption for different

server configurations. The integration of the two solutions, allowed me to achieve the envisioned

goal of exploring the energy-performance trade-off in data centers. Finally, I proposed an accurate

technique to estimate the energy consumption of cloud applications.

Specifically, in Chapter 9 I empirically characterized the power and energy consumed by dif-

ferent types of servers. In particular, in order to understand the behavior of their energy and power

consumption, I performed measurements in different servers. In each of them, I exhaustively

measured the power consumed by the CPU, the disk, and the network interface under different

configurations, identifying the optimal operational levels. One interesting conclusion of this study

was that the curve that defines the minimal CPU power as a function of the load is neither linear

nor purely convex as has been previously assumed. Moreover, I found that the efficiency of the

various server components can be maximized by tuning the CPU frequency and the number of

active cores as a function of the system and network load, while the block size of I/O operations

should be always maximized by applications.

In Chapter 10 I showed how to estimate the energy consumed by an application as a function

of some simple parameters, like the CPU load, and the disk and network activity. Moreover, I val-

idated the proposed approach by estimating the energy consumed by several map-reduce Hadoop

computations. My model achieved very accurate energy estimates, below 4.1% on average from

the measured total energy consumption.

The research performed in this dissertation resulted in four conference papers [8, 22, 25, 26],

three journal articles [9, 24, 63], and one poster [23].
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Appendix A

Approximation accuracy for E[τA] in
the model of § 6.2

In § 6.2, I have implicitly assumed that the “memory” of the coalescing operation is lost at

the end of the first busy interval after entering state A. To be more rigorous, coalescing memory

consists in packets cumulated during τc and TW at both link edges, and so, for the properties

of regular M/G/1 queues, it is lost only after the initial busy intervals in either link directions

terminate. At that point, the probability to check a queue at random and find it busy is exactly

ρi. In contrast, before that point, the probability to find a queue busy is at least ρi, due to the

fact that packets coalesced during states C and W cumulate with fresh arrivals. Therefore, my

approximation is conservative with respect to the time spent in state A.

Specifically, let me indicate with ρ′j ≥ ρj the probability to find queue Qj busy ad the end

of B(i)
c , i 6= j, to evaluate the difference between my approximation θ(i)

A and the exact analytical

value of the average:

E[τA|W→A, Qi]

= E[B(i)
c ] + ρ′jE[B(j)] + ρiρ

′
jE[B(i)] + ρiρjρ

′
jE[B(j)] + . . .

= E[B(i)
c ] + ρ′j

E[B(j)] + ρiE[B(i)]

1− ρ1ρ2
≥ θ(i)

A , (A.1)

in which I remark that θ(i)
A is the approximation yielded by my model. Of course, the above lower

bound can be used for the unconditional duration of state A:

θA ,
λ1θ

(1)
A

λ1 + λ2
+

λ2θ
(2)
A

λ1 + λ2
≤ E[τA|W→A], (A.2)

where θA is the approximation used in this paper.

With the above, it is clear that the more packets are coalesced—and the higher the loads—

the higher the difference between my approximation for the time spent in state A and the value
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returned by an exact model.

Moreover, an upper bound for the time spent in state A can be computed as follows. Denote

by B(j,i)
c the initial busy period of queue Qj after a transition W → A with an arrival to Qi

triggering coalescing. State A lasts at least the maximum between B(i)
c and B(j,i)

c , after which

memory of coalescing vanishes, plus a random alternation of total duration ψ of busy periods of

the two queues in steady state. For the average, using the relation E[maxi{Ai}] ≤
∑

iE[Ai]

(valid for non-negative processes Ai), I have the following upper bound:

E[τA|W→A, Qi] = E
[
max

{
B(i)
c , B(j,i)

c

}
+ ψ

]
≤ E

[
B(i)
c

]
+ E

[
B(j,i)
c

]
+ E[ψ], (A.3)

in which the average of B(j,i)
c , which is similar to B(i)

c , is given by the following expression:

E[B(j,i)
c ] =

λj (E[τC |W→A, Qi] + TW )

µj − λj
, i 6= j. (A.4)

Since ψ is an alternation of busy periods in steady state, which can start from either observing Q1

orQ2, its average can be upper bounded by the following expression, obtained as in the derivation

of θ(i)
A in Eq. (C.4):

E[ψ]≤max

{
ρ1
E[B(1)]+ρ2E[B(2)]

1− ρ1ρ2
, ρ2

E[B(2)]+ρ1E[B(1)]

1− ρ1ρ2

}

≤ ρ1E[B(1)] + ρ2E[B(2)]

1− ρ1ρ2
. (A.5)

Therefore, a practical upper bound for the time spent in stateA after a coalescing period triggered

by queue Qi is:

E[τA|W→A, Qi] ≤ E
[
B(i)
c

]
+
λj (E[τC |W→A, Qi] + TW )

µj − λj

+
ρ1E[B(1)]+ρ2E[B(2)]

1− ρ1ρ2

= θ
(i)
A +

λj (E[τC |W→A, Qi] + TW )

µj − λj
+

(ρi−ρ1ρ2)E[B(i)]

1− ρ1ρ2
, (A.6)

where all terms in the R.H.S. are positive due to the fact that ρi ∈ [0, 1), i ∈ {1, 2}, under stable

system conditions.

Note that my approximation θ(i)
A approaches the upper bound (and hence, being θ(i)

A a lower

bound, it approaches the correct value) in extremely low load conditions. Instead, the upper bound

becomes much greater than θ(i)
A under high load conditions.

Finally, after some algebraic manipulation to remove the conditions on the queue that started
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the coalescing, I obtain the following expression for the upper bound:

E[τA|W→A] ≤ 1

λ1 + λ2

(
λ1

µ1 − λ1
+

λ2

µ2 − λ2

)
+
λ1 (E[τC |W→A] + TW )

µ1 − λ1
+
λ2 (E[τC |W→A] + TW )

µ2 − λ2

+
ρ1

2µ1−λ1
2(µ1−λ1)2

+ ρ2
2µ2−λ2

2(µ2−λ2)2

1− ρ1ρ2
. (A.7)

Note that, the probability to stay in state LPI , which is the power saving factor ηLPI =

ηL + ηC , is inversely proportional to E[τA]. Therefore, the lower bound of E[τA] corresponds

to the upper bound of ηLPI and the upper bound of E[τA] corresponds to the lower bound of

ηLPI . As concerns the delay, as it is easy to compute, the partial derivative of D(i) with respect

to E[τA] is a constant divided by a function of E[τA] and other parameters. However, since such

function is always positive, the delay is monotone w.r.t. E[τA], whose bounds can be therefore

straightforwardly used to compute bounds for D(i) as well.

The analysis presented in this appendix reveals that my approximation in the calculation of

E[τA|W→A] can be rough only if loads are high. In that case, θA is a very conservative approx-

imation of the average. However, high loads make the transition W → A unlikely to happen

since the weight of E[τA|W→A] in the average expressed in Eq. (6.41) is PS = e−(λ1+λ2)TS .

Therefore, potentially large errors on E[τA|W→A] are discounted with an exponential function

of the load and do not significantly affect E[τA]. In conclusion, the approximation on E[τA] I

have introduced is impacted by two contrasting factors: (i) the uncertainty on E[τA|W→A, Qi],
which grows with the load, and (ii) the probability to enter state L, and hence have a transition

W →A, which exponentially decreases with the load. Thereby, although there is practically no

uncertainty at very low and high loads, my approximation might yield inaccurate values forE[τA]

at low-medium loads (e.g., loads below 10-15% in either link direction, with only large packets,

would yield PS ≤ 0.1). Next I show by means of numerical results that the uncertainty introduced

in the model by the approximation on E[τA] is small under a large range of realistic operational

parameters.

In Figures A.1-A.6 I plot the upper and the lower bound for delays and ηLPI for different

combinations of (Nc, Tc) and average packet sizes. Here I simulate loads increasing by 1%

steps. Moreover Figures A.1-A.3 correspond to combination (Nc = 50 packets, Tc = 5µs) while

Figures A.4-A.6 correspond to combination (Nc = 100 packets, Tc = 20µs). Finally, Figures A.1

and A.4 correspond to traffic with big packets (1500 bytes) in both directions, Figures A.2 and A.5

correspond to traffic with small packets (150 bytes) in both directions, and Figures A.3 and A.6

correspond to traffic with big packets in direction 1 and small packets in the direction 2. In

all plots, I report loads below 25% because delays and ηLPI converge to their asymptotic values

(practically to 0) very quickly. In all cases I observe little differences between the values computed

based on lower and upper bounds of E[τA]. As expected, there is no observable error for very
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Table A.1: Model uncertainty computed on ηLPI and average delays

ρ1 ρ2 E[S
(1)
p ]E[S

(2)
p ] λ1 λ2 Tc Nc ηLPI [%] D(1) [ms] D(2) [ms]

[%] [%] [bytes] [bytes] [pkts/s][pkts/s] [ms][pkts] lower boundupper bound lower boundupper bound lower boundupper bound

0.20 0.06 802 281 310 268

5 50 96.75 96.83 3.057 3.060 3.061 3.064
5 100 96.75 96.84 3.057 3.060 3.062 3.064

10 50 98.00 98.11 5.641 5.647 5.649 5.655
10 100 98.00 98.11 5.641 5.647 5.649 5.655
20 100 98.79 98.91 10.687 10.699 10.702 10.715

0.7139.69 67 1512 13187 32815

5 50 0.88 0.88 0.007 0.007 0.011 0.011
5 100 1.74 1.74 0.026 0.027 0.039 0.039

10 50 0.88 0.88 0.007 0.007 0.011 0.011
10 100 1.74 1.75 0.026 0.027 0.039 0.039
20 100 1.74 1.75 0.027 0.027 0.039 0.039

0.8729.64 83 1477 13048 25084

5 50 4.56 4.59 0.046 0.047 0.060 0.061
5 100 8.55 8.67 0.173 0.176 0.223 0.226

10 50 4.56 4.59 0.046 0.047 0.060 0.061
10 100 8.56 8.67 0.173 0.176 0.224 0.227
20 100 8.55 8.67 0.173 0.176 0.224 0.227

0.9853.66 69 1500 17769 44719

5 50 0.03 0.03 < 1µs < 1µs 0.004 0.004
5 100 0.06 0.06 < 1µs < 1µs 0.005 0.005

10 50 0.03 0.03 < 1µs < 1µs 0.004 0.004
10 100 0.06 0.06 < 1µs < 1µs 0.005 0.005
20 100 0.06 0.06 < 1µs < 1µs 0.005 0.005

3.72 0.37 1180 165 3938 2778

5 50 89.45 90.89 2.323 2.361 2.401 2.440
5 100 89.45 90.89 2.323 2.361 2.401 2.440

10 50 92.52 94.08 4.705 4.784 4.862 4.944
10 100 92.54 94.10 4.726 4.807 4.884 4.967
20 100 94.20 95.82 9.534 9.698 9.852 10.022

5.06 0.50 1170 165 5408 3809

5 50 86.22 88.09 2.327 2.377 2.226 2.274
5 100 86.22 88.09 2.327 2.377 2.226 2.274

10 50 89.62 91.67 4.079 4.172 4.262 4.360
10 100 90.12 92.18 4.591 4.697 4.800 4.909
20 100 92.02 94.19 8.468 8.667 8.852 9.060

0.4023.11 66 1511 7517 19116

5 50 26.75 27.40 0.355 0.364 0.436 0.446
5 100 38.46 39.81 0.955 0.988 1.171 1.212

10 50 26.75 27.40 0.355 0.364 0.436 0.447
10 100 39.66 41.10 1.048 1.086 1.285 1.331
20 100 39.66 41.10 1.048 1.086 1.285 1.332

1.1417.93 148 1294 9639 17320

5 50 29.39 30.16 0.433 0.445 0.505 0.519
5 100 40.32 41.76 1.028 1.066 1.200 1.243

10 50 29.39 30.16 0.433 0.445 0.505 0.519
10 100 43.18 44.84 1.267 1.316 1.478 1.535
20 100 43.18 44.84 1.268 1.317 1.478 1.535

low load combinations and for medium-high loads, for which the coefficient PS � 1 and so the

uncertainty disappears. The figures show that some minor differences can be noticed for the case

of big packets (1500-byte packets in both link directions) for loads comprised between 5% to

15%. For what concerns the cases previously presented in Table 8.1, which reports a trace-driven

evaluation of EEE with coalescing, the model uncertainty due to my approximation is negligible,

as shown in Table A.1.
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(a) Upper and lower bound for Delay in direction 1.
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(b) Upper and lower bound for Delay in direction 2.
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(c) Upper and lower bound for ηLPI .

Figure A.1: 1500-byte packets in both directions and Nc = 50 packets, Tc = 5 ms.
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(a) Upper and lower bound for Delay in direction 1.
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(b) Upper and lower bound for Delay in direction 2.
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(c) Upper and lower bound for ηLPI .

Figure A.2: 150-byte packets in both directions and Nc = 50 packets, Tc = 5 ms.
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Figure A.3: 1500-byte packets in direction 1 and 150-byte packets in direction 2 and Nc = 50
packets, Tc = 5 ms.
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Figure A.4: 1500-byte packets in both directions and Nc = 100 packets, Tc = 20 ms.



125

 0
 5

 10
 15

 20
 25 0

 5
 10

 15
 20

 25

 0

 1000

 2000

 3000

 4000

 5000

 6000
D

(1
)  [

µ
s
]

D
(1)

 (using E[τA] lower bound)
D

(1)
 (using E[τA] upper bound)

ρ2 [%]

ρ1 [%]

D
(1

)  [
µ

s
]

(a) Upper and lower bound for Delay in direction 1.

 0
 5

 10
 15

 20
 25 0

 5
 10

 15
 20

 25

 0

 1000

 2000

 3000

 4000

 5000

 6000

D
(2

)  [
µ

s
]

D
(2)

 (using E[τA] lower bound)
D

(2)
 (using E[τA] upper bound)

ρ2 [%]

ρ1 [%]

D
(2

)  [
µ

s
]

(b) Upper and lower bound for Delay in direction 2.

 0
 5

 10
 15

 20
 25 0

 5
 10

 15
 20

 25

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

η
L
P

I 
[%

]

ηLPI (using E[τA] lower bound)
ηLPI (using E[τA] upper bound)

ρ2 [%]

ρ1 [%]

η
L
P

I 
[%

]

(c) Upper and lower bound for ηLPI .

Figure A.5: 150-byte packets in both directions and Nc = 100 packets, Tc = 20 ms.



126 Approximation accuracy for E[τA] in the model of § 6.2

 0
 5

 10
 15

 20
 25 0

 5
 10

 15
 20

 25

 0

 1000

 2000

 3000

 4000

 5000

 6000

D
(1

)  [
µ

s
]

D
(1)

 (using E[τA] lower bound)
D

(1)
 (using E[τA] upper bound)

ρ2 [%]

ρ1 [%]

D
(1

)  [
µ

s
]

(a) Upper and lower bound for Delay in direction 1.

 0
 5

 10
 15

 20
 25 0

 5
 10

 15
 20

 25

 0

 1000

 2000

 3000

 4000

 5000

 6000

D
(2

)  [
µ

s
]

D
(2)

 (using E[τA] lower bound)
D

(2)
 (using E[τA] upper bound)

ρ2 [%]

ρ1 [%]

D
(2

)  [
µ

s
]

(b) Upper and lower bound for Delay in direction 2.

 0
 5

 10
 15

 20
 25 0

 5
 10

 15
 20

 25

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

η
L
P

I 
[%

]

ηLPI (using E[τA] lower bound)
ηLPI (using E[τA] upper bound)

ρ2 [%]

ρ1 [%]

η
L
P

I 
[%

]

(c) Upper and lower bound for ηLPI .

Figure A.6: 1500-byte packets in direction 1 and 150-byte packets in direction 2 and Nc = 100
packets, Tc = 20 ms.



Appendix B

Computation of the duration of state C
in the model of § 6.2

The duration of state C is a r.v. Y =min{X1, X2, Tc}, i.e., the minimum between Tc and two

other independent r.v.’s X1 and X2 modeling the time needed for Nc−1 arrivals for the queue

that triggered coalescing and Nc arrivals for the other queue. Therefore, X1 and X2 are Erlang

random variables. Assuming that Q1 triggers transition L→C, then X1 ∼ Erl(λ1, Nc−1) and

X2 ∼ Erl(λ2, Nc). The cumulative distribution function (CDF) of Y can be written as a function

of the CDFs of X1 and X2 as follows:

FY (t)=1−[1−FX1(t)] [1−FX2(t)]u (Tc−t) , t ≥ 0, (B.1)

where u(·) is the unit step function, which guarantees a jump to 1 at time t = Tc in the CDF of Y

(the state duration cannot exceed the timeout). From Eq. (6.33) and from the definition of Erlang

distribution, FX1(t)=F
(1)
Nc−1(t), and FX2(t)=F

(2)
Nc

(t), which yields the following expression:

E[τC |W→A, Q1] = E[Y ] =

∫ ∞
0

tdFY (t)

=

∫ Tc

0

(λ1t)
Nc−1e−λ1t

(Nc − 2)!
·
(

1− F (2)
Nc

(t)
)
dt

+

∫ Tc

0

(λ2t)
Nce−λ2t

(Nc − 1)!

(
1− F (1)

Nc−1(t)
)
dt

+
(

1− F (1)
Nc−1(Tc)

)(
1− F (2)

Nc
(Tc)

)
Tc. (B.2)

The first term in the above expression corresponds to Q1 finishing coalescing first, the second

term corresponds to Q2 finishing first, and the last term is due to timeouts. The above expression

could be also re-written in explicit form (no integrals and cumulative functions), although not

compactly. The expression for E[τc|Q2] has the same structure and the average duration of state
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128 Computation of the duration of state C in the model of § 6.2

C is eventually computed as E[τC ] = λ1
λ1+λ2

E[τC |W→A, Q1] + λ2
λ1+λ2

E[τC |W→A, Q2], from

which I obtain Eq. (6.34).



Appendix C

Computation of the duration of state A
in the model of § 6.2

Observe that, although the occurrence of a busy interval in a link direction depends on the

activity of the other link direction, the evolution of each individual busy interval only depends on

the arrival processes. In particular, once a busy interval starts, it evolves like in a legacy M/G/1

queue with initial state given by the queue backlog at the beginning of the busy interval [54].

Entering state A from state W . Assume, with no loss of generality, that Qi triggers the

coalescing. I denote with B(i)
c , i ∈ {1, 2}, the first busy period seen at Qi only. Hence, on

average I have the following duration for the busy period:

E[B(i)
c ] =

E
[
Z

(i)
c

]
E
[
S

(i)
p

]
/R

1− ρi
=
E
[
Z

(i)
c

]
µi − λi

, (C.1)

where E[S
(i)
p ]/R is the mean packet service time, and Z(i)

c is the queue size at the beginning of

the busy period. The expression is equivalent to Eq. (6.38) because Qi is the queue that received

the packet that triggered the transition L→C, so that E
[
Z

(i)
c

]
=1+λi(E[τC |W→A, Qi] + TW ).

At the end of B(i)
c , Qi is empty with probability 1, while I assume that the other queue

Qj is non-empty with a probability that is equal to its utilization factor ρj . This assumption

represents an approximation with little impact on the performance of the model, as it is discussed

in Appendix A. Then I can observe the followup in the evolution of the system from the viewpoint

of the other queue, although this time the busy period B(i) depends on the backlog of an M/G/1

queue seen at a random observation instant, given that the queue is serving a packet. Therefore,

using the Pollaczek-Khinchin mean formula [16], and using the condition that queue has to be

129
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non-empty at the observation instant, I have:

E
[
Z(i)

]
=

1

ρi
·

λiE
[
S

(i)
p

]
R

+
λ2
i E
[
S

(i)2

p

]
/R2

2(1− ρi)


= 1 +

ρi
2(1− ρi)

; (C.2)

E
[
B(i)

]
=
E
[
Z(i)

]
µi − λi

=
2µi − λi

2(µi − λi)2
; (C.3)

which is equivalent to Eq. (6.39).

Busy periods B(1) and B(2) alternate until the observation of the queue status at the end of

a busy period reveals that both queues are empty. At that point I have a transition A→ S. The

duration of state A, assuming that Qi triggered coalescing, is then computed as follows:

E[τA|W→A, Qi]

' E[B(i)
c ] + ρjE[B(j)] + ρiρjE[B(i)] + ρiρ

2
jE[B(j)] + . . .

= E[B(i)
c ] + ρj

E[B(j)] + ρiE[B(i)]

1− ρ1ρ2
, θ(i)

A . (C.4)

In the above expression, I have defined θ(i)
A as the result of my approximation.

Thereby, since queue Qi triggers coalescing with probability λi
λ1+λ2

, from the above I obtain

the expression for E[τA|W→A] presented in Eq. (6.37).

Entering stateA from state S. In this case, there is an arrival in state S, which is immediately

served. The first busy period is then B(i)
s on either Q1 or Q2, with initial backlog equal to 1. For

the rest, the computation ofB(i)
s is analogue to the one ofB(i)

c . Moreover, due to the independence

of the considered Poisson arrival processes, the probability of restarting the service with a busy

period in direction i,B(i)
s , is λi

λ1+λ2
. After that, the following alternating busy intervals are exactly

like in the case of busy periods after the transition W→A discussed above, i.e., I have intervals

B(1) and B(2). Thereby, the computation of E[τA|S→A] is similar to the one of E[τA|W→A], and

yields the result of Eq. (6.40).

Average time spent in state A. So far I have shown how to derive E[τA|W→A] and

E[τA|W→S ]. The result presented in Eq. (6.41) is therefore obtained by averaging these re-

sults with the probability to have or not arrivals in state S, that is: E[τA] = E[τA|W→A]PS +

E[τA|W→S ](1− PS).
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