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Abstract

The rapid transformation of mobile network infrastructures from hardware-based systems to

software-defined networks (SDNs) has introduced several novel paradigms that aim to enhance

scalability, flexibility, and efficiency. One of the most significant advancements in this shift is

the concept of network slicing. In essence, network slicing allows a single physical network to

be divided into multiple virtual networks, each tailored to the specific requirements of different

use cases. These slices can vary in terms of bandwidth, latency, security, and resource allocation,

making them highly adaptable to different industries, such as autonomous vehicles, smart cities, and

Internet of Things (IoT) applications. This capability offers unprecedented flexibility for service

providers, as they can deploy and manage various services on the same physical infrastructure

without the need for expensive and complex hardware upgrades.

However, realizing the full potential of network slicing presents several challenges. One of

the key issues is the complex management of multiple network slices that may have conflicting

requirements. For example, ensuring ultra-reliable low-latency communication for one slice while

maximizing bandwidth for another slice can be difficult, especially when they share the same

underlying physical resources. The dynamic nature of network slicing, where slices are created,

modified, and terminated on demand, also requires highly efficient orchestration and automation

systems. Furthermore, maintaining security and isolation between slices is essential to prevent

interference or data breaches. As mobile networks continue to evolve, addressing these challenges

will be crucial to fully unlocking the benefits of network slicing and realizing the vision of highly

flexible, software-driven networks.

This thesis explores innovative approaches to improve the profitability of Mobile Network

Operators (MNO) through advanced network slicing strategies in 5G networks. The research

focuses on three key areas: overbooking network slices for maximize financial gains, cost-efficient

network slice management, and operational performance of Mobile Network Aggregators (MNA)

within Network Slicing as a Service (NSaaS) context under roaming scenarios. These innovations

leverage state-of-the-art techniques, including deep learning, classical optimization, and data-

driven algorithms, to tackle the complex challenges of resource provisioning, network function

lifecycle management, and global service optimization.

This document delves into these advancements, structured across several chapters that explore

these key areas in depth. In the first contribution, we explore the NSaaS concept and introduce

XI
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slice overbooking as a promising strategy to maximize resource utilization and boost net profit in

cloud-native mobile networks. Network slicing enables the creation of virtualized, custom-tailored

network slices, but managing these slices efficiently remains a challenge. Overbooking allows

network operators to admit more slices than available physical resources by capitalizing on the

fact that tenants seldom use their total reserved capacity simultaneously. The chapter presents

a complete NSaaS management solution, overbooKing-Aware Network Slicing as a Service

(kaNSaaS), which integrates deep learning with classical optimization to address the dual problems

of admission control and resource allocation. Through extensive experimentation with large-scale

real-world data on tenant demands, the results show that kaNSaaS boosts operator profits potentially

multiplying it by four compared to non-overbooking strategies under real-world conditions.

In the second contribution, the focus shifts to zero-touch management systems, which

promise autonomous network operation with minimal human intervention. As modern network

infrastructures have evolved into systems with numerous virtualized network functions, traditional

manual approaches to lifecycle management are increasingly inadequate. In response, this

chapter introduces AZTEC+, a data-driven solution for anticipatory resource provisioning in

network slicing environments. Using a hybrid and modular deep learning architecture, AZTEC+

forecasts future service demands and determines optimal trade-offs between resource provisioning,

instantiation, and reconfiguration costs and performance requirements. Tested on a large-scale

network, AZTEC+ outperformed existing state-of-the-art management strategies by up to 5.85

times, proving its effectiveness in reducing network costs and addressing the complexity of

virtualized mobile networks. It effectively balances costs associated with resource instantiation

and reconfiguration, making it a highly efficient solution for managing dynamic network slices

autonomously. This chapter emphasizes how zero-touch management, paired with anticipatory

resource provisioning, offers a scalable approach to future network management.

In the third contribution, we explore the added complexity introduced by MNAs, which

represent a new frontier in global mobile telecommunications in NSaaS. MNAs, such as Google

Fi, Twilio, and Truphone, operate by leveraging multiple MNOs to provide mobile communication

services across different regions. Unlike traditional MNOs, which are limited by geographic

boundaries, MNAs dynamically connect to the MNO that offers the best performance based

on location and time, ensuring optimal service quality for users, especially those frequently

crossing borders. However, the dynamic nature of MNAs introduces a new layer of complexity in

meeting network slicing’s Quality of Service (QoS) guarantees as the isolation and management of

slices become more intricate with the involvement of multiple, regionally dispersed MNOs. To

address this, we quantify and compare the performance of MNA-driven models against traditional

MNOs, offering insights into the challenges and trade-offs in achieving reliable QoS in these

advanced operator frameworks. This section presents a detailed performance analysis of the three

aforementioned MNAs, comparing their performance for key applications like web browsing

and video streaming within NSaaS across diverse geographical regions, namely the USA and

Spain. While MNAs may introduce slight delays compared to local MNOs in certain regions, they
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significantly outperform the traditional home-routed roaming model in terms of service quality.

Moreover, emulation studies using open-source 5G implementations deployed across Amazon Web

Services (AWS) locations illustrate the performance gains MNAs can achieve through advanced

network function virtualization. This chapter highlights the potential of the MNA model to reshape

global mobile services, offering more flexible, efficient, and seamless experiences for end-users.

Overall, this research provides valuable insights into NSaaS overbooking management, zero-

touch resource provisioning, and the global reach of MNAs. Together, these innovations represent

significant strides toward realizing the next generation of mobile networks, where resource

efficiency, automation, and global service quality are paramount. The research highlights the

economic benefits of slice overbooking, demonstrating how operators can significantly increase

profitability by intelligently managing their resources. Furthermore, by integrating hybrid models

of AI and optimization, it lays a strong foundation for future developments in network slicing

and cost optimization, offering practical implications for both MNO and application developers.

As 5G networks continue to evolve, this work sheds light on the shifting landscape of global

network operators and provides a roadmap for addressing the growing complexities of resource

allocation and service management in a cloud-native, AI-driven environment. Through a blend

of deep learning, anticipatory algorithms, and network virtualization, the telecommunications

industry is better positioned to meet the ever-evolving demands of users while optimizing network

performance across a wide range of dynamic environments.
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“The secret of getting ahead is getting started.”

Mark Twain (1864 – 1910)

1 Introduction

Network data traffic is experiencing massive changes due to increasing complexity and

heterogeneity of devices, applications, and communication protocols. The growing diversity

of connected devices, ranging from smartphones and laptops to Internet of Things (IoT) sensors

and autonomous machines, introduces a wide range of traffic patterns and requirements. Similarly,

the proliferation of various applications, such as video streaming, online gaming, cloud services,

and real-time communications, each with its own distinct latency, bandwidth, and Quality of

Service (QoS), contributes to the complexity. Historically, network traffic was predominantly

comprised of data originating from computers and servers. However, the future of network

traffic is set to be a diverse mix, with a variety of applications (Virtual Reality (VR), Augmented

Reality (AR)) and IoT devices utilizing the network. This will necessitate a network infrastructure

capable of handling a myriad of traffic types, including sensor data, video streaming, Machine-

Type Communications (MTC), Software-Defined Networks (SDN), and smart cities, each with its

unique QoS requirements. Moreover, the emergence of smart cities will significantly contribute to

the surge in network traffic, with the entire urban infrastructure interconnected and exchanging

data. Furthermore, the fast adoption of cloud services and network virtualization has added another

layer of complexity to resource management.

According to Ericsson reports, the demand for internet traffic is increasing each year [5].

Global mobile network data traffic will exceed 400 EB per month in 2029. Figure 1 describes the

expected increase in traffic and the breakdown of data categories. As a key insight, Video traffic

data will be the most used globally. Indeed, the traffic will be heterogeneous and have different

QoS which will be addressed with network slicing. Moreover, the heightened network complexity

and diversity necessitate the implementation of precise resource management.

Nowadays, and in the future, with the diversity of applications and devices that will use

the network, ensuring the optimal usage and allocation of the resources for Mobile Network

Operators (MNOs) is mandatory. This complexity will continuously grow due to the dynamic

nature of modern networks, where the resources must be allocated and reallocated in real time to

accommodate the different demands and QoS. Furthermore, the trend of hosting applications and
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Figure 1.1: Mobile traffic by application category, adapted from [5].

services in cloud environments makes it critical to ensure efficient resource allocation to achieve

end-users’ Quality of Experience (QoE). MNOs will be challenged to efficiently and optimally

manage bandwidth, processing power, and data storage.

To cope with these challenges, MNOs are turning to more configurable and automated network

management strategies. Traditional reliance on human interaction for network management is

proving insufficient to handle modern network complexities. Historically, the approach was to

overprovision resources, ensuring all services meet their Service-Level Agreements (SLAs) by

preparing for peak demand scenarios. However, this strategy leads to significant underutilization

of resources during periods of lower activity, resulting in increased operational costs for MNOs.

In response to this inefficiency, cloud-native mobile network architectures and automation

technologies are becoming crucial components of MNO strategies. By leveraging softwarization,

MNOs can deploy more flexible and adaptable networks. The shift towards cloud-native

architectures, in collaboration with major cloud service providers, is unlocking new business

opportunities by enabling rapid configuration and scaling based on real-time demand.

Additionally, automated management, powered by Machine Learning (ML) and Artificial

Intelligence (AI), allows for more efficient resource allocation, improving network performance

while reducing operational costs.

Within this evolving landscape, network slicing has emerged as one of the most promising

innovations in the evolution of modern telecommunications networks, particularly with the advent

of 5G and beyond. At its core, network slicing allows a single physical infrastructure to be divided

into multiple, independent, and highly customizable logical instances, referred to as "slices" [8].

Fig. 1.2 illustrates a high-level representation of network slicing architecture, showcasing

how diverse service requirements can be accommodated by logically isolating network resources.

This is achieved by overlaying distinct logical slices over a shared physical infrastructure, which

enables a single network to handle varied service types efficiently, each with unique performance

and reliability demands. At the core of this structure is the 5G Service-Based Architecture (SBA),

which comprises essential functions like the Network Slice Selection Function (NSSF), Access

and Mobility Management Function (AMF), and Session Management Function (SMF). These
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components work together to allocate, monitor, and manage the necessary resources for each

slice. The 5G SBA facilitates seamless connectivity between different network segments, ensuring

a responsive and efficient experience across diverse applications. Supporting the logical slices

is the Cloud Radio Access Network (C-RAN), which includes the Baseband Unit (BBU) Pool

and the Transport Core Network (TN). This setup provides a scalable and centralized physical

infrastructure that can flexibly adapt to network demands. The C-RAN connects via both fronthaul

and backhaul networks to maintain high-speed communication between the access and core

networks, providing a robust foundation for network slicing. Three primary logical slices—

enhanced Mobile BroadBand (eMBB), ultra-Reliable Low-Latency Communication (uRLLC)

and massive Machine-Type Communication (mMTC)—are shown. Each slice is optimized for

a specific type of service. The eMBB slice supports high-data-rate applications such as video

streaming and augmented reality, the uRLLC slice caters to applications that require ultra-low

latency and high reliability, such as autonomous driving and telemedicine, while the mMTC slice

supports a massive number of connections for IoT applications like smart cities and industrial

automation [10]. The ability to define, allocate, and manage these slices individually not only

provides efficiency but also ensures that the SLA for each service is met, guaranteeing performance

parameters such as speed, reliability, and security. This capability is particularly significant in an

increasingly diverse digital landscape where different types of applications have vastly different

networking requirements. Traditional static networking approaches are no longer sufficient to

handle the varying demands of real-time gaming, autonomous vehicles, telemedicine, and large-

scale IoT networks [11]. Network slicing addresses this challenge by providing flexibility and

scalability, enabling network operators to dynamically allocate resources based on the specific



4 Introduction

needs of each service [12]. It also reduces the complexity and cost associated with deploying and

managing multiple physical infrastructures for different services, as the same physical network can

simultaneously support several use cases [13].

1.1. Motivation
One of the most significant challenges in network slicing is the effective management of

resources. Network slicing involves creating isolated virtual networks on a shared physical

infrastructure, which inherently increases the overall capacity requirements. As each slice operates

independently, the isolation of resources across these slices adds complexity, making dynamic,

preemptive, and efficient resource allocation critical to maintaining performance and efficiency

in such networks. According to Márquez et al. [14], the isolation of resources not only impacts

capacity but also heightens the demand for more refined resource management techniques, which

are essential for the realization of network slicing in practice.

In traditional, non-sliced networks, resource management has typically been handled through

reactive, human-driven approaches, where manual intervention is required to adjust resource

allocation based on real-time demands. However, these legacy approaches are becoming

increasingly inadequate in the context of sliced networks due to several factors. First, the service

demands in modern networks fluctuate rapidly. Services that utilize network slices often experience

varying levels of traffic, from low-latency applications like autonomous driving to high-bandwidth

services such as video streaming. This dynamic nature requires real-time adjustments in resource

distribution, which human-driven systems are ill-equipped to handle efficiently [15]. Furthermore,

the complexity of the slicing ecosystem —where multiple network slices may be created, modified,

or terminated on-demand— further exacerbates the limitations of traditional resource management

methods. The static allocation strategies used in the past cannot meet the dynamic requirements of

network slicing, leading to inefficiencies and potential service degradation.

Another important aspect of network slicing is its role in the emerging trend where network

infrastructures no longer serve a single operator but are shared among multiple operators

with different business models. Traditionally, network operators owned and managed their

infrastructures independently. However, with the advent of 5G and beyond, the increasing

complexity and cost of deploying and maintaining these networks have led to the rise of multi-

tenant infrastructures, where different MNO, Mobile Virtual Network Operator (MVNO), and even

third-party service providers can share the same physical resources. In this scenario, network slicing

becomes crucial as it allows operators to create isolated virtual networks that can be customized

for their specific needs while sharing the underlying infrastructure. This shift introduces new

challenges, including how to ensure fair and efficient resource allocation among competing

operators, how to maintain security and performance isolation across slices, and how to handle

diverse SLA that may vary widely between operators. It is, therefore, paramount to accurately

characterize these new operator models and address the unique challenges they bring, as failing to
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do so could result in inefficiencies and conflicts that undermine the benefits of network slicing.

In addition to the shared infrastructure models, there is a rapidly growing demand

for connecting highly heterogeneous devices and terminals operating across diverse global

environments, each with unique performance requirements. This demand stems not only from the

proliferation of IoT devices but also from the increasing number of individuals embracing a digital

nomad lifestyle, where constant connectivity is essential for work and personal life. The COVID-19

pandemic has accelerated this shift, creating a large, mobile workforce that requires seamless,

ubiquitous connectivity as they move across different regions [16]. Moreover, IoT applications,

such as connected vehicles, smart meters, and other critical services, now rely on uninterrupted

global connectivity to function effectively [17, 18]. Addressing these demands adds another layer

of complexity to network slicing, as operators must ensure robust support for international roaming,

diverse SLAs, and highly varied device requirements. This further emphasizes the importance of

scalable, flexible network architectures capable of adapting to a wide range of use cases.

In conjunction with network slicing, the integration of AI into network management processes

represents a critical advancement in improving the efficiency and performance of modern networks.

AI and ML techniques can be leveraged to predict network demand from vertical tenants, such

as Service Providers (SPs), who may require different levels of capacity based on the services

they offer [19]. By analyzing historical data and real-time network metrics, AI-driven systems can

forecast future network traffic patterns and resource needs with high accuracy. This predictive

capability enables more efficient resource allocation, ensuring that the appropriate amount of

bandwidth, computational power, and other network resources are available when needed, without

overprovisioning or underutilization.

As a result, the research community has increasingly focused on finding innovative solutions for

resource allocation and admission control in network slicing. Admission control involves deciding

whether to accept a new slice request based on available resources, while resource allocation deals

with assigning the appropriate amount of resources to each accepted slice. Together, these tasks

are central to the success of Network Slicing as a Service (NSaaS), as the decisions made during

these processes directly impact the quality of service and efficiency of the network. Much of the

potential advantage that NSaaS can offer to MNO depends on making correct decisions on whether

to accept a network slice and, if so, determining the appropriate allocation of resources to it [15].

A misallocation could lead to either underutilization of network capacity or SLA violation, both of

which can degrade overall network performance.

To address the challenges posed by traditional methods, automated decision-making processes

are increasingly being integrated into network orchestrators, the systems responsible for managing

network slices. These orchestrators must now make real-time, intelligent decisions on resource

allocation, often with minimal or no human intervention. By leveraging AI techniques, these

systems can analyze network conditions, predict traffic patterns, and optimize resource distribution

across slices more effectively than human operators could [20]. AI-powered network orchestration

is seen as a critical enabler for the future of network slicing, as it promises to enhance the scalability,
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efficiency, and adaptability of sliced networks. For instance, AI can help predict when a particular

slice will require additional resources based on historical traffic data and adjust resource allocations

accordingly, thereby preventing congestion or service interruptions.

The integration of AI into network management paves the way for the realization of zero-touch

networks, a concept that envisions fully autonomous communication infrastructures capable of

self-managing without human intervention. This vision aligns with the growing trend toward

automation in network management, where AI algorithms handle everything from fault detection

and recovery to resource provisioning and optimization. The path to zero-touch networks involves

automating not only routine tasks but also complex decision-making processes, such as those

involved in resource management for network slices [21]. By enabling networks to operate

autonomously, zero-touch solutions aim to improve reliability, reduce operational costs, and enable

more responsive and efficient service delivery.

The idea of zero-touch networks is not merely theoretical but is actively being pursued by

industry bodies like European Telecommunications Standards Institute (ETSI). The ETSI Zero-

Touch Network and Service Management (ZSM) group is working on standardizing architectures

and frameworks that will allow for fully automated network operations, including in the context

of network slicing. The goal is to create a standardized approach to managing slices in a way

that minimizes human intervention while maximizing operational efficiency and scalability [22].

This movement toward standardization is essential to ensure that different vendors and operators

can implement zero-touch solutions in a consistent and interoperable manner, facilitating broader

adoption across the telecommunications industry.

Furthermore, the use of AI for predictive management shifts the paradigm for MNOs from

traditional reactive network management to a more proactive approach. In a reactive model,

network issues are addressed after they occur, often resulting in degraded service and poor

user experiences. In contrast, predictive AI systems can identify potential network bottlenecks

or performance issues before they affect end-users, allowing operators to take preemptive

action. This shift results in improved network availability, reduced downtime, and better overall

performance [23]. By optimizing the distribution of resources in real-time, AI not only enhances

the efficiency of network operations but also contributes to cost savings, as network resources are

used more effectively and waste is minimized. Consequently, the integration of AI with network

slicing offers significant benefits for both operators and end-users, paving the way for a more

adaptive, resilient, and high-performing network infrastructure.

1.2. Contributions
In this thesis, we propose two novel frameworks for increasing the profit of MNOs through

overbooking the allocated capacity of network slices and to reduce the cost of a MNO of allocation

of resources in network slicing. Furthermore, we will explore the global roaming scene from the

end-user perspective.
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The key contributions of this doctoral thesis have resulted in two publications: one in ACM

International Conference on Mobile Systems, Applications, and Services (MobiSys 2022) and

another in ACM International Symposium on Theory, Algorithmic Foundations, and Protocol

Design for Mobile Networks and Mobile Computing (MobiHoc 2023), both recognized as tier-1

conferences according to CORE20231 and QUALIS20122 rankings. In addition, one paper has

been submitted to IEEE Transactions on Network and Service Management (TNSM) and another

to the IEEE Transactions on Network and Service Management (TNSM) special issue on Research

Advances Towards Effective and Sustainable Next Generation Networks.

Detailed contributions include:

A. Overbooking in NSaaS: Forecasting and Optimization for Enhanced Profitability:

In our first contribution, we design and implement an innovative, comprehensive solution for

overbooking-aware NSaaS. This approach addresses the joint challenges of slice admission

control and proactive resource allocation by integrating: (i) deep learning-based slice demand

forecasting and (ii) optimization-driven decision-making. The flexible, modular framework

is adaptable to any SLA specifications and OPEX cost models. We examine the benefits for

MNO across multiple aspects, including the flexibility of resource orchestration, the costs

associated with resource allocation to slices, and the operator’s over-provisioning strategies.

This work presents the first realistic evaluation of overbooking in NSaaS, revealing the true

advantages of this technology in practical applications. Our findings demonstrate that our

solution improves MNO profitability by 300% compared to traditional NSaaS management

methods and by over 20% compared to the latest slice overbooking strategies.

B. Anticipatory Capacity Allocation for Cost-Efficient Network Slice Management

Our second contribution presents a groundbreaking model for anticipatory capacity allocation

to network slices, which meticulously considers all operational costs associated with the

process. These costs encompass (i) unnecessary resource overprovisioning, which can

lead to inefficient use of resources and increased expenses, (ii) unmet service demands

that result in lost opportunities and customer dissatisfaction, (iii) the costs related to the

instantiation of resources, which include the setup and initialization expenses, and (iv) the

expenses incurred during resource reconfiguration, which may arise due to changing network

requirements and demand variability. To address these challenges, we introduce an approach

based on multi-timescale orchestration, enabling dynamic resource management across

different timescales. This model allows us to explore the balance between various cost and

performance trade-offs, providing a comprehensive solution for cost-efficient slice resource

orchestration. By integrating AI-based forecasting with traditional optimization methods,

our approach achieves precise and adaptable resource allocation, ensuring efficient use while

minimizing costs.
1https://portal.core.edu.au/conf-ranks/
2http://www.conferenceranks.com/

https://portal.core.edu.au/conf-ranks/
http://www.conferenceranks.com/
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C. Global Mobile Network Aggregators: Taxonomy, Network Analysis, Performance and
Optimization

In this final contribution, we explore the importance of the roaming feature within

globally operating Mobile Network Aggregators (MNAs), explaining how it is applied

across various MNA models, allowing a better understanding of how MNAs impact on

network slicing. We investigate the end-user performance associated with various network

operator models, specifically, Mobile Network Operators (MNOs), Mobile Virtual Network

Operators (MVNOs) and Mobile Network Aggregators (MNAs) under roaming conditions.

This analysis focuses on the challenges MNAs encounter in managing network complexity to

maintain QoE for services such as web service and video streaming NSaaS, examining key

factors indicators (e.g., DNS resolution delay and traceroute) and discuss the implications of

various solutions for implementing international roaming. In the final part, we leverage the

5G Control and User Plane Separation (CUPS) concept to implement a realistic approach for

global cellular operations, addressing some limitations of current roaming solutions. CUPS

is crucial in 5G networks, allowing the separation of the packet core into a control plane

that remains centralized (e.g., in the "home" country) while the user plane moves closer to

the supported application (e.g., in the visited country of the end-user). We demonstrate this

through a pilot implementation of a Regional Breakout (RBO) solution using open-source

software, deployed on AWS infrastructure. Our results show the performance benefits of

this roaming solution, highlighting its potential to enhance global cellular operations.

1.3. Outline of the Thesis

The remainder of this thesis is structured as follows: Chapter 2 provides the background and

foundational concepts relevant to the research, establishing the context for the proposed solutions.

Chapters 3 through 5 focus on the technical aspects and introduce the actual contributions made.

Chapter 6 concludes the thesis and offers perspectives for future work. An overview of each

chapter is presented below.

Chapter 2 establishes the foundation of the thesis by presenting the essential background and

context necessary for understanding the subsequent research and proposed solutions. It begins by

examining the integration of AI and ML in mobile network management, focusing on optimizing

resource allocation and enhancing service efficiency for the increasing complexity of 5G and IoT

demands. This section covers the AI/ML lifecycle, detailing stages such as data preparation, feature

extraction, and model development with an emphasis on AI-driven learning for network slice

traffic forecasting, comparing AI methods like Convolutional Neural Networks (CNN), Recurrent

Neural Networks (RNN), and Long Short Term Memory Networks (LSTM) for their ability

to handle the spatiotemporal dependencies inherent in mobile traffic. Additionally, the section

provides a taxonomy of mobile network operators (MNOs, MVNOs, MNAs) and analyzes roaming

performance within global network aggregators. Key research gaps are identified, including
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overbooking mechanisms, real-world tenant demands, cost-oriented orchestration, and the end-user

experience in QoE evaluations, especially in international scenarios.

Chapter 3 presents a practical overbooking-aware Network Slicing as a Service solution,

kaNSaaS, which demonstrates the feasibility of implementing overbooking for network slices in a

real-world scenario by leveraging AI models and optimization techniques. This approach results

in a fourfold increase in the net profit of an MNO. The chapter begins with an introduction to

the problem, highlighting the advantages of network slicing, cloud-native NSaaS management,

and the concept of network slice overbooking itself. The proposed kaNSaaS framework is then

introduced as a two-timescale decision-making model consisting of long-term admission control

and short-term resource allocation for network slices. The chapter concludes with a comprehensive

experimental evaluation of the framework and a detailed presentation of the results.

Chapter 4 presents AZTEC+, a multiscale time orchestration framework designed to minimize

the overall operational costs associated with network slicing. The chapter begins by discussing the

significance of zero-touch resource allocation, as well as the importance of resource instantiation

and reconfiguration. It then introduces the orchestration model and its inherent trade-offs, followed

by a detailed explanation of the AZTEC+ framework. AZTEC+ is capable of identifying

the optimal interval for resource allocation that minimizes the total cost of SLA violations,

overprovisioning, resource allocation, and resource instantiation by utilizing deep neural networks

and optimization algorithms. It achieves this by dividing the total network capacity into two

segments: dedicated capacity for each slice and shared capacity among all slices. Through

multiscale time orchestration, AZTEC+ efficiently allocates the necessary resources for each slice,

thereby minimizing operational costs. The chapter concludes with a comprehensive evaluation of

the results, comparing AZTEC+ against various benchmarks.

Chapter 5 explores how new operator models influence the performance of various services

supported by distinct network slices. Specifically, it delves into the performance and user

experience impact of different MNA as they operate under roaming conditions in Spain and

the USA. The chapter begins by introducing the landscape and evolution of Network Operators.

It then provides a comprehensive taxonomy of MNO, MVNO, and MNA, along with an

overview of roaming fundamentals. Following this, the chapter details the experimental setup

designed to conduct a series of tests aimed at understanding the roaming operations of MNA

and characterizing their performance. To achieve this, we subscribed to several MNA in both

the US and Spain and analyzed key NSaaS such as web and video services, characterizing key

factors such as traceroute and DNS resolution delay. It follows by comparing the performance

of MNA with that of local MNO in both Spain and the USA. In the final part, we apply the 5G

Control and User Plane Separation (CUPS) concept to create a practical solution for global cellular

operations, overcoming some limitations of current roaming systems. We showcase this through a

pilot implementation of a RBO solution using open-source software on AWS infrastructure. The

results demonstrate the performance improvements of this approach, indicating its potential to

enhance global cellular operations.



10 Introduction

Chapter 6 summarizes the key findings and conclusions of the thesis, providing a comprehensive

overview of the research outcomes. It then outlines potential directions for immediate future

research, followed by a broader vision of the research field over the coming decade.



2 Background

In the rapidly advancing mobile network landscape, MNO are increasingly relying on AI and

ML to optimize network management and resource allocation, especially as network demands

multiply with the integration of 5G and IoT. To manage this complexity, AI and ML have become

indispensable tools in network orchestration and resource management, playing a pivotal role in

optimizing network slicing and ensuring efficient service delivery.

This background section explores the lifecycle of AI and ML in network management, the

role of AI in network slicing and examine the challenges faced by MNO and MNA in ensuring

seamless connectivity and quality of service for a diverse range of applications. By identifying the

gaps and limitations in current solutions, this section lays the foundation for the contributions and

innovative frameworks proposed in the subsequent chapters of this thesis.

2.1. The Lifecycle of AI/ML in Network Management

Integrating AI and ML into network management represents a transformative shift in how

modern networks are monitored, optimized, and secured. As illustrated in 2.1, The lifecycle of

AI/MLL in network management encompasses a series of stages that include data preparation,

development, and operation phases [6]. This section overviews each phase, highlighting key

processes, tools, and best practices that facilitate successful AI/ML integration in network

operations, ensuring robust, adaptive, and future-ready network infrastructure.

2.1.1. Data Preparation

Data quality sets the upper limits for the performance of any AI/ML-based product, driving

the recent shift toward data-centric AI approaches [24]. However, high-quality datasets are often

scarce in real-world network environments due to their inherent complexities. On average, ensuring

data quality consumes around 60% of the time in AI/ML projects [25]. Therefore, it’s essential to

focus on data preparation, particularly on data acquisition and feature extraction, to provide ML

algorithms with reliable, high-quality input.

11
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Figure 2.1: ML Lifecycle in production settings. Adapted from [6].

Data acquisition. Typically, data sources fall into three categories: (i) live networks, (ii)

controlled environments, (iii) curated public datasets [6] and synthetic data (iv). When collecting

data directly from live networks, various methods can be employed, though they often entail

significant operational costs, requiring careful trade-offs [26]. For instance, in high-speed networks,

sampling is usually preferred over per-packet collection to minimize disruption to the data path.

Additionally, collecting data in real-world conditions can introduce challenges like packet drops,

sampling biases, or schema changes, which may result in data irregularities or outliers. Labeling

data is a particularly labor-intensive process, requiring extensive human input that doesn’t scale

well with large data volumes [27].

While advanced techniques like weak supervision, semi-supervision, transfer learning, and

active learning aim to address data scarcity, they still rely on initial labeled datasets or human

intervention, limiting scalability and effectiveness in managing complex datasets. In controlled

environments and public datasets (cases ii and iii), the data often originates outside the target

networks, which can cause statistical misalignments with the deployment environment, leading to

issues like data drift. Rigorous testing is therefore essential to identify potential biases or anomalies

and ensure that the model performs reliably when deployed.

Synthetic data, as an emerging approach, adds another powerful tool for addressing data

limitations. Unlike traditional methods, synthetic data is generated programmatically, simulating

conditions within a target environment to create realistic data samples. This approach enables

large-scale data creation without the need for continuous access to live network conditions or

extensive labeling efforts, significantly reducing costs and privacy concerns. Synthetic data also

allows researchers to engineer specific scenarios or edge cases that may be rare or hard to capture

in live environments, improving model robustness and generalizability. However, the fidelity

of synthetic data must be carefully evaluated; any statistical misalignments between synthetic

and real-world data could lead to issues such as bias or overfitting if the synthetic data does not
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sufficiently represent deployment conditions. Consequently, synthetic data serves as a complement

to real-world and controlled data, providing scalable and flexible data sources while underscoring

the need for careful validation to ensure effective model performance.

Feature extraction. To make raw network data usable for AI/ML algorithms, it must first be

transformed into relevant features. This process, however, presents several challenges. Different

feature sets impact both system costs and model performance, warranting careful selection and

refinement. Many ML-based network solutions rely on empirically defined, custom features, which

can be difficult to scale or replicate in real-world deployments. Additionally, feature selection

methods may require frequent adjustments as networks evolve. Network conditions and traffic

patterns continually shift in live environments, potentially rendering existing features outdated

and necessitating the development of new ones [28]. Thus, feature engineering must be dynamic,

adapting to ongoing changes to maintain model accuracy and efficiency over time.

2.1.2. Development

Model development in network management is an iterative process, where each cycle involves

assessing the current model’s performance against previous versions to determine its readiness

for live deployment [29]. This process includes two essential steps: algorithm design and model

training and validation. Both are critical in shaping a solution’s ability to meet the specific

requirements of the target network. Algorithm design focuses on selecting or creating a model

architecture that can effectively address the network’s unique challenges. Model training and

validation then fine-tune this design, ensuring that the model performs well on historical data and

is robust enough for dynamic, real-world network conditions.

ML in network management serves three main objectives: (i) utilizing existing knowledge

effectively, (ii) uncovering structured insights from unknown data, and (iii) achieving

specific goals through learned behaviors. These objectives correspond to three primary

ML approaches—Supervised Learning, Unsupervised Learning, and Reinforcement Learning

(RL)—with hybrid methods, such as semi-supervised or self-supervised learning, bridging gaps

between them. In this section, we will focus solely on Supervised Learning, as it is the approach

we will use for traffic forecasting within network slices—a task best addressed for regression taks.

Supervised Learning leverages labeled data to train models that can make accurate predictions

based on historical trends. In network slice traffic forecasting, regression models allow us to predict

traffic demand across different slices by analyzing historical usage patterns and identifying trends

specific to each slice. This enables proactive resource management, optimizing slice performance

and reliability based on anticipated traffic patterns across the network. In the context of model

training and validation, considerations such as inference efficiency, generalizability, and safety are

just as important as accuracy [6].



14 Background

2.1.3. Operations

Once our AI model is trained and validated, it is ready for operational deployment. In

this phase, the model receives input in the form of network data, encompassing both real-

time and historical metrics such as traffic patterns, latency measurements, and signal strength.

Operating in inference mode, the model applies its learned insights to optimize specific aspects of

mobile network management, including traffic forecasting, slice configuration, resource allocation,

and anomaly detection.

Our primary focus will be on traffic forecasting within network slices. By predicting

traffic demand across different network slices, the model enables proactive adjustments, helping

operators manage capacity more effectively and maintain consistent QoS across diverse network

environments. This targeted approach to traffic forecasting of network slices supports efficient,

adaptable, and resilient mobile network operations.

2.2. Traffic Forecasting of Network Slices

Knowing the required resources for each slice in advance over a specified time interval is

advantageous, as it allows for pre-allocation of resources and helps avoid SLA violations [30].

Traditionally, non-ML approaches like ARIMA [31] and Holt-Winters [32] have been popular for

temporal forecasting; however, they lack the capability to capture complex spatiotemporal patterns

in mobile traffic influenced by user mobility [33]. Consequently, various ML-based, particularly

Deep Learning (DL)-based, forecasting techniques have gained traction in recent years, as they

effectively capture spatiotemporal dependencies in mobile traffic and enable automated, intelligent

resource provisioning for network slicing [34]. Empirical studies further highlight the superiority

of DL algorithms, such as LSTM, over traditional models like ARIMA and Holt-Winters [35, 36].

Phyu et al. [9] provide a comprehensive survey on how deep learning has been employed to

enhance the forecasting of network slicing. They divide the contributions on traffic forecasting in

network slicing in two categories: (i) CNN-based forecasting and (ii) RNN-based forecasting:

CNN-based forecasting. CNN and 2DCNN have notable limitations in capturing temporal

features, as they are primarily designed for image-processing tasks [37]. To address this, the

authors in [38] proposed Deepcog, a cost-aware network capacity forecasting framework based on

3DCNN. In their approach, historical antenna-level data traffic from each base station serves as

input to train the model. The cost to the operator is linked to both resource over-provisioning and

SLA violations. Deepcog forecasts network demand by analyzing spatiotemporal features, which

enables more efficient resource pre-allocation for individual mobile services. A unique cost-aware

loss function was also designed to optimize the ML framework, reducing the operator’s overall

expenses. When tested, Deepcog outperformed baseline methods, including traditional non-ML

solutions, LSTM, and autoencoder models, particularly in forecasting at a five-minute interval

with a time window extending up to eight hours. The results show that Deepcog reduces resource
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overprovisioning, SLA violations, and overall monetary costs. Notably, a longer forecasting

time window tends to increase SLA violations and resource overprovisioning. For example, a

five-minute prediction window results in approximately 3% SLA violations and 15% resource

overprovisioning for a given slice, whereas an eight-hour prediction window raises these values

to 10% and 30%, respectively. Similarly, the study in [39] 3DCNN for forecasting to reduce

resource overprovisioning and proactively allocate resources to meet anticipated slice demand.

Their findings further validate that ML-based forecasting methods can lower monetary costs by

over 50% across all tested scenarios compared to traditional non-ML forecasting approaches.

RNN-based forecasting. Many studies employ LSTM or its variants, such as ConvLSTM,

as forecasting techniques for resource management and automated network slicing. Despite its

popularity and effectiveness in capturing spatiotemporal and long-term dependencies, LSTM is

computationally intensive. To address this, some research leverages lower-complexity methods like

GRU or simple two- or three-layer ANN architectures as alternative solutions for network slicing.

LSTM’s strength in learning complex dependencies makes it a promising tool for forecasting in

network slicing applications. For instance, [40] uses LSTM within resource management processes

to predict slice bandwidth demand over a time window of 200 seconds, with 20-second intervals.

Experimental evaluations demonstrate that this LSTM-based algorithm enables more users to

access the network efficiently.

In [41], LSTM, CNN, and DNN models are applied to traffic forecasting for resource

management within a vehicular-specific slice in an SDN-enabled 5G network. Simulation results

indicate that LSTM achieves the highest average forecasting accuracy at 99.36%, compared

to DNN and CNN, which reach 92.58% and 95%, respectively. Similarly, [42] demonstrates

the effectiveness of LSTM for End-to-end (E2E) slice traffic forecasting with a five-second

time interval and a 300-second time window, achieving accuracy three times higher than linear

regression. Using LSTM for resource reservation, [43] proposes an efficient strategy from the

SP perspective, where MVNO data such as traffic loads and base station capacity is not disclosed

to the SP. This LSTM-based model outperforms the baseline ARIMA model in terms of Mean

Squared Error (MSE), as well as in reducing over-reservations and under-reservations, with a

forecasting time interval of 10 minutes and a time window of 744 hours.

Beyond slice traffic forecasting, LSTM has been applied to other tasks within the sliced cellular

architecture. For instance, [44] leverages LSTM to predict transmission channel conditions with a

24-hour time window and one-hour intervals, enabling efficient slice creation by service providers.

Here, the LSTM output feeds into a DNN to assess the network’s capacity to accommodate new

slice requests, demonstrating performance improvements over traditional analytical approaches.

Drawing from this extensive literature, it is clear that LSTM and its variants are widely applied

for forecasting network slice traffic and resource utilization. However, LSTM’s computational

cost is relatively high compared to other methods like GRU, which can achieve similar forecasting

results being less computianotally expensive [45]. the authors of [46] propose a streamlined GRU

model for forecasting resource usage per network slice. Their model simplifies the GRU structure
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by removing the reset gate and replacing the standard tanh activation function in the update gate

with a softplus function, which enhances the speed of forecasting hourly resource usage over a

120-hour time window. In this approach, the authors also integrate SLA constraints and minimize

the MSE loss function within their resource management framework for network slicing. Their

experimental results demonstrate that this lightweight GRU model achieves significantly faster

computation times than LSTM, benefiting from its simplified architecture without sacrificing

forecasting performance.

While DL-based traffic forecasting offers significant benefits, it also has limitations. One major

challenge is the reliance on high-quality, real-time data. Traffic forecasting models require large

amounts of data to train effectively, and the accuracy of their predictions depends on the availability

of up-to-date traffic information. In cases where data is missing or inaccurate, the performance of

these models can degrade, leading to suboptimal resource allocation.

To address the challenges associated with resource limitations, overbooking has emerged as a

practical approach in network slicing. Overbooking allows service providers to allocate resources to

multiple network slices based on statistical demand patterns rather than peak demand, capitalizing

on the likelihood that not all slices will require their maximum resources simultaneously. This

approach improves overall resource utilization by accommodating occasional traffic spikes without

dedicating excessive resources to each slice individually. When paired with traffic forecasting,

overbooking can enable a more agile and cost-effective resource management strategy, balancing

the risk of SLA violations against the gains in efficiency.

The authors of [47] explore the concept of overbooking network slices end-to-end,

demonstrating how overbooking can improve resource utilization in 5G networks. Their approach

leverages dynamic resource allocation to ensure that resources are distributed across slices based

on real-time demand, allowing operators to overbook resources without risking congestion. By

overbooking resources, operators can maximize efficiency and reduce operational costs while

maintaining the QoS for each slice. In [48], the authors build on this concept by proposing a

yield-driven orchestration approach for overbooking network slices. Their approach focuses on

dynamically reallocating resources based on real-time demand, allowing operators to adjust the

resources allocated to each slice based on current traffic conditions. Operators can overbook

resources while minimizing the risk of service degradation, ensuring critical services receive

necessary resources during peak demand periods.

However, while overbooking offers significant benefits, it also carries risks. The primary risk

is the potential for congestion and service degradation if demand exceeds available resources. In

scenarios where traffic surges unexpectedly, overbooked resources may not be sufficient to meet

demand, leading to degraded performance for some services. To mitigate this risk, operators must

carefully manage the balance between overbooking and resource availability, ensuring that critical

services receive priority during periods of high demand.
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Additionally, overbooking requires sophisticated monitoring and control capabilities to ensure

that resources are allocated efficiently and minimize congestion risk. This adds another layer of

complexity to network management, particularly in large-scale 5G networks with diverse services

and traffic patterns. Another layer of complexity is added by new operator models, such as MNA,

introducing specific challenges to network slicing by further complicating resource management

and SLA enforcement, as described in the following section.

2.3. Mobile Network Aggregators and Roaming

Mobile network aggregators combine resources from multiple network operators to offer

seamless, flexible services to end-users across different networks and regions. This model increases

the demand for sophisticated slice orchestration, as it requires managing resources and performance

across diverse networks with potentially conflicting SLAs and varying quality standards while

preserving QoE for users across various services, such as web browsing and video streaming

delivered via NSaaS. Additionally, MNAs must address interoperability issues, as each operator

may utilize different technologies, configurations, and management frameworks. This diversity

heightens the complexity of coordinating slices, ensuring uniform service quality, and preventing

resource contention. Moreover, with multiple operators involved, data privacy, security, and

compliance become critical concerns, as sensitive user data flows across network boundaries. In

this section, we will describe a comprehensive taxonomy of the state-of-the-art mobile operators

and the contributions related with roaming performance.

2.3.1. Taxonomy: MNO, MVNO and MNA

There are several types of mobile operators with different operation models available in the

market today; we capture these configurations in Figure 2.2.

An MNO1 is an entity that owns (or has the exploitation rights) of a cellular network (i.e., base

stations, network core, spectrum, etc). This was the initial operation model deployed to provide

mobile communication services. Examples of MNOs include Vodafone, Orange, O2, Movistar,

AT&T, NTT to name a few. Later on, the MVNO operation model emerged [49]. Specifically, the

MVNO is an entity that offers mobile network services to end-users, but does not own nor operate

a full cellular network. The MVNO is defined by its lack of ownership of radio spectrum resources.

In order to operate, an MVNO needs to have agreements in place to access the network of a

base MNO. The implementation of the MVNO varies, and thus there are many different types on

MVNOs. The type of MVNO is determined by how “thick” or “thin” a technological layer the

MVNO adds over its access to its base MNO’s network [50–52].

1This terminology distinguishes mobile operators as a general concept and Mobile Network Operators (MNOs) that
is a specific type of mobile operators (i.e., mobile operators = set(MNOs, MVNOs, MNAs)).



18 Background

@HOME Traditional 
MNO

Light
MVNO

Full
MVNO

Light 
MNA

Full
MNA

Thick
MNA

Sales MNO Light
MVNO

Full
MVNO

Light 
MNA

Full
MNA MNA

Core MNO Base
MNO

Full
MVNO

Base
MNO

Full
MNA

MNA

Base 
MNO

Radio MNO Base 
MNO

Base
MNO

Base
MNO

Base
MNO

Base
MNO

Figure 2.2: Types of MNOs.

A branded reseller (also known as a "skinny" MVNO) completely relies on the base MNO

facilities to operate. They do not own any network elements, but they may operate their own

commercial department.

A light MVNO is a service provider that does not run its own core network, though it has its

own customer support, marketing, sales and distribution operations, and may have the ability to set

its tariffs independently from the retail prices of the base MNO. One such example is giffgaff in

the UK, which uses O2 UK as a base MNO.

A "thick" MVNO partially manages its own core network deployment with its own

infrastructure, which allows the MVNO more control; however, it still depends on a base MNO

for some core network functions. These MVNOs have a heavier focus on branding, customer-

ownership, and differentiation through added services like data and SIM applications.

A full MVNO has a core network implementation operating essentially the same technology

as an MNO, only missing their own radio network. They thus run their own core network, and

rely on a base MNO who can offer access to radio resources. One example is Sky Mobile, which

operates as a full MVNO in the UK, using O2 UK as a base operator.

Much more recently, we have witnessed the emergence of a new type of MVNO, namely the

MNA [53]. While “traditional” MVNOs have agreements with a single base MNO, an MNA is an

MVNO that exploits more than one base MNO, either in one single economy, or across different

economies. Examples of MNAs include Google Fi, Truphone (now re-branded to 1Global), Twilio

or Lycamobile. Aggregating multiple base MNOs allows the MNA’s customers to dynamically

change the base MNO to which they attach. This change of base MNOs depends on different

factors, including policy, coverage or performance.

In this thesis, we extend the currently used MVNO-specific taxonomy [50–52] to include the

MNAs. We further classify them into full/thick/light MNAs, depending on whether they operate

their own complete/partial core network or not. We also differentiate the MNAs based on the

geographic coverage of the multiple base MNOs they aggregate. In the general case, the base

MNOs aggregated can cover the same or different geographic regions. A particular case is when
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the different base MNOs aggregated provide coverage in different geographic regions that do not

overlap (notably, different economies). If this is the case, we call this specific type of MNA a

multi-country MVNO. These multi-country MVNOs usually have commercial offers in each of

the different economies where they operate.

We acknowledge that, as in most taxonomies, there are corner cases that we cannot neatly

classify into one of the categories. In our case, there is the case where a full MVNO has a

commercial agreements with one or several IPX Hub Breakout Provider (IPX-P) [54], and does

not depend on a specific base MNO (e.g., the MVNO might use global IMSI ranges). In this case,

with a single agreement, the MVNO has “direct” access to several base MNOs located in different

economies, depending on the footprint of the IPX-P. This configuration lies somewhere between

the full MNA and the full MVNO, since it has a single agreement but connects to multiple base

MNOs. However, we classify this in the full MVNO category, since it is closer to the case where

the MVNO has an agreement with a single entity and leverages its roaming agreements.

We highlight the lack of knowledge in our community around how these different models of

MNAs satisfy the need for global coverage for their end-users. We further give background on

roaming, which is one of the fundamental functions mobile operators ensure to their end-users,

and is specifically relevant for these operators that aim for global uninterrupted service.

Network performance in roaming scenarios has become increasingly critical as mobile networks

evolve to support diverse applications, from traditional mobile communications to IoT, robotics,

and high-speed vehicular networks that will need services globally. Recent studies highlight key

advancements in network architectures, signaling protocols, and optimization techniques essential

for enabling seamless connectivity in high-mobility and cross-border contexts

2.3.2. Network Performance in Roaming

The transition from 3G to 4G architectures has brought significant improvements in throughput

and latency, directly impacting roaming performance. The authors of [55] extensively evaluated

these performance metrics and highlighted the performance gains from 3G to 4G, demonstrating the

potential for enhanced roaming services with the continued evolution of mobile architectures. Their

findings indicate that 4G technology’s increased data rates and reduced latency provide a strong

foundation for roaming advancements as networks prepare for 5G and beyond. Complementing

these findings, in [56], the authors explored the potential of regional breakouts within the IPX

framework for global roaming, showing that routing data through regional breakouts can reduce

latency by minimizing the data’s travel distance across networks. These improvements in roaming

latency provide substantial benefits for user experience in international scenarios and serve as

essential features as networks continue to expand globally.

The unique signaling demands of IoT devices add another layer of complexity to roaming

performance, as these devices often require frequent, small data transmissions that place heavy

loads on both home and visited networks. A study in [57] investigated the effects of signaling

traffic on roaming networks, particularly focusing on IoT applications, and emphasized the need
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for optimized signaling protocols to prevent congestion caused by frequent IoT signaling. The

challenges of supporting IoT devices in roaming contexts are further highlighted by [17], who

explore the differences between traditional mobile and IoT devices. They note that IoT devices,

unlike conventional mobile devices, generate smaller but more frequent data packets, necessitating

specialized roaming strategies to manage this distinct traffic pattern effectively. Together, these

studies indicate that while traditional roaming protocols efficiently support mobile phones, IoT

applications require tailored protocols and infrastructure to achieve similar levels of performance.

QoE in roaming contexts has been a focal point of research, especially in regions like Europe,

where cross-border connectivity has become more prevalent with initiatives like “Roam Like

Home.” In [58], the authors conducted a detailed analysis of European roaming configurations,

revealing that the commonly used home-routed roaming approach can add over 60 milliseconds

of latency, significantly impacting QoE. They find that this additional latency degrades user

experience, particularly in intercontinental cases where latency-sensitive applications, such as

browsing and streaming, suffer from increased load times. The authors of [50] build on this work

by comparing the roaming performance of MNO and MVNO. Their study finds notable differences

in Round-Trip Time (RTT) and routing efficiency, with MNOs generally providing more direct

paths and reduced latency compared to MVNOs. These distinctions are crucial for QoE, as they

highlight the influence of infrastructure and operator type on roaming performance.

In high-mobility and industrial applications, where even brief interruptions can disrupt

operations, roaming demands new approaches to maintain consistent performance. In [59], the

authors explored Time-Sensitive Networking (TSN) redundancy within Wi-Fi 6 and 5G networks

to ensure zero-delay connectivity for mobile robots. Their approach leverages IEEE 802.1CB TSN

redundancy to route traffic across multiple channels, achieving seamless, delay-free handovers

even during rapid mobility. Such innovations are particularly valuable in factory environments

and industrial applications, where continuous connectivity is essential to prevent operational

disruptions. This focus on high mobility is further reflected in the realm of 5G with Mobility

Robustness Optimization (MRO) algorithms. The study in [60] examined various MRO algorithms

to support the frequent handovers required in dense urban 5G networks. They found that the

Distance algorithm was the most effective in reducing handover failures and optimizing signal

quality. These findings confirm MRO’s role as a Self-Optimizing Network (SON) function in 5G,

facilitating uninterrupted connectivity in high-density, high-mobility environments.

2.4. Research Gaps and Limitations

The landscape of network slicing research, despite its rapid evolution, is still marked by

significant gaps that hinder the practical applicability of proposed solutions. These gaps, which we

specifically address in this thesis, stem from the following limitations observed in prior studies:

reliance on synthetic data, inadequate treatment of overbooking mechanisms, limited evaluation

of real-world tenant demands, and a narrow focus on aggregate traffic rather than service-level
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performance. Additionally, the orchestration of network resources, a core challenge in NSaaS,

has often been treated in a simplified manner, without considering the full economic impact of

reconfiguration and overprovisioning decisions. Finally, the end-user perspective, particularly

in terms of QoE across different MNAs, has been largely overlooked in the literature, especially

when evaluating performance under international roaming conditions.

2.4.1. Challenges in Hybrid AI and Classical Optimization Models

In the field of network slicing, integrating AI and classical optimization techniques, (e.g.

Mixed-Integer Linear Programming (MILP), Golden-Section Search algorithm, BOBYQA, among

others), presents a promising yet underexplored approach for enhancing forecasting, admission

control, and resource allocation. Despite a few studies combining AI and classical optimization

techniques, a unified framework that comprehensively addresses all three aspects remains largely

absent in current literature, revealing a significant research gap. Typically, the studies that try to

use hybrid models solely focus on isolated aspects of network slicing. For instance, [61] developed

a framework for admission control in 5G networks using a Deep Reinforcement Learning (DRL)

model alongside ILP-based resource allocation algorithms. This study demonstrated enhanced

admission control and network resource management capabilities but did not include mechanisms

for forecasting slice demand, leaving an open area for research. Additionally, [62] proposed

a hybrid solution combining DRL with MILP-based heuristics for network slice placement,

enhancing resource utilization. However, while effective for slice placement, this approach

did not include forecasting capabilities, which are critical for proactive resource allocation

in dynamic networks.

While some studies have explored the combination of AI and classical optimization models

for specific tasks like admission control and resource allocation, there remains a significant gap

in developing a holistic model that simultaneously addresses forecasting, admission control, and

resource allocation for network slicing. This research addresses this challenge in Chapters 3 and 4,

where we propose hybrid models incorporating deep learning for forecasting alongside classical

optimization techniques for admission control and resource allocation.

2.4.2. Comprehensive Cost-Oriented Orchestration Strategies

Another key gap we address relates to the orchestration of resources in NSaaS. Many existing

solutions in the literature are designed to minimize overprovisioning or prevent unmet service

demands, but they often fail to account for the economic costs associated with continuous resource

instantiation and reconfiguration. While cost-aware orchestration solutions do exist, they tend

to focus narrowly on a single dimension, such as limiting overprovisioning costs or reducing

resource waste. For instance, state-of-the-art capacity forecasting models, like the one proposed by

Bega et al. [63], dynamically adjust resources at every re-orchestration opportunity. While this

approach minimizes overprovisioning and unmet demands, it also incurs significant costs due to
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the constant reconfiguration of resources. We tackle this in Chapter 4 proposing AZTEC+, based

on multi-timescale orchestration, which addresses this gap by offering a holistic, cost-oriented

approach that balances competing economic considerations. We introduce a novel orchestration

strategy that operates at two timescales. The long-timescale orchestrator allocates a fixed dedicated

capacity to each network slice, which remains constant over an extended period. This reduces

the frequency of resource instantiation and, in turn, lowers associated costs. Additionally, we

allocate shared capacity that can be dynamically reallocated at shorter timescales, allowing

for flexibility in response to short-term demand fluctuations. This dual approach mitigates the

economic burden of both overprovisioning and resource reconfiguration, resulting in a more

cost-effective orchestration solution.

Through this multi-timescale orchestration model, we explore trade-offs between

overprovisioning and reconfiguration costs that have been largely neglected in prior work. For

the first time, we empower network operators with a comprehensive solution for managing

NSaaS resources that considers the full spectrum of operating costs, including the hidden

costs of excessive reconfiguration.

2.4.3. End-User QoE Across Global MNAs and Roaming Scenarios

Finally, our work also addresses a gap in the literature concerning the evaluation of QoE

from the end-user perspective, particularly in the context of MNAs operating globally. Most

previous studies have focused on network-level performance metrics such as throughput, latency,

and resource utilization, without adequately considering the impact on user-perceived service

quality. Furthermore, evaluations of MNA performance, especially under international roaming

conditions, are extremely limited. Measuring performance in these contexts requires cooperation

across multiple network operators and the ability to gather data from diverse international vantage

points, making it a logistically complex endeavor.

In Chapter 5, we address this gap by providing a comprehensive analysis of MNA performance

across multiple international contexts, including both Europe and the USA. This broader scope

allows us to capture performance differences across MNAs operating under both roaming and

domestic conditions, offering the first global view of MNA QoE. Our findings reveal important

variations in performance that were previously unknown, particularly in how MNAs handle

international traffic compared to domestic traffic. By focusing on the end-user perspective, we

provide insights that are directly relevant to service providers seeking to improve user satisfaction

in increasingly globalized mobile networks.

2.4.4. Dependence on Synthetic Data and Limited Real-World Evaluation

A significant portion of the network slicing literature relies on synthetic data to evaluate

slicing algorithms and NSaaS management strategies. While synthetic data can be useful in

controlled experimental settings, it fails to capture the complexity and variability of real-world
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tenant demands. This undermines the reliability of the conclusions drawn from such studies. For

instance, in existing works like Hurtado et al. [64], the data used to validate slicing approaches is

artificially generated, which limits the generalizability of the findings to real-world networks.

Our work, described in Chapter 3-5, departs from this approach by using large-scale, real-world

measurements of tenant demands. These measurements are derived from actual mobile traffic,

offering a much more representative view of network performance under realistic conditions. The

studies that do incorporate real-world data tend to focus on aggregate traffic across services, failing

to capture the granular behavior of individual tenants and their specific demands [65–67]. Such

aggregated traffic may not fully reflect the unique service-level requirements that are critical to

accurate overbooking decisions.

In summary, this work addresses several critical gaps in the literature on network slicing and

NSaaS. We offer a unique contribution by evaluating overbooking strategies using real-world traffic

measurements, providing a more dependable basis for future research and practical application.

Our multi-timescale orchestration model introduces a comprehensive, cost-aware solution that

balances overprovisioning and reconfiguration costs in a novel way. Finally, we contribute to the

underexplored domain of end-user QoE by evaluating global MNA performance within NSaaS

context across both domestic and roaming scenarios. These advancements not only fill key gaps in

the current body of research but also provide actionable insights for network operators seeking to

optimize both the efficiency and the user experience of their network slicing solutions.
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Overbooking in NSaaS:

Forecasting and
Optimization for Enhanced

Profitability

As discussed in Chapter 1, Softwarization has marked the evolution of mobile network

infrastructures over the past decade, and MNO are today experimenting with proofs-of-concept

and early deployments of cloud-native network technologies, supported by major cloud service

providers [68, 69]. The dramatic increase in flexibility granted by production-grade cloud-native

mobile network architectures will finally open new and long-envisioned business opportunities

for MNOs. One of the most promising is network slicing, which abstracts a single physical

infrastructure into multiple logical instances, or slices [70]. Each network slice is dedicated to

specific traffic flows (e.g., the video streaming demand generated by mobile clients of a given

platform) and is configured so as to provide strong guarantees that the SLA for such traffic is met

(e.g., in terms of latency, throughput, or jitter).

Cloud-native NSaaS management. Cloud-native network architectures offer a natural support

to network slicing operations [71]: they allow assigning dedicated resources (e.g., spectrum,

transport capacity, compute or memory resources, depending on the target network domain) to each

slice [72], configuring dynamically the Virtual Network Functions (VNF) according to the SLA of

each slice [73], and monitoring the fulfillment of such SLA [74]. As a result, the cloudification of

networks implicitly paves the way to the realization of NSaaS models. Here, MNOs deliver slices

to vertical customers, i.e., Service Providers (SPs) who are able to configure their assigned slices

up so as to best run their applications [75]. The NSaaS model ultimately creates a new marketplace

that allows operators to maximize their revenue through an appropriate slice brokering [76].

Network slicing has drawn significant attention from the research community in the past years,

and studies have tackled many challenges in the practical implementation of this paradigm. Among

those, admission control and resource allocation are central tasks: a great portion of the potential

advantage that NSaaS can bring to MNOs depends on correct choices on whether to accept a slice,

and, if so, with what dedicated resources. As we discussed in detail in Chapter 2, prior works have

addressed both these problems, possibly in a joint fashion. Yet, the vast majority of the studies

in the literature overlooks an important degree of freedom for the operator, i.e., its flexibility in

25
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allocating resources that are not necessarily those specified by the SLA, as explained next.

Overbooking network slices. Cloud-native technologies allow the MNO to orchestrate

resources and VNFs at much faster timescales than those of NSaaS brokering. Thus, while the

network slice tenant requests resources for its peak consumption over long reservation periods, the

actual allocation and re-configuration of slice-dedicated resources can be performed at a finer time

granularity. In addition, the operator has in-depth visibility of the actual infrastructure utilization,

and can hence allocate resources based on the real resource occupancy generated by the service

demands, beyond the capacity requests issued by the vertical tenants. These technical advantages,

illustrated in Fig. 3.1a, open the door to large slice multiplexing gains, letting the MNO make a

more efficient use of its resources [30] and ultimately increasing its profit.

Specifically, reducing the amount of capacity needed to serve each slice can free up space for

accommodating more requests, as exemplified in Fig. 3.1b. In other words, the MNO can sell

more capacity than it has deployed, considering that vertical customers will not use all the capacity

they requested all the time. The strategy maps to overbooking, a well-known revenue management

approach used to maximize profit in scenarios where limited resources must be reserved based on

stochastic requests [77]. In the case of overbooking for NSaaS, errors in admitting excess slices

come at the cost of monetary fees for violating the SLA with one or multiple tenants during some

fraction of time, as also shown in Fig. 3.1b. Overbooking has been recently considered as a way

to increase NSaaS revenues for the MNO, with promising results [48, 78, 79]. Yet, as detailed in

Chapter. 2, prior studies are few, have technical limitations, and none has demonstrated practical

solutions with real-world traffic demands of vertical customers collected in actual operational

networks. The latter aspect is especially critical now that cloud-native networks are bringing slicing

closer to deployment, and there is a clear need to understand how overbooking would perform in

production systems. While we cannot disclose the latter due to confidentiality agreements, we

release1 the synthetic traffic together with our implementation of kaNSaaS, so as to foster the

reproducibility of our study and support further investigations.

Overall, our work contributes to advance the state of the art in NSaaS management, and sheds

light on the actual gains that overbooking can bring to the MNO in production settings.

3.1. System Model

We consider a dynamic resource allocation scenario where an MNO running the mobile

network infrastructure aims at maximizing the profit obtained from NSaaS. To this end, the MNO

needs to take decisions on admission control of slice requests and allocation of resources2 to

active slices. The problem can be instantiated at any target network location where slicing is

implemented, e.g., from individual Remote Units (RUs) where spectrum can be sliced, all the

1Code and data are available at https://github.com/nds-group/kansaas.
2We use the terms resources and capacity interchangeably in the following, as the amount of dedicated resources

directly determines the capacity that can be provisioned.

https://github.com/nds-group/kansaas
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Figure 3.1: Overbooking in NSaaS, with notation. (a) Real traffic generated by one mobile service,
requested slice capacity by the associated service provider (SP) at every slice brokering interval
TSLA, and actual capacity allocated by the Mobile Network Operator (MNO) thanks to a fast
orchestration at periodicity TRA and a fine-tuning of allocated resources closer to the actual service
demand. We highlight the resource savings with respect to a blind allocation of the exact capacity
requested by the SP, along with the remaining gain margin with respect to a perfect allocation
matching the actual traffic. (b) Example of how overbooking improves the MNO NSaaS operation
in a simple case with two slices. We show the real traffic and requested resources of the first
slice (solid brown lines) and those of both slices (solid black lines). As per plot (a), the MNO
can perform a faster and more accurate anticipatory allocation of resources to both slices (dotted
line). This leads to resource savings (blue areas) with respect to allocating all the SP requests
when those are below the capacity limit C

(l)
r . More importantly, it allows accepting both slices

even if their aggregated requests exceed the MNO available capacity (green areas). Overbooking
errors may however lead to SLA violations, when the actual demand of the accepted slices cannot
be served (red area).
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way to Core Network (CN) datacenters where compute and memory resources are reserved to run

slice-tailored VNFs. Let layer l denote the layer whose nodes serve, on average, the aggregated

traffic of l RUs; then for each node at layer l, we model the system as follows.

3.1.1. NSaaS Operation

The MNO serves a set of N Service Providers (SPs), which we denote by S ≜ {sn}n∈N ,

|S| = N , where we define N ≜ {1, . . . , N} for any natural number N . The MNO monitors the

demand generated by each SP within a short interval (e.g., per minute in Fig. 3.1a). We denote

the traffic generated by SP s at the monitoring interval k as ℓs[k] (see Fig. 3.1a). At any time, a

service provider can request a network slice associated to an SLA with the following parameters.

Tslice: time during which the slice must be active and the related SLA satisfied, e.g.,

the whole span of Fig. 3.1a.

TSLA: duration of an SLA block of an SP request, i.e., time interval during which a

constant capacity is requested by the SP.

ℓ̄
(P)
s (t): Requested capacity by an SP s for the t-th SLA block, e.g., the ordinates of

the 4 constant segments requested in Fig. 3.1a.

Msℓ̄
(P)
s (t): Price that the SP s is offering to pay for the t-th SLA block. We model

prices as linearly proportional to the capacity by a factor Ms (in $/bps), but other definitions

are possible.

The MNO decides whether to accept the slice requests,3 and what resources to allocate to them

if accepted. These decision are based on the request attributes above, as well as on the next

parameters.

Thor: time horizon for the overall system optimization, e.g., the multiple repetitions of

the span of Fig. 3.1a.

Tdec: time interval between admission decisions. The operation is batched, such that

the MNO considers all requests arrived over the last Tdec, decides which slices are accepted,

continued or dismissed, and estimates the resources that shall be dynamically reserved to

each slice for its duration.

TRA: duration of one Resource Allocation (RA) block, i.e., the interval during which

the capacity allocated by the MNO to a slice remains constant, which is typically bounded

by the technology available at the target network domain. We also define as nRA ≜ TSLA
TRA

the

number of RA blocks per SLA block, i.e., the amount of re-allocation opportunities for the

MNO while the requested capacity ℓ̄
(P)
s stays fixed. As an example, in Fig. 3.1a we have

TRA = 30 and TSLA = 120 minutes, yielding nRA = 4.
3We refer to the slice that serves the traffic of SP s as slice s, ∀s ∈ S.
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Figure 3.2: SLA function adopted for our experiments.

C
(l)
r : capacity available at the target node r of layer l, which sets the boundary to the

total traffic demand that can be served at any time instant, as shown in Fig. 3.1b.

ℓ
(O)
s (t, n): Capacity actually reserved by the MNO for slice s.

cOPEX: MNO’s OPEX (in $/bps) of reserving one unit of capacity to a slice during

a whole RA block, due, e.g., to the energy or monetary cost of running dedicated VNF

containers or CPU cores.

ρop: operational profit ratio between the revenue from the SP and the OPEX of reserved

resources, i.e., Ms/(nRAcOPEX).4

Based on the above, we define a hierarchical time indexing. The index t refers to the SLA block

index, and the notation (t, n) refers to the n-th RA block of the t-th SLA block; e.g., in Fig. 3.1a,

TRA is represented for the (3, 2) RA block. Moreover, we consider ℓs(t, n) ≜ maxk∈[TRA] ℓs[k] as

the real demand in the (t, n) RA block. To avoid cluttering notation, we focus hereinafter on a

given node r in layer l, and omit the dependence on r and l. Also, we let Tslice = TSLA = Tdec,

i.e., a slice has the same duration (Tslice) of an AC time slot of the MNO (Tdec), and the capacity

requested by SP s is constant for the whole duration of the slice (TSLA), typically in the order of

hours. In this way, a certain scenario can be succinctly referred to as E = {Thor, TSLA, TRA, C}.

3.1.2. SLA Function

The SLA defines the monetary compensation or penalty associated to an accepted slice. It is

modeled as a function that depends on the requested capacity (for which the SP pays a fee as set out

in Sec. 3.1.1) and the actual traffic served by the MNO. Specifically, at the n-th RA block of the t-th

SLA block, the MNO commits to serve slice s with a capacity ℓc
s(t, n) ≜ min(ℓs(t, n), ℓ̄

(P)
s (t)):

if the slice traffic is below the level requested in the SLA, the operator only needs to serve such

traffic and not the requested capacity in the SLA.

The actual served traffic is ℓeff
s (t, n) = min(ℓs(t, n), ℓ

(O)
s (t, n)), i.e., an over-allocation of

resources does not bring any benefit to the MNO.

The full monetary compensation set out by the SLA as per Sec. 3.1.1 is paid by the SP s to the

MNO when ℓeff
s (t, n) ≥ ℓc

s(t, n). If instead the served demand is below that the MNO committed

4nRA = TSLA/TRA transforms the cost per RA block into cost per SLA block.
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to accommodate, the SLA defines a reduction of the MNO’s revenues. We model the compensation

as a generic function SLAs(βs(t, n)), where

βs(t, n) ≜ min
(
1, ℓeff

s (t,n)
ℓc

s(t,n)

)
(3.1)

is the fraction of committed demand that is effectively served by the MNO, capped at 1 in the case

where MNO unnecessarily serves more traffic than committed.

While our definition of SLA above is general, and our solution can accommodate other

expressions, for the experiments carried out in this paper we leverage the SLA portrayed in Fig. 3.2.

The rationale is that the agreed compensation drops linearly as the MNO fails to deliver the

required capacity down to 80% of what it committed to. Below such a threshold, the MNO must

pay a monetary fee (i.e., a negative gain in the plot) to the SP, which grows up to the original

compensation when only 60% of the slice traffic is served.

3.1.3. MNO Profit

The MNO’s objective is to maximize the total net profit over the operating horizon Thor. The

profit is the result of the overall revenue obtained from the slice brokering minus the costs incurred

by the operator, i.e., SLA violations that may induce a penalty as discussed in Sec. 3.1.2 and

operating expenses derived from allocating the network resources. Formally:

Revenues correspond to the compensations from meeting SLAs with SPs, i.e.,

Msℓ̄
(P)
s (t) for t-th SLA block of duration TSLA, possibly decreased according to

SLAs(βs(t, n)).

SLA violation costs are incurred when accepted slices are poorly served. This cost

is embedded in the SLA definition when it takes values < 0, hence a single expression

Msℓ̄
(P)
s (t) · SLAs(βs(t, n)) captures both revenues and SLA violation costs.

OPEX costs are proportional to the capacity ℓ
(O)
s (t, n) actually reserved by the MNO,

by the cOPEX factor.

Profits, denoted by pE , combine the previous as follows

pE =
∑
t∈T

∑
s∈S

xs(t)
∑nRA

n=1

(
Msℓ̄

(P)
s (t)

nRA
SLAs(βs(t, n))− cOPEXℓ(O)

s (t, n)
)

(3.2)

In (3.2), the binary variable xs(t) ∈ {0, 1} is set to 1 if slice s is accepted in SLA block t. In

case the slice is admitted, the profit is the difference between the revenue (or SLA violation

cost) and the OPEX cost across all nRA RA blocks composing the SLA block. The total profit

is then computed over all slice requests S and through the whole temporal set of SLA blocks

T ≜ {t | t ∈ [Thor/TSLA]}.
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Figure 3.3: Overall architecture of kaNSaaS, with long-term and short-term prediction-enabled
AC and RA components.

3.2. The kaNSaaS Framework

In order to maximize the MNO profit in (3.2), we propose a novel solution for overbooking-

aware NSaaS, or kaNSaaS. Our approach addresses the joint problem of (i) Admission Control (AC),

i.e., deciding which slice requests to accept, and (ii) Resource Allocation (RA), i.e., determining

how many resources to allocate to each of the accepted slices. It is important to note that both

parts of the problem are inherently anticipatory in nature, but operate at different timescales. In

AC, the MNO must admit slices at the start of each SLA block so as to ensure that their demand is

accommodated during the future TSLA time interval. In RA, the MNO has to reserve resources at

the beginning of each RA block in a way to best serve the traffic through the following TRA interval.

The overall architecture of kaNSaaS is illustrated in Fig. 3.3. Our design abides by the

observations above, and hinges upon tailored forecasting models that support decision-making at

two different timescales, i.e., long-term SLA blocks and short-term RA blocks, as highlighted in

the figure and detailed next.

First, at every TSLA time slots, the MNO computes slice demand predictions that

inform a tentative resource allocation for the next TSLA time interval. In turn, this provisional

allocation is used to guide AC and decide which slices are accepted. Formally, the long-

timescale component sets the binary variables xs(t) ∈ {0, 1} that indicate whether a

service s is accepted at SLA block t.

Then, at each TRA time slot n within the SLA block t, the operator performs the actual

allocation of resources for the admitted slices for the next RA block, leveraging a more

accurate forecast that is limited to the shorter TRA interval. Formally, the short-timescale

component defines αs(t, n), i.e., the percentage of the (predicted) traffic capacity that is to

be reserved by the MNO to slice s.
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Clearly, AC actions at the longer timescale constrain and drive RA decisions at the shorter

timescale, as shown by the arrow connecting the long- and short-term operations in Fig. 3.3.

The design above lets kaNSaaS take advantage of traffic forecasting to spot gaps between the

capacity ℓ̄
(P)
s (t) requested by the SPs at each SLA block t and the future demand generated by the

slices at every RA block (t, n). Then, it uses suitable optimizers to maximize the MNO profit in

(3.2) from the identified gaps, via overbooking.

From a technical viewpoint, kaNSaaS combines apt machine learning and optimization tools

to implement each component. Specifically, we adopt data-driven approaches to implement the

prediction components at both short and long timescales, since DL models have been largely proven

to outperform statistical models in time series forecasting tasks [80]. The predicted demands

are then fed to dedicated optimizers that take rapid, effective decisions on AC and RA based on

explainable logic.

Next, we detail the structure and operation of the two components, focusing on the long-term

first and on the short-term after.

3.2.1. Long-term Admission Control

The AC operation takes place at the beginning of each SLA block, and aims at selecting slices

so as to maximize the MNO profit, through overbooking based on long-timescale forecasts. The

traffic prediction and decision-making parts are implemented as follows.

Traffic prediction. The MNO forecasts the expected traffic volume for each one of the

RA blocks belonging to the next SLA block. Consequently, this Long-Term Predictor (LTP)

outputs TSLA/TRA = nRA traffic values for the next TSLA time slots. Our implementation

uses a separate LTP for each requested slice s, which (i) best adapts to the diverse temporal

dynamics of the heterogeneous mobile services associated with each slice, and (ii) allows for a

modular design where predictors for SPs entering or leaving the slice brokering process can be

dynamically added or removed.

This long-term prediction, denoted as ℓ̄(O,a)(t, n), makes use of the state-of-the-art Thresholded

Exponential Smoothing (TES)-RNN model for traffic forecasting [81]. This model combines

statistical modeling and machine-learning tools, via a Recurrent Neural Networks (RNN) whose

inputs are first passed through a TES [82] block. The key aspect is that the TES coefficients are

simultaneously optimized with the RNN weights through a unified gradient descent [81]. The

original TES-RNN is limited to output a single-value forecast, which is not suitable for our problem.

We thus extend TES-RNN to support a multidimensional output (i.e., a set of nRA values), as well

as to handle different time scales of input (i.e., the monitoring samples ℓs[k]) and output (i.e., the

RA block interval). Our TES-RNN implementation takes as input traffic samples for the last 8

hours for each service, and hinges on a deep neural network architecture with 2 LSTM hidden

layers with dilations (1,3) and (6,12), both having a state size of 50, followed by a nonlinear layer

with 50×50 state size and a linear adapter to the output size.
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We train our enhanced TES-RNN model offline, with the α-OMC loss parametrized with

γ = 0.75 [38]. This asymmetric loss avoids underestimations that may lead to SLA violations,

while trying to minimize overprovisioning that increases Operating Expenses (OPEX) costs.

Admission control. The predicted values ℓ̄(O,a)(t, n) are fed together with the compensation

for each slice s to an admission control optimizer. Let Vα ≜ {αs(t, n)|n ∈ {1, . . . , nRA}, s ∈
S, t ∈T } and Vx ≜ {xs(t)|s ∈ S, t ∈ T }. The optimization problem is

max
Vα,Vx

∑
t∈T

∑
s∈S

xs(t)
∑nRA

n=1

(
Msℓ̄

(P)
s (t)

nRA
SLAs(αs(t, n))− cOPEXαs(t, n)ℓ(O,a)(t, n)

)
(P1)

s.t.
∑

s∈S
xs(t)αs(t, n)ℓ̄(O,a)

s (t, n) ≤ C ∀n, t (3.3)

0 ≤ αs(t, n) ≤ 1 ∀αs(t, n) ∈ Vα (3.4)

xs(t) ∈ {0, 1} ∀xs(t) ∈ Vx. (3.5)

Problem (P1) maximizes the operational profit of the MNO defined in (3.2), i.e., revenue minus

costs of SLA violations and OPEX, subject to the available network capacity C and on the basis

of the predicted demands ℓ̄
(O,a)
s (t, n) of each slice s through the next SLA block. It does so by

identifying the admitted slices for which xs(t) = 1, via a tentative allocation of resources αs(t, n)
in each RA block n of the future SLA block t. We remark that the MNO does not directly apply

the resource allocation αs(t, n) obtained from (P1); instead, it triggers the short-term stage to fine

tune the resource allocation, as described in Sec. 3.2.2 hereafter. Problem (P1) is NP-hard and can

be modeled as a knapsack problem, as we formally prove below. However, the number of variables

(i.e., slices) that would be handled in NSaaS do not grow exponentially, and efficient solvers exist

for knapsack problems [83].

The proof of Problem P1 follows by reduction from the Knapsack Problem (KP) [84], which

can be written as follows: considering a knapsack with capacity W and a set of I items to store

where each item i has positive reward ri and positive weight wi, i ∈ {1, . . . , I}. The objective

expression is max
∑I

i=1 rixi, where xi is a binary variable indicating whether item i is allocated

to the knapsack, and where the objective expression has to be maximized under the constraint that∑I
i=1 wixi ≤W . Let us consider a particular case of our problem, in which nRA = 1 and the SLA

function is given by SLAs(αs(t, n)) = 1 if αs(t, n) ≥ 1 and SLAs(αs(t, n)) = −1 if αs(t) < 1,

i.e., any underprovisioning incurs a penalty equivalent to the possible revenue. In this particular

case, we have that, for any solution in which some slice s is accepted (xs(t) = 1) with αs different

than 1 for that same slice, we can find another solution improving the objective value just by setting

xs = 0. Consequently, our problem is equivalent to maximize
∑

s∈S, t∈T ,n∈nRA
ps(t)xs(t) over

the set {xs(t)}s∈S subject to xs(t) ∈ {0, 1} and
∑

s∈S ℓ̄
(O,a)
s (t, n)xs(t) ≤ C

(lq)
r for each t ∈ T

and n ∈ nRA.
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Hence, our problem is equivalent to a KP with weights ℓ
(O,a)
s (t, n), rewards ps(t), and

capacity Ctot. This means that the KP is a particular case of our problem, and thus our problem is

at least as complex as the KP, which is NP-hard. Since this reduction can be built in polynomial

time, it follows that our problem is NP-hard.

3.2.2. Short-term Resource Allocation

Once the admission control for the next nRA RA blocks is decided in (P1), the MNO performs

the actual resource reservation at the start of each RA block. The rationale is that this requires a

forecast over a shorter future horizon, which is inherently more accurate and allows higher savings

on OPEX for the MNO. The implementation of such short-term operation, depicted in the bottom

half of Figure 3.3, has a structure similar to the long-term decision component.

Traffic prediction. As anticipated, the MNO only forecasts the expected traffic volume

for the next RA block. To this end, we use one Short-Term Predictor (STP) for each admitted

slice s. The STP is based on the exact same hybrid model as the LTP, although the STP only

outputs a single value. The predicted values ℓ̄(O,r)(t, n) serve as input for the RA shot-term

optimization presented next.

Resource allocation. At every TRA, i.e., nRA times per SLA block, kaNSaaS solves an

optimization problem to determine the exact resources αs(t, n) reserved for each slice for the

following RA block. Formally, for a given RA block (t, n), the optimization is

max
S(a)

∑
s∈S(a)

(Msℓ̄
(P)
s (t)

nRA
SLAs(αs(t, n))− cOPEXαs(t, n)ℓ̄(O,r)

s (t, n)
)

(P2)

s.t.
∑

s∈S(a) αs(t, n)ℓ̄(O,r)
s (t, n) ≤ C (3.6)

0 ≤ αs(t, n) ≤ 1 ∀s ∈ S(a). (3.7)

Problem (P2) aims at maximizing the contribute of the current RA block to the profit of the

MNO, hence has a similar expression to that of (P1). The main differences are that (i) there

is no admission control decision, (ii) it only considers the services in the set accepted in the

last (P1) problem, denoted as S(a) ⊆ S, and (iii) it leverages the STP forecast ℓ̄
(O,r)
s (t, n).

This problem is considerably simpler than the MIP in (P1), as it does not contains discrete

variables, and its complexity depends solely on the expression of the SLA function. Thus, (P2) is a

linear programming (LP) problem with the SLA in Sec. 3.1.2, yet it could turn non-linear under

a different SLA function.

3.2.3. MNO Profit from AC/RA Decisions

The AC/RA decisions taken by the components described in Sec. 3.2.1 and Sec. 3.2.2 determine

the MNO profit, as follows. The values αs(t, n) denote the percentages of the predicted future

traffic that is reserved for slice s; thus, the actual served traffic at RA block (n, t) is:
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ℓeff
s (t, n) = min(ℓs(t, n), αs(t, n)ℓ̄(O,r)

s (t, n)). From this expression, we obtain the value of

βs(t, n) in (3.1), i.e., the percentage of agreed traffic volume that is effectively served by the MNO.

The final profit uses the βs(t, n) above and is given by

pE =
∑
t∈T

∑
s∈S

xs(t)
∑nRA

n=1

(
Msℓ̄

(P)
s (t)

nRA
SLAs(βs(t, n))− cOPEXαs(t, n)ℓ(O,r)

s (t, n)
)
. (3.8)

Discrepancies between (3.8) and the objective functions of (P1) and (P2) are possible due to slice

traffic prediction errors, and are part of the complexity of an overbooking-based NSaaS.

3.3. Performance Evaluation

We evaluate kaNSaaS using both real and synthetic datasets of slice demands, presented

in Sec. 3.3.1, and we compare its performance to benchmark NSaaS management approaches,

described in Sec. 3.3.2. The results of our evaluation are presented in Sec. 3.3.3.

3.3.1. Datasets

A contribution of our study is a first assessment of the potential gain of overbooking in

NSaaS in presence of real-world demands generated by a variety of service providers, based on

measurements of the traffic of individual mobile applications in a metropolitan-scale network of a

major European MNO. As this dataset is protected by a Non-Disclosure Agreement (NDA) with

the MNO, we also generate a synthetic dataset that mimics the main properties of the real-world

service-level demands, and leads to comparable results in our evaluations. We disclose this second

dataset to allow reproducibility of our results and foster further research in NSaaS.

Measurement dataset. The real-world mobile demand dataset captures all traffic generated by

several millions of users in a large metropolitan area during 8 consecutive weeks. The data consist

of the traffic loads served by each of the hundreds of base station covering the target geographical

region, at a time granularity of 1 minute. The traffic is reported separately for 20 different mobile

services, which include the most popular smartphone applications, such as YouTube, Instagram,

Twitter or various Google services. Such data was collected and aggregated by the MNO in its

production infrastructure, using passive measurement probes deployed in the Evolved Packet

Core (EPC). The probes run commercial and proprietary traffic classifiers to identify the service

associated to each IP flow. The measurement dataset allows defining realistic SP demands, by

assigning one slice to each service. As shown in Fig. 3.4a-b, the resulting slices have heterogeneous

traffic volumes and time dynamics, which opens opportunities for multiplexing.

Synthetic dataset. We emulate demands for the three main network slicing categories for

5G, namely enhanced Mobile BroadBand (eMBB), ultra-Reliable Low-Latency Communication

(uRLLC) and massive Machine-Type Communication (mMTC). For the eMBB and uRLLC

classes, we created a weekly pattern of 5 work days and 2 weekend days, with each day containing
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Figure 3.4: (a)-(b) Temporal demands of 3 slices in the measurement and synthetic datasets; (c)
Sorted normalized traffic per SP.

a sinusoidal dynamic that mimics the well-known circadian rhythm of mobile traffic. Based on

our measurement data, we also model two daily traffic peaks, higher in the morning and lower in

the afternoon. Instead, mMTC slices are characterized by a steady demand over time, to reflect to

deterministic behavior of many applications in that class.

Individual slices are told apart by their generated traffic volumes and weekly patterns. We

use peak traffic values of 60 Mbps for eMBB, 7 Mbps for mMTC, and 35 Mbps for uRLLC, and

introduce diversity across slices of the same category, by scaling all values of a slice by a random

factor between 0.7 and 1.4. Also, we reflect the temporal variability observed in the measurement

data by randomly shifting each slice demand by up to 1.5 hours. We then imitate the inherent

randomness of mobile device behaviors, by adding a coloured noise with a standard deviation equal

to 35% of the mean throughput. This power-law noise has a power spectral density per unit of
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bandwidth proportional to 1
fϕ [85], where ϕ = 0 implies white noise, ϕ = 1 represents pink noise,

and Brownian noise corresponds to ϕ = 2. We select ϕ = 1.08 to strike a balance between trend

and noise. Ultimately, our synthetic dataset consists of 90, 720 data points at 1 minute granularity

for each emulated slice, which is consistent with the real-world data, as exemplified in Fig. 3.4b.

Slice requests. We generate the SP requests from the datasets of service demands above,

by considering that each SP forecasts the expected future traffic generated by its service, and

asks for sufficient slice resources to process it. For fairness, we consider that the SPs make use

of the state-of-the-art model from [81], which is suitably configured to predict a single value

corresponding to the maximum traffic demand for the next SLA block of duration TSLA.

We also assume that SPs rely on more conservative predictions than the MNO, since they are

committed to ensure proper quality of experience to their users. To this end, we parameterize

the α-OMC loss with a higher γ = 1.5 parameter that induces a higher safety margin against

underprovisioning in SP forecasts [38].

3.3.2. Benchmarks

We consider two baselines that allow contextualizing the performance of kaNSaaS, and one

state-of-the-art benchmark, as follows.

Legacy NSaaS. This is a traditional network slicing management strategy where the MNO allocates

exactly what the service provider requests, and does not perform any slice overbooking. This

implies that ℓ̄
(O)
s (t, n) = ℓ̄

(P)
s (t). We denote by E(P) the Legacy NSaaS counterpart of a given

overbooking scenario E (as defined at the end of Sec. 3.1.1), and compute the net profit gain of

overbooking as

Ḡp(E) ≜ pE − pE(P)

pE(P)
. (3.9)

Oracle NSaaS. This is an unfeasible but optimal slice AC/RA management where ℓ̄
(O)
s (t, n) =

ℓs(t, n) and TRA = 1. We denote by E⋆ the ORACLE counterpart of a given scenario E , and

calculate the similarity of a practical solution with the optimal as the ratio

D̄p(E) ≜ pE
pE⋆

. (3.10)

CoNEXT. This is the state-of-the-art solution for NSaaS overbooking, originally introduced by

Salvatet al. [48] and denoted by CoNEXT in the following. As partially anticipated in Chapter. 2,

CoNEXT relies on SP demand forecasts returned by the multiplicative version of the three-

smoothing Holt-winters (HW) algorithm with seasonality. Admission decisions of slices are taken

by solving a stochastic yield management optimization problem, which is however based only on a

short-term forecast over the future TRA interval. As slice AC is enforced through a longer interval

of TSLA time slots, CoNEXT then updates the forecast and compute the resource re-allocation at

every subsequent RA block of duration TRA. In other words, CoNEXT lacks the two-timescale
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operation of kaNSaaS, which forces it to take long-term SLA AC decisions based on short-term

demand forecasts. In addition to such a fundamental design gap, the solution differs from kaNSaaS

in the implementation of both the prediction and decision modules.

3.3.3. Evaluation

We assess the performance of kaNSaaS, Legacy NSaaS and CoNEXT in presence of both

measurement and synthetic demands. All results are expressed in terms of the profit similarity

from the performance of the ORACLE approach D̄p, as defined in (3.10). Unless stated otherwise,

we use the following default settings throughout all experiments: TRA = 30 min, TSLA = 120 min,

cOPEX = 0.9 Ms
nRA

(i.e., a profit margin ρop = 11%), and the network capacity is set to be equal to the

maximum aggregated traffic over services over the whole dataset, or C
(l)
r = maxt∈T

∑
s∈S ℓs(t).

Overall overbooking gain with kaNSaaS. The main results of our performance evaluation

are summarized in Fig. 3.5. The figure reports the profit of each tested solution (as different

curves), under real-world (left column) and synthetic (right column) SP demand datasets.

As anticipated, all values are indicated as similarity to the optimum ORACLE performance,

so as to favor interpretability.

The vertical greyed region in each plot highlights the default settings, for which the following

key observations are in order.

The gain of kaNSaaS with respect to Legacy NSaaS is very large at around 300%. This

implies that overbooking can grow fourfold the economic profit for the MNO with respect to

a case where the operator just abides by the requests of the SPs in a typical case.

The gain of kaNSaaS with respect to CoNEXT under the default settings is of 20%

with real demands, and of 40% with synthetic traffic. In other words, thanks to a more

complete two-timescale design and more effective implementations of forecasting and

AC/RA decision models, kaNSaaS significantly grows the net profit for the MNO over the

best available solution for NSaaS overbooking.

The similarity to the performance of the ORACLE is at 0.5 denoting that the

default settings scenario does not allow kaNSaaS to take full advantage of the

potential of NSaaS overbooking.

These considerations shed light on the actual monetary advantage that overbooking can

bring to an MNO in a dependable slice demand scenario, and unveil in particular how

such an advantage can be surprisingly large. We next investigate how the system settings

affect the overbooking performance.

Impact of profit margin. A chief parameter of interest for the MNO is the profit margin at

which it can operate the service. This element directly determines the feasibility and interest of

NSaaS use cases. We analyze the impact of the profit margin by varying the ratio ρop = Ms
cOPEXnRA

.

In particular, we vary the coefficient cOPEX from 0 (i.e., neglecting OPEX) to 0.99 Ms
nRA

(beyond
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Figure 3.5: Performance evaluation as function of (a,d) the profit margin, (b,e) the orchestration
interval TRA, and (c,f) network capacity. Results refer to (left) real-world demands and (right)
synthetic traffic. We compare kaNSaaS, CoNEXT [48], and Legacy NSaaS. Performance is
expressed as a similarity D̄p with the unfeasible ORACLE. Gray vertical lines represent the default
settings listed in Sec. 3.3.3.

which NSaaS is not profitable for the MNO, as ρop → 1). Fig. 3.5a shows how varying cOPEX (as

a coefficient of Ms
nRA

) impacts the profit in real-world demands, and Fig. 3.5d shows the same for

synthetic traffic. The two plots highlight the very significant role of resource operation costs in

controlling the gain of overbooking strategies.

On the one hand, the gain of kaNSaaS over Legacy NSaaS is maximum at profit

margins around 10-20%, i.e., for cOPEX in the [0.8, 0.9] range (×Ms
nRA

). Here, overbooking

grants dramatic manyfold boosts in the economic profit.

On the other hand, the performance of kaNSaaS tends to get closer to the optimal

ORACLE as cOPEX decreases, with a similarity D̄p closer to 1 as cOPEX tends to 0. Indeed,
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as we will later show in Sec. 3.3.3, all the cost induced by our solution is imputable to

overdimensioning, and reducing cOPEX shrinks that cost.

The state-of-the-art CoNEXT solution performs well under low profit margins, yet

the quality of its AC/RA decisions tends to rapidly deteriorate as cOPEX is reduced, up to

the point where the profits it grants become lower than those of a no-overbooking Legacy

NSaaS strategy. The reason is that, as shown in Sec. 3.3.3, CoNEXT aggressively overbooks

resources, serving more traffic than all other approaches but also incurring in many SLA

violations. The cost of such violations dominates in absence of significant OPEX costs, thus

penalizing this solution. Our proposed kaNSaaS does not suffer from this problem, and stays

a better choice than Legacy NSaaS and CoNEXT across all cOPEX.

Impact of resource orchestration interval. We vary TRA from 5 to 120 minutes, which is the

same as the duration of the TSLA requested by each SP and thus an upper bound to the RA block

duration. Fig. 3.5b and Fig. 3.5e show how kaNSaaS increases its profit gain over CoNEXT as

TRA increases, i.e., as the resource re-allocation decisions are spaced apart: the gain grows from

20% at TRA = 30 minutes to 72% at TRA = 120 minutes. Also, the profit gain of CoNEXT over

Legacy NSaaS is only of 16% at TRA = 120 minutes, while kaNSaaS still doubles the profit over

the baseline NSaaS without overbooking. These gains demonstrate the importance of DL-based

forecasting to predict traffic over longer time horizons.

Impact of network capacity. Let us denote the maximum sum traffic over the whole dataset

by L ≜ maxt∈T
∑

s∈S ℓs(t): we then define the normalized available capacity as C̄
(l)
r = C

(l)
r /L,

and vary C̄
(l)
r ∈ [0.8, 1.5]. The results are in Fig. 3.5c and Fig. 3.5f. For kaNSaaS, the performance

with respect to the ORACLE approach is not strongly affected by the network capacity, as it is similar

(at 48% and 54%) in the extremes case where the network is underdimensioned (C̄(l)
r = 0.8) or

overdimensioned (C̄(l)
r = 1.5). The performance of CoNEXT is similarly not affected by the

capacity of the network, with a steadily lower 43% performance with respect to ORACLE. The

result of Legacy NSaaS is very far from ORACLE, with low similarity that varies from 17.4% for

C̄
(l)
r = 0.8 to 22% at C̄

(l)
r = 1.5. Ultimately, these results prove how the overbooking gains are

only marginally affected by the available capacity.

Profit deconstruction. In order to better understand how kaNSaaS outperforms the

benchmarks, we break apart the economic gain and costs incurred by each NSaaS scheme, so as to

reveal how the final net revenue is obtained. Fig. 3.6 shows the total revenues from accepted slices,

the OPEX from resource allocation, the fees due to SLA violations, and the profit resulting from

subtracting the latter two costs from the initial revenues. We first observe how Legacy NSaaS does

not incur in any cost in terms of SLA violations, owing to a conservative policy of abiding by the

requests of the SPs, which are in turn designed to avoid any service disruption. However, this result

comes at a very high OPEX cost, since SP requests tend to be overdimensioned. Also, Legacy

NSaaS yields the lowest total revenues, as its conservative approach leads to accepting a lower

number of slices. On the other end of the spectrum, CoNEXT is the most aggressive approach,
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Figure 3.6: Revenue, profit, OPEX, and SLA violation costs of all considered NSaaS solutions
under (a) measurement and (b) synthetic demands, and with default system settings.

which accepts the highest number of slices and thus attained the highest total revenues. To do so,

this NSaaS solution heavily employs overbooking, but it also pays a substantial penalty from SLA

violations. Ultimately, SLA violation costs curb the MNO net profit. kaNSaaS achieves a better

trade-off between slice overbooking (accepting more slices than Legacy NSaaS, thus increasing

the total revenue) and SLA violation avoidance (paying a negligible cost for those, especially

when compared with CoNEXT). By striking this balance, and even though the total revenues are

lower and the OPEX is higher than those of CoNEXT, kaNSaaS creates a significantly higher

total profit for the MNO.

We also observe that our solution is the one that resembles the most the optimal ORACLE

approach: indeed, the two solutions accepts roughly the same SP requests, which results in a very

similar total revenue. The difference is then ascribed to the fact that ORACLE relies on a perfect

prediction over instantaneous RA block intervals, which is not feasible in practice.

3.4. Exhaustive System Analysis

In this section, we carry out a complete analysis of the NSaaS overbooking performance

across the additional system dimensions that we did not explore in Sec. 3.3. Specifically, we

analyze how sensitive the performance is to the network layer at which the NSaaS management is

performed, as well as how different levels of accuracy in the MNO traffic prediction affect the final

net profit. In order to control the second aspect, we replace the actual LTPs and STPs models with a

parametrizable overprovisioning factor a that multiplies the actual peak throughput in the following

RA block. In other words, we employ an abstract predictor that achieves a tunable accuracy instead

of practical forecasting solutions. Specifically, the default values for overprovisioning are 20%
for SPs and 5% for the MNO, such that we have that ℓ̄

(P)
s (t) = 1.2 maxn∈[nRA] ℓs(t, n) and

ℓ̄
(O,a)
s (t, n) = 1.05ℓs(t, n). In the following, we only report results obtained with the real-world

measurement demands, since those returned with synthetic data did not show significant differences.

Also, all results are presented in terms of the gain of kaNSaaS over Legacy NSaaS, as per (3.9).
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Figure 3.7: (a) Total capacity required to serve all demands at different network layers. (b,c,d)
System performance as function of: (b) the network layer where NSaaS occurs, for different TRA
from 1 to 120 minutes; (c) the network layer where where NSaaS occurs, for different prediction
accuracy a from 1 to 2; and, (d) the RA block interval TRA and prediction accuracy a, at CN layer.

3.4.1. Network Layer

The NSaaS management problem tackled by kaNSaaS can be instantiated at different locations

of the network infrastructure. For instance, slicing could occur for spectrum at the level of

individual Remote Units (RUs), for radio scheduling at the level of Distributed Units (DUs), for

compute resources at the level of Centralized Unit (CU), or for transport or Cloud resources in the

Core Network (CN). We model such different network layers as nodes that aggregate an increasing

volume of traffic, or equivalently serve a growing number of clustered RUs, as we move from the

radio access to the network core. Fig. 3.7a shows the total network capacity required to serve

the whole demand in our measurement dataset at different network layers. The x-axis represents

the average traffic demand per minute per cluster, normalized, in a logarithmic scale. As we

move towards the RU layer (left-most value), the required capacity grows exponentially. Hence,

although handling NSaaS at RUs provides the MNO with higher gains and flexibility, the required

management and resources escalate at an unaffordable rate. We represent the gain over Legacy

NSaaS in Fig. 3.7b and Fig. 3.7c, where the x-axis is the number of RU per cluster, and where

x = 843 represents the CN layer. Fig. 3.7b shows the different performance when the orchestration
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interval TRA varies from 1 to 120 min, whereas Fig. 3.7c shows the variation with respect to the

level of overprovisioning, modeled by a coefficient a, such that ℓ̄
(O)
s (t, n) = a · ℓs(t, n), and where

a varies from 1 to 2. We only highlight the extreme and the default values for the sake of clarity.

The profit gain Ḡr exceeds 600%, i.e., the operator can multiply its profit by seven times with

overbooking. Importantly, the profit gain increases as we approach the RU layer, where traffic is

more dynamic and there are more opportunities to multiplex demands.

3.4.2. Traffic Prediction Accuracy

Finally, we jointly analyze the impact of jointly varying TRA (30 min by default) and the

prediction accuracy level (a = 1.05 by default). The gain over Legacy NSaaS (Ḡp) is show in the

3D plot of Fig. 3.7d.

We observe a non-monotonic behavior in the accuracy axis. This is due to the fact that,

for a ≤ 1.2, a increases for the MNO but not for the SPs, which keeps the default value a = 1.2.

Hence, reducing a improves the performance because we are assuming perfect predictions with no

uncertainty. For a > 1.2, however, both MNO and SP share the same a (because SP will never

be more aggressive provisioning than the MNO); then, increasing a is beneficial for the MNO

due to the fastest resource allocation decision. We also observe that the peak gain is achieved at

TRA = a = 1, because we do not have prediction errors (and thus SLA violations) in this controlled

evaluation. Even when TRA = 60 and a = 1.2, overbooking increases the MNO profit by 75 %.

3.5. Summary

The chapter introduces kaNSaaS, an overbooking-aware solution for NSaaS that leverages

AI models and optimization techniques. The framework addresses both long-term admission

control and short-term resource allocation. Through experimental evaluation, the solution shows a

significant fourfold increase in MNO profitability. The chapter also highlights the benefits of cloud-

native NSaaS management and overbooking strategies, presenting the feasibility of implementing

overbooking in real-world network slicing scenarios. Finally, it demonstrates the framework’s

flexibility and efficiency in resource management and net profit maximization for MNOs.





4 Anticipatory Capacity
Allocation for Cost-Efficient
Network Slice Management

"The following section is based on the methodology described in [7]. Pages 45 to 59 of

this thesis are mainly reused from [7], with the inclusion of a new framework (Fig.4.3) and an

explanation of the newly introduced Block 0. The new framework employs a different deep neural

network (DNN) model, and all results presented in this thesis are distinct from those in the original

work. © 2020 IEEE. Permission has been obtained from the senior author to incorporate this

material into this thesis."

Leveraging on the lessons learned from the 5G design, implementation, and deployment,

one of the most important characteristics that shall be considered when envisioning the next

generation of mobile network architecture is the overall sustainability of the system. Energy

and resource efficiency play a crucial role in the aspects that impact this area. In particular,

always operating the network with the correct amount of resources, including cloud resources and

spectrum resources, can reduce Capital Expenditures (CAPEX) and Operating Expenses (OPEX),

yielding an increase in the overall energy efficiency of the system.

Zero-touch resource allocation. In this context, a prominent difficulty is resource

management. Isolation of resources across different network slices inherently increases network

capacity requirements [14], and a dynamic, preemptive, and efficient allocation of resources to

slices is key to keeping efficiency under control in sliced networks [15]. The rapid fluctuations in

service demands, as well as the size and complexity of the slicing ecosystem, make legacy reactive,

human-driven approaches to resource management inadequate in the emerging context. In sliced

networks, automated decisions on resource assignment shall be taken by network orchestrators.

By running dedicated AI and ML solutions [20], network orchestrators are expected to enable the

vision of zero-touch networks [21], i.e., fully self-operating communication infrastructures whose

standardization is already ongoing [22].

Current state-of-the-art solutions for capacity forecasting in network slicing take into account

the costs due to (i) the allocation of unnecessary resources that go unused, and (ii) the

insufficient provisioning of resources that cannot accommodate the demand and lead to violations

45
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of the Service-Level Agreement (SLA) with the slice tenant. Hence, they aim to minimize

overprovisioning while avoiding SLA violations.

Resource instantiation and reconfiguration. Limiting the problem to the simple trade-off

above implicitly assumes that resource instantiation and reconfiguration occur at no cost. While

this may hold for some types of resource (e.g., CPU time within the same bare metal machine), it is

not generally valid for slice resource management scenarios. Instantiation and reconfiguration costs

are capital in NFV technologies that enable the cloudification of the access and core networks by

entrusting many network functions to Virtual Machines (VMs) running in data centers. Examples

include baseband processing in Cloud Radio Access Networks (C-RAN) [86], interconnection

functionalities towards the external packet networks through the User Plane Function (UPF) [87],

or central office operations [88].

In all the above cases, resource instantiation does not take place for free: Virtual Machine (VM)

boot times in prominent public cloud services like Amazon AWS or Google Cloud Platform (GCP)

consistently exceed 50 seconds for cold startup and 25 seconds for warm startup, topping at 120

seconds in worst-case scenarios [89]. Cold startup time refers to the VM’s startup time when a

user creates a new VM, and warm startup time indicates the startup time measured when a user

re(initiates) an existing (and stopped) VM.

Even in recent tests, booting a lightweight VM containing an Alpine Linux takes around

30 seconds in a local deployment [90]. Reconfiguring already allocated resources has also a

non-negligible cost: modern software architectures such as Kubernetes need several seconds to

execute new pods, e.g., on VMs that are already running [90]. In addition, re-orchestration often

implies recomputing paths on the transport networks and implementing them via, e.g., SSDN

architectures: the latency is in the order of hundreds of milliseconds in a small five-switch topology

and with precomputed routing [91], and this figure has to be scaled to thousands of switches with

on-the-fly path re-calculation.

All unavoidable delays above entail monetary fees for the operator, in terms of both violations

of the SLA with the tenants (e.g., due to infringement of guarantees on end-to-end latency),

and user dissatisfaction (with ensuing high churn rates). By neglecting these sources of cost,

present capacity forecast solutions risk introducing uncontrolled data flow latency once deployed

in operational networks, ultimately causing economic losses to the operator.

To this end, we adopt a novel approach based on the concept of multi-timescale orchestration

illustrated in Figure 4.1.

On the left, a state-of-the-art solution for capacity forecasting [63] tries to accommodate

the demand and to limit overprovisioning by reconfiguring resources at every re-orchestration

opportunity (top); by doing so, it minimizes costs (i) and (ii) above (second plot). However, it

also ceaselessly instantiates or de-commissions capacity, and reallocates available resources in a

sustained way. This incurs in substantial instantiation and reconfiguration fees (third plot) that

ultimately lead to a high overall economic cost (bottom).

On the right, our model performs the orchestration at two timescales and by telling apart
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Figure 4.1: Toy example illustrating the costs of resource allocation in network slicing. Top:
traffic demand generated by a representative slice (black solid line), along with the capacity
allocated based on predictions, and reconfigured at all available re-orchestration opportunities (i.e.,
shared, in red) or only periodically over extended intervals (i.e., dedicated, in blue). Second row:
Monetary costs of (i) overprovisioning and (ii) non-serviced slice traffic. Third row: Monetary
costs of resource (iii) instantiation and (iv) reconfiguration. The costs are obtained with a system
configuration κo = κs = κi = 1 and κr = 0.5, whose meaning is explained in Section 4.1. Bottom:
cumulative overall cost over time, for components (i)-(iv). Left: a legacy capacity forecasting
model [63] updates the prediction at the fastest rate possible, closely following the demand
fluctuations but forcing continuous reconfigurations. Right: our proposed multi-timescale capacity
forecasting model trades slightly increased overprovisioning for much-reduced instantiation costs
(which are only incurred once per extended interval) and reconfiguration fees (which are completely
avoided for dedicated resources). Adapted from [7]. © 2020 IEEE.

two classes of resources. A long-timescale orchestrator operates over extended intervals that

span multiple re-orchestration opportunities; it allocates a dedicated capacity to each slice and

also reserves an additional shared capacity accessible by any slice. Both capacities remain

constant across the extended interval, limiting the frequency of instantiation and thus cost (iii).

Only the shared capacity is then reallocated at every re-orchestration opportunity by a short-

timescale orchestrator, while the configuration of the dedicated capacity is preserved throughout

the extended interval, thus reducing cost (iv). Both long- and short-timescale orchestrators decide

on the amount of (dedicated and shared) resources to be allocated to each slice to also minimize

the usual costs (i) and (ii). This comprehensive strategy results in a 47% reduction of the total cost

in the example in Figure 4.1.

Interestingly, the sample case study also clarifies that reducing instantiation and reconfiguration

costs has a price in terms of increased overprovisioning. A multi-timescale orchestration model
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Figure 4.2: Orchestration model. (A) Long-timescale orchestration. The background time series
represents the traffic demand generated by slice i (grey). The curves portray the time evolution of
the dedicated capacity xd

i (t) allocated to slice i (blue), and of the shared capacity xs(t) (red) over
extended intervals of duration Tl. Note that xs(t) is added to the dedicated resources to determine
the total available capacity, and, unlike xd

i (t), is not reserved for slice i but available to all slices.
(B) Short-timescale orchestration during one extended interval. At every Ts < Tl, a portion xs

i (t)
(black solid curve) of the (fixed) shared capacity xs(t) is allocated to slice i, based on the residual
demand ρi(t) not satisfied by the (fixed) dedicated resources xd

i (t). The plot also highlights the
volume of overprovisioned capacity and non-serviced demand (pattern regions), and the slice
traffic below dedicated capacity δi(t). Adapted from [7]]. © 2020 IEEE.

allows exploring this and more trade-offs for the first time, empowering an unprecedently

comprehensive solution for cost-driven orchestration of slice resources [48] via a mixture of

AI and traditional optimization.

4.1. Orchestration Model and Trade-offs

Our orchestration model is outlined in Figure 4.2, which also serves the purpose of illustrating

the notation used in the remainder of the paper. Let us denote by λi(t) the traffic demand generated

by services running in slice i ∈ S at time t. The long-timescale orchestrator operates on extended

intervals of duration Tl. At the beginning of each such interval, it takes decisions on the dedicated

capacity xd
i (t) allotted to slice i, ∀i ∈ S, and on the additional shared capacity xs(t) available to all

slices; all capacities are conserved throughout the following Tl. The bottom plot (A) in Figure 4.2

depicts an example of allocation resulting from a long-timescale orchestration.

Within an extended interval, the short-timescale orchestrator assigns resources to each slice i

at all re-orchestration opportunities, occurring at every Ts. Decisions are based on the (estimated)
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future residual demand ρi(t) = max{0, λi(t)− xd
i (t)}, and lead to the allocation of an additional

capacity xs
i (t), for each slice i. The resources xs

i (t) may be re-configured at every Ts, and are

provisioned on top of the dedicated xd
i (t). The top plot (B) in Figure 4.2 illustrates these definitions

for a sample short-timescale orchestration during one extended interval.

4.1.1. Sources of Monetary Cost

Building on the notation above, we can formally introduce the different costs associated to the

management of resources in sliced networks. As anticipated in the introduction of the chapter,

there are four sources of economic penalty for the operator, as follows.

(i) Unnecessary resource provisioning: the operator incurs a monetary cost in terms of both

CAPEX and OPEX that is directly proportional to the amount of unused resources it allocates to a

slice. Such capacity it is instantiated and configured to no purpose and could be allotted, e.g., to

other slices to increase the global system efficiency. This cost at time t is

∑
i∈S

f1
(
max{0, xd

i (t)− δi(t)}
)

+
∑
i∈S

f1 (max{0, xs
i (t)− ρi(t)}) +f1

(
xs(t)−

∑
i∈S

xs
i (t)

)
, (4.1)

where δi(t) = min{λi(t), xd
i (t)} denotes the portion of the demand of slice i served by the

dedicated capacity at time t, as shown in plot (B) of Figure 4.2. The first two terms in (4.1) denote

the cost of overprovisioning at slice i and time t, due to the unneeded allocation of dedicated

and shared capacity, respectively; again, we refer the reader to plot (B) of Figure 4.2 for an

exemplification. The third term captures instead the overprovisioned shared capacity that is not

allocated to any slice by the short-term orchestrator. The function f1(·) describes the scaling of

cost with capacity overprovisioning. As in [63], in our evaluation we assume a linear increase

of the penalty, i.e., f1(x) = κox, where κo is the monetary cost of one unit of capacity and is

expressed in $/Mbps. However, our model can easily accommodate different definitions of the

scaling law, which may apply to specific network functions.

(ii) Non-serviced demand: every time the operator does not allocate sufficient resources to

serve the traffic demand of a slice, it violates the SLA with the tenant, which triggers a monetary

compensation. The associated cost at time t is

∑
i∈S

κs · 1<ρi(t) (xs
i (t)) , (4.2)

where 1A(x) is an indicator function that takes a value 1 if the argument satisfies condition A,

and 0 otherwise. Thus, 1<ρi(t) (xs
i (t)) activates when the portion of shared capacity assigned to i

does not suffice to meet the service demand; this corresponds to an underprovisioning situation, as

depicted in Figure 4.2. In these cases, the operator has to indemnify the tenant for a value κs, in $,

per SLA violation. This definition is also in line with those used in the literature [63].
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(iii) Resource instantiation: in presence of substantial variations of the total traffic demand, the

operator needs to instantiate new resources to serve the demand of the slice. In these cases, as

discussed at the start of Chapter 4, there exists a cost associated with enabling such new resources.

As an example, if additional VMs have to be bootstrapped or migrated to serve the slice, the

operator has increased expenses in terms of power consumption and CPU cycles. In addition, there

may be an indirect penalty in terms of perceived QoS, as this operation may take minutes [90] and

disrupt the end-user experience. The cost, triggered at every Tl in our multi-timescale model, can

be modeled as

∑
i∈S

f2 (δi(t)) · 1>xd
i (t−1)

(
xd

i (t)
)

+ f2 (min{ρi(t), xs
i (t)}) · 1>xs(t−1) (xs(t)) . (4.3)

The first term in (4.3) represents the penalty incurred when new dedicated resources must be

instantiated, which occurs when xd
i (t) > xd

i (t − 1). The second term is equivalent to the first

one, but refers to the shared capacity instantiated to all slices in S. Note that the costs induced

by both terms are functions f2(·) of the affected traffic that may experience disruption, i.e., δi(t)
and min{ρi(t), xs

i (t)}, respectively.1 In our performance evaluation, we consider the cost to be

directly proportional to the affected traffic, i.e., f2(x) = κix, where the parameter κi captures the

estimated fee for delaying one unit of capacity due to resource instantiation, expressed in $/Mbps.

(iv) Resource reconfiguration: while resources are only instantiated at every Tl, a short-timescale

orchestration of the shared capacity within each extended interval allows accommodating faster

fluctuations of the slice demand. Every time the operator reconfigures the shared capacity, it incurs

a cost; as mentioned in the introduction of the chapter, this is the case with the reconfiguration

of the SDN transport networks, the setup of load balancers, or the creation of new instances of

a VNF on a VM previously used by another slice. All these operations have a price in terms of

management delay [90], expressed as

∑
i∈S

f3 (min{ρi(t), xs
i (t)}) · 1 ̸=xs

i (t−1) (xs
i (t)) . (4.4)

The above cost is present whenever the shared resources must be reconfigured for a slice i, i.e.,

xs
i (t) ̸= xs

i (t− 1). In such situations, the cost is dependent on the amount of traffic affected by the

reconfiguration process, i.e., ρi(t) bounded by xs
i (t). In our study, we assume that the economic

penalty is the same for any bit of traffic using reconfigured resources, hence f3(x) = κrx, where

κr is in $/Mbps. Also, in this case, other functions can be easily embedded in the overall framework

to represent distinctive cost models identified by the operator.

1Instantiation and reconfiguration costs are proportional to the full amount of impacted demand (rather than, e.g., to
the increment of demand with respect to the previous re-orchestration opportunity) since finding a stable and optimal
allocation of resources typically requires reconsidering their organization within a large portion of the network, or even
across all slices [92].
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4.1.2. Trade-offs in Capacity Allocation

The basic trade-off in anticipatory resource assignment is that between overprovisioning and

non-serviced demands.

Trade-off A. Increasing the amount of resources makes overprovisioning more likely,

but reduces the probability that the allocated capacity is not sufficient to serve the future

demand. This results in opposing costs (i) and (ii).

Current capacity forecasting models aim at identifying the optimal compromise that minimizes

the joint penalty of the costs in trade-off A above [63]. However, these models do not offer any

control over instantiation and reconfiguration. By adopting a multi-timescale approach, we are

instead capable of factoring such variables in. Specifically, the model presented in Section 4.1.1

tells apart the capacity allocated to each slice into a dedicated capacity, re-orchestrated over long

timescales with period Tl, and a shared capacity, re-orchestrated over short timescales with period

Ts. This unlocks additional degrees of freedom: the orchestrator can decide not only how many

resources to assign to a slice, but also which portion of those shall be of each type, and for how

long they stay unaltered.

Our model still allows addressing trade-off A above, by controlling the total allocated

capacity during each extended interval Tl, i.e., xs(t) +
∑

i∈S xd
i (t), and modulate the costs of

overprovisioning and non-serviced demands. Yet, its flexibility enables the exploration of the

following additional trade-offs.

Trade-off B. By increasing the dedicated capacity xd
i (t) allocated to slice i during an

extended interval, the orchestrator can serve a larger fraction of the slice traffic with resources

that do not need reconfiguration. However, such resources cannot be reused by other slices

during Tl whenever they are not needed by slice i. For instance, in plot (B) of Figure 4.2,

increasing xd
i (t) would reduce the residual demand ρi(t) that is served with reconfiguration-

heavy shared capacity; but it would also generate additional overprovisioning, e.g., in the

fourth and second to last re-orchestration opportunities. This leads to a trade-off between

costs (i) and (iv).

Trade-off C. Allocating a larger shared capacity xs
i (t) to slice i during an interval Ts

reduces the risk that the resources will not be sufficient to serve the future slice demand.

Nevertheless, it also causes the reconfiguration of more resources. As an example, in plot (B)

of Figure 4.2, increasing xs
i (t) in the third Ts slot could remove the non-serviced demand,

but would also grow the reconfiguration penalty. A trade-off exists between costs (ii) and

(iv).

Trade-off D. Increasing the duration Tl of the extended interval reduces the cost of

resource instantiation, which only occurs once per extended interval. However, a higher

Tl also forces the dedicated capacities xd
i (t) and the total shared capacity xs(t) to remain



52 Anticipatory Capacity Allocation for Cost-Efficient Network Slice Management

(I) Long-term dedicated capacity forecasting

(Helper) Short-term demand prediction

(II) Long-term total shared capacity forecasting

𝜆𝑖(𝑡)
~

(III) Short-term shared capacity allocation

~

–

(0) Extended Interval 𝑻𝒍 Optimization Block

𝑻𝒍
∗

𝑻𝒍

…

Output

…

…

LSTM

Fully connectedDropout

𝜆i(t)

0
kr ko

…

Output

…

…

LSTM

Fully connectedDropout

𝜆i(t)

…

Output

…

…

LSTM

Fully connectedDropout

𝜆i(t)

0
2

𝜋
2

𝜋

0kr ko

𝑥𝑖
𝑑(𝑡)

𝑥𝑖
𝑑(𝑡)

𝑥𝑖
𝑠(𝑡)

Σ𝑖 
𝑥𝑠(𝑡)

…

Output

…

…

LSTM

Fully connectedDropout

𝜆i(t)

𝜌𝑖(𝑡)

0
ks

ko

Figure 4.3: Overview of the AZTEC+ framework. The learning flow proceeds from left to right.
The input mobile data is processed by deep neural networks that, jointly with a Golden-Section
Search algorithm, find the optimal Extended interval Tl (Block 0), which is the addition for
AZTEC+, in the green edges. Then, for each slice i ∈ S, a deep neural network returns the
long-term dedicated capacity xi

d(t), having as input not only the mobile data, but also the optimal
extended interval T ∗

l , and the short-term estimated demand λi(t), respectively. These values are
combined to obtain the estimated residual demands ρ̂i(t). The aggregate residual demand over all
slices is input to a further deep neural network to determine the long-term shared capacity xs(t).
Such capacity is then fed, along with per-slice residuals, to an optimization module that allocates
the shared resources xi

s(t).
.

constant for a longer time. With a reduced capability to tailor the network resources

to the fluctuations of the slice traffic demands, the orchestrator may incur in increased

overprovisioning or underprovisioning. For instance, extending the timespan of plot (B)

in Figure 4.2 to cover a prolonged demand λi(t) may create additional situations where

xd
i (t) > λi(t), i.e., dedicated resources go wasted, as in the second to last Ts interval; it can

also generate new cases where xs
i (t) < ρi(t), and traffic peaks are not serviced, as in the

central part of the example. This results in a trade-off between cost (iii) and joint costs (i)

and (ii).

Next, we present a framework that takes automated, anticipatory decisions on capacity allocation

by addressing all trade-offs outlined above, thanks to the multi-timescale model.

4.2. The AZTEC+ framework

Our framework, named AZTEC+ (i.e., capacity Allocation for Zero-Touch nEtwork sliCing),

automatically solves trade-offs A, B, and C above by finding an effective compromise among

the opposing goals of reducing the operator’s costs in terms of (i) overprovisioning, (ii) non-

serviced slice demands, and (iv) resource reconfiguration. In addition, AZTEC+ dynamically and
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automatically selects the extended interval T ∗
l that minimizes the penalty associated with (iii)

capacity instantiation, to address trade-off D. Next, we first provide an overview of the framework,

and then discuss the implementation of its different components for long- and short-timescale

orchestration and for extended interval selection.

Block (0) selects the Extended Interval T ∗
l that minimizes the instantiation and reconfiguration

costs through the Golden-Section Search Algorithm [93]. To do so, it performs the forecasting

of the long-term dedicated capacity for each network slice xi
d(t), using as input information, the

actual traffic generated by each slice during the preceding N re-orchestration opportunities and a

candidate extended interval Tl. During one cycle of the Golden-Section Search Algorithm, the

DNN is trained using the candidate Tl value, and its validation loss is evaluated. The Golden-

Section Search Algorithm, progressively adjusting Tl, converges to the T ∗
l that returns the minimum

validation loss. The validation loss is computed as the sum of the reconfiguration and instantiation

costs. The cycle is repeated 10 times, and the Extended Interval Tl, which achieves the lowest

validation loss, is selected.

Block (I) performs the forecasting of the long-term dedicated capacity for each network

slice xd
i (t), using as input information about the actual traffic generated by each slice during the

preceding N re-orchestration opportunities. As discussed for trade-off B in Section 4.1.2, the

capacity xd
i (t) modulates the impact of (i) provisioning unnecessary dedicated resources versus

(iv) re-configuring the shared resources needed to serve the residual demand beyond xd
i (t). Hence,

block (I) identifies xd
i (t) minimizing costs (i) and (iv).

Block (II) determines the long-term shared capacity xs(t) available to any slice during the

subsequent time interval Tl. The shared capacity is used to serve the residual demands of all

slices; hence xs(t) shall be dimensioned to the aggregate residual traffic
∑

i∈S ρi(t). Thus,

block (II) receives as input an estimate of such aggregate during the previous extended interval, i.e.,∑
i∈S ρ̃i(t), t ∈ [t− (Tl/Ts), t− 1], and predicts the next xs(t) such that (i) overprovisioning of

shared resources is reduced as much as possible, and (ii) all residual demands can be accommodated

within xs(t). In this way, block (II) addresses trade-off A, jointly minimizing costs (i) and (ii).

Each approximate ρ̃i(t) = max{0, λ̃i(t)− xd
i (t)} is computed from a forecast λ̃i(t) returned by

a helper legacy traffic predictor that forecasts per-slice demands over the next re-orchestration

opportunity t, as per Figure 4.3. Note that, at this stage, the actual residuals ρi(t) could be directly

determined from the (known) real traffic demand λi(t) observed during the previous interval

Tl. However, we opt to feed block (II) with an estimate based on λ̃i(t) to ensure overall system

consistency. Indeed, the short-timescale orchestrator –implemented by block (III) and presented

next– necessarily operates on the predicted residuals ρ̃i(t) over the future Ts interval. Considering

the same estimates in the long-timescale module allows allocating the shared capacity xs(t) in a

way that is conscious of the inaccuracy of the information available during the following short-term

resource assignment phase of the framework.

Once the long-term capacities xd
i (t), ∀i ∈ S, and xs(t) are set, the short-timescale

orchestrator assigns portions xs
i (t) of the total shared resources to each slice. This allocation
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occurs at every re-orchestration opportunity, spaced by Ts, and is carried out by block (III) of

the AZTEC+ framework as follows.

Block (III) receives as input the long-term shared capacity xs(t), and the future

residual demand ρ̃i(t) expected for each slice i during the following Ts. The available

total capacity is allotted to each slice in a way to solve the trade-off C described in

Section 4.1.2. Therefore, block (III) computes xs
i (t) for each i ∈ S, by minimizing the

combination of costs (ii) and (iv), corresponding to insufficient allocated capacity and additional

shared resource reconfiguration, respectively.

Overall, blocks (I)-(III) return a forecast of all capacities xd
i (t), xs(t) and xs

i (t) that the operator

shall allocate over both long and short intervals of duration T ∗
l set by block (0), and Ts, respectively.

The resulting anticipatory allotment reduces the network management costs associated with the

provisioning of exceeding or inadequate resources and their reconfiguration over time.

We remark that differently from AZTEC, AZTEC+ takes automated decisions on the value

of the extended re-orchestration interval, Tl in order to tackle the penalty of network resource

instantiation. As explained above, control on instantiation costs is achieved by block (0) that

automatically and dynamically sets Tl to cope with trade-off D. Thanks to the addition of block

(0), the system is not only more reliable due to the automatic selection of Tl (avoiding the human

in the loop), but also more adaptive to other scenarios.

Having clarified the role of each block, we detail in the following their implementation, which

leverages a combination of deep learning and numerical optimization methods.

4.3. Long-timescale Resource Assignment

The long-timescale orchestration is carried out by blocks (0), (I) and (II) of the AZTEC+

framework, as follows:

4.3.1. Forecasting for Extended Interval and Dedicated Capacity

The DNN architecture of Block (0) and Block (I) is illustrated in the respective components

of Figure 4.3. It consists of an LSTM layer with 128 cell units and two Fully Connected (FC)

layers of 64 and ∥S∥ neurons, respectively, where the operator ∥ · ∥ returns the cardinality of the

argument set. The layers are interleaved by two dropout layers [94].

All layers employ ReLU as the neuron activation function, except for a linear function in the last

FC layer. The loss function that drives the DNN training is a custom expression designed to account

for the actual management costs incurred by the operator in case of errors in the orchestration

of the dedicated capacity. If the operator were able to allocate to a slice i a constant capacity

xd
i (t) that perfectly matched the actual demand λi(t) over the next Tl, the error and cost would be

nil: this is the ideal scenario where all the demand is serviced, without any overprovisioning or

re-configuration. However, in practical cases, it is impossible to perfectly predict λi(t), which is

also very unlikely to be constant over the whole Tl. In this case, positive errors xd
i (t)− λi(t) lead
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to overprovisioning, with a cost set by the first term of (4.1) in Section 4.1.1, and negative errors

imply that the demand in excess of xd
i (t) needs to be served by the shared capacity, with (4.4)

setting the re-configuration penalty.2

Positive errors yield δi(t) = λi(t), while ρi(t) = λi(t)− xd
i (t) for negative errors. Then, the

loss function for xd
i (t) allocated at t is

∑
t∈T ℓ(I)

i (t), where T is the set of concerned re-orchestration

opportunities {t, . . . , t + (Tl/Ts)− 1}, and

ℓ(I)
i (t) =

f3
(
λi(t)− xd

i (t)
)

if xd
i (t) ≤ λi(t)

f1
(
xd

i (t)− λi(t)
)

otherwise.
(4.5)

Importantly, (4.5) has partial derivatives that form a piece-wise constant function, which guarantees

robust and fast convergence under popular first-order optimizers like Adam [95].

In order to further improve the quality of the allocation of dedicated resources, we leverage

a recent result in neural network design, which allows estimating the uncertainty of the learning

outcome. Specifically, adding dropout layers during model testing is mathematically equivalent to

generating an approximation of the probabilistic deep Gaussian process [96]. This observation,

which holds for DNNs with arbitrary depth and non-linearities, provides a way to return a

distribution instead of a scalar output value. We thus activate the dropout layers during testing,

and adopt a Monte Carlo strategy; namely, we perform the forward pass L times for each test

input, obtaining outputs {xd,1
i (t), . . . , xd,L

i (t)} for, slice i at time t. We then compute the mean

µd
i (t) = 1/L ·

∑L
l=1 xd,l

i (t) as well as the variance σd
i (t) = 1/L ·

∑L
l=1(µd

i (t) − xd,l
i (t))2, and

approximate the model uncertainty as N (µd
i (t), σd

i (t)).

Knowledge of the model uncertainty allows adding a safety margin to the standard DNN

outcome. Since the whole support of N (µd
i (t), σd

i (t)) represents potentially correct values of

the dedicated capacity, block (I) returns the 99th percentile of the distribution; this makes it very

unlikely to output a xd
i (t) that is lower than the best one, minimizing the risk of SLA violations.

Thus, when the DNN is confident about the quality of the result, it returns a value close to the

mean; otherwise, it adds a substantial safety margin. An example is in Section 4.5.1.

4.3.2. Forecasting for Long-term Shared Capacity

Block (II) is implemented using a dedicated DNN, although with a simpler structure due to the

reduced richness of the input. The DNN is fed with a single time series of the total residual demand

in the past extended interval, i.e.,
∑

i∈S ρ̃i(t), t ∈ [t− (Tl/Ts), t− 1]. The input is processed by

three FC layers with 128, 64 and 1 neurons; the first two use ReLU activation functions, while the

last uses a linear function. A dropout layer is between the first and second FC layers.

The DNN is trained with a different custom loss function that accounts for the correct sources

2As the long-term orchestrator is agnostic of the short-timescale operation, it cannot factor xs
i (t) in the cost

of negative errors. So, block (I) assumes perfect management of the shared capacity that always accommodates a
continuously varying residual demand, reducing (4.4) to

∑
i∈S f3 (ρi(t)).
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of monetary penalty in case of errors. An ideal case where a fixed long-term shared capacity xs(t)
perfectly matches a constant aggregate residual demand is unrealistic, and errors are unavoidable.

Positive errors yield overprovisioning of xs(t), whereas negative ones have a cost in terms of

denied traffic. The former corresponds to the second and third terms3 in (4.1), while the latter

maps to the monetary fee4 for SLA violations in (4.2). The loss function jointly capturing these

costs for the extended interval starting at t is
∑

t∈T ℓ(II)
i (t), where

ℓ(II)
i (t) =

κs if xs(t) <
∑

i∈S ρ̃i(t)

f1 (xs(t)−
∑

i∈S ρ̃i(t)) otherwise.
(4.6)

The expression in (4.6) needs to be slightly modified by adding minimum slopes that make the

function differentiable over R. With this, the loss function has the same desirable properties as the

ones mentioned for (4.5). Finally, we take advantage of the dropout layer also in this case: we thus

approximate the model uncertainty, and return the 99th percentile of the distribution as a safety

margin on the correct value of xs(t).

4.4. Short-timescale Resource Assignment

The short-timescale orchestration consists of block (III) supported by a helper short-term

demand predictor, as outlined in Figure 4.3. The predictor uses a DNN architecture that is

very similar to that adopted by block (I); indeed, the two DNNs operate on the same input, and

produce per-slice forecasts. The main differences between them are in the frequency of operation

and, most notably, in the loss function. The helper predictor outputs a prediction at every Ts

instead of at every Tl. Furthermore, it uses a traditional ) instead of the cost-aware loss Mean

Absolute Error (MAE) function in (4.5): MAE considers identical contributions by the positive

and negative errors, thus producing an output λ̃i(t) that tries to follow as closely as possible the

upcoming slice traffic demands.

Given the total shared capacity xs(t), and the estimated residual demands ρ̃i(t), AZTEC has

to decide how to distribute xs(t) across the requesting slices at every Ts. This is implemented in

block (III) using numerical optimization.

The primary objective of the shared resource assignment performed by block (III) is avoiding

SLA violations due to insufficient available capacity, which would induce a cost modeled

in (4.2). At the same time, issuing non-essential resources has a penalty in terms of unnecessary

reconfiguration cost, as captured by the expression in (4.4).

3Also in this case, the shared capacity allotted to individual slices xs
i (t) used in (4.1) has not yet been determined

at this stage. The safest option is hence to assume that the whole residual demands will be correctly assigned by
the short-term orchestrator. This leads to approximating the allocated shared resources xs

i (t) by ρ̃i(t). Under this
hypothesis, the second and third terms in (4.1) reduce to 0 and f1

(
xs(t)−

∑
i∈S ρ̃i(t)

)
, respectively.

4By assuming xs
i (t) = ρ̃i(t), unserviced demands are possible only when xs(t) is insufficient. Then, (4.2)

translates into κs · 1
<

∑
i∈S

ρ̃i(t) (xs(t)).
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This corresponds to trade-off C in Section 4.1.2, and can be formulated as:

min
xs

i (t)

∑
i∈S

κsP (ρ̃i(t) > xs
i (t)) (4.7)

subject to
∑
i∈S

xs
i (t) ≤ xs(t),

The above minimizes the expected value of the expenditure for non-serviced slice demands in (4.2).

Note that, by squeezing as many slices as possible within the total capacity, the solution to (4.7)

implicitly addresses the challenge of minimizing reconfiguration costs. Also, the formulation

in (4.7) deals with probabilities: this is consistent with the probabilistic nature of ρ̃i(t) granted by

uncertainty approximation via dropout layers.

Due to the empirical nature of the probability distribution ρ̃i(t), (4.7) has no closed form

and thus we cannot employ classical optimization methods. Furthermore, as we do not have a

differentiable objective function, we cannot apply approaches that depend on gradients. Hence, we

resort to numerical methods that search for the optimal solution within the feasible set of [xs
i (t)].

The following change of variable

pi(t) =

xs
i (t)/

(
xs

i (t) + xs
i+1(t)

)
if i ∈ [1, ∥S∥ − 1]∑

i xs
i (t)/xs(t) if i = S

(4.8)

yields pi(t) ∈ [0, 1], ∀i ∈ S, which simplifies the search to the N-dimensional variable space with

fixed bounds [0, 1] on all variables. Note that the first ∥S∥ − 1 variables pi(t) represent the relative

amount of shared capacity assigned to slice i with respect to the slice i + 1, while the last p∥S∥(t)
represents the overall amount of shared capacity assigned to the services. Therefore, the variable

change in (4.8) serves the following purposes: first, the constraint on the sum of the variables

is now enforced through a constraint on each variable; second, we avoid ties between variables,

allowing a safe exploration of the solution space where we can focus one variable, and changing

its pi(t) value within the entire range without impacting any of the other variables pj(t) for j ̸= i.

Algorithm 1 details the numerical solution for shared resource assignment adopted by AZTEC.

A main function takes as input the total available shared capacity xs(t) and the empirical

distribution of the capacity needed by each service in the next time interval ρ̃i(t). Two helper

functions, COST and TRANSFORM, compute the cost expected value for a given assignment

p1(t), . . . , p∥S∥(t), and transform pi(t) back to xs
i (t), respectively. Thanks to the variable change

in (4.8), we can use a gradient-free algorithm that works with constrained input variables for

the minimization of (4.7). In particular, we used the BOBYQA algorithm [97], a gradient-free

optimizer that supports constrained variables.

All ratios of shared capacity are initialized to 0.5, i.e., all slice start with the same amount

of resources. However, given the possibly high number of slices that can be included in the

system, there may be different local minima and there exists the chance of getting stuck in a local



58 Anticipatory Capacity Allocation for Cost-Efficient Network Slice Management

Algorithm 1: Shared resource assignment algorithm

Function TRANSFORM(p1, . . . , p∥S∥):

xs
∥S∥ = p∥S∥xs(∑∥S∥−1

i=1

∏∥S∥−1
j=i

pj
1−pj

)
+1

xs
i =

(∏∥S∥−1
j=i

pj

1−pj

)
xs

∥S∥, i ∈ [1, ∥S∥ − 1]
return xs

1, . . . , xs
∥S∥

Function COST(p1, . . . , p∥S∥):
xs

1, . . . , xs
∥S∥ ←TRANSFORM (p1, . . . , p∥S∥)

X ←
∑

i κsP (ρ̃i > xs
i )

return X
Function MAIN(xs, ρ̃i):

c← BOBYQA(COST(p1 = 0.5, p2 = 0.5, . . . , p∥S∥−1 = 0.5, p∥S∥))
p0

1, . . . , p0
∥S∥ ← GOLDEN (c(p∥S∥))

p1, . . . , p∥S∥ ← BOBYQA (p0
1, . . . , p0

∥S∥)
xs

1, . . . , xs
∥S∥ ←TRANSFORM (p1, . . . , p∥S∥)

return xs
1, . . . , xs

∥S∥

minima that does not deliver a good performance. To reduce the probability that this happens, we

perform a preliminary search for the best starting p∥S∥(t), via the Golden Section method [98] and

considering p∥S∥(t) as the only variable for the cost.

4.5. Evaluation Results

As a preliminary step in our evaluation of AZTEC+, we investigate the impact of including the

knowledge of the estimated uncertainty in the forecast produced by the different DNNs that are

part of the framework.

4.5.1. Harnessing the Forecast Uncertainty

As presented in Section 4.2, we leverage a recent result on the approximation of uncertainty in

DNN to include a safety margin in the model forecast. Figure 4.4 visually shows the benefit of

this design choice, by juxtaposing the performance of AZTEC+ with and without uncertainty; in

the second case, dropout layers are deactivated during test, and all DNNs produce a single-value

output. In each plot, we report the anticipatory allocation of capacities xd
i (t) and xs

i (t) to the target

slice i, as well as that of the total shared capacity xs(t); the actual demand is on the background.

The plots illustrate well how the time-varying resource allocation achieved by AZTEC+ nicely

follows the fluctuations of the slice traffic. More interestingly, AZTEC+ (in the top plot) achieves a

more reliable assignment of slice resources by accounting for the level of uncertainty of the

predictions. The total capacity xd
i (t) + xs

i (t) is smoother and avoids situations where the

demand cannot be serviced. Conversely, the framework not accounting for uncertainties (in

the bottom plot) yields a capacity allocation that is noisy and incurs in substantial SLA violations

due to unsatisfied demands.
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Overall monetary cost 0.35

xd
i (t) xs

i (t) xs(t) λi(t)

0 AM 4 AM 8 AM 12 PM 4 PM 8 PM 0 AM

Overall monetary cost 0.71

Figure 4.4: Time series of sample resource allocations. Top: AZTEC+ framework. Bottom:
equivalent framework where no uncertainty estimates are used. Adapted from [7]. © 2020 IEEE.

In addition, AZTEC+ achieves such a result while saving on the amount of allocated resources

(note the lower xs(t) curve), which ultimately results in an overall monetary cost that is half of

that incurred by the framework without uncertainties. While this is an excerpt from a specific test,

we recorded similar gains for all settings explored in our analysis.

4.5.2. Capacity Breakdown

Fig. 4.5 illustrates the capacity breakdown for different instantiation penalties (i.e. ki = 1
(Fig.4.5a), ki = 10 (Fig.4.5b), ki = 50 (Fig.4.5c), ki = 100 (Fig.4.5d)) as well as reconfiguration

penalties (i.e. kr = 0.1, kr = 0.5, kr = 1, kr = 10)). Across all results, a consistent trend is

observed: a greater proportion of traffic is assigned to the more flexible shared capacity when the

reconfiguration fee is low, while redirecting traffic to the dedicated capacity becomes more cost-

effective as kr increases. Indeed, over-provisioning dedicated resources becomes more practical

than reconfiguring shared resources as kr grows. Additionally, we can also notice that the usage of

shared capacity is higher as ki increases.

AZTEC+ tends to have higher SLA violation when using more resources from the shared

capacity (low reconfiguration penalty kr) than when using more resources from the dedicated

capacity. This is a direct consequence of the selection of longer T ∗
l . We observe a high variation in

the usage and distribution of shared/dedicated capacity depending on the instantiation penalty cost,

ranging from 70% of dedicated capacity when reconfiguration penalty kr = 1 and instantiation

penalty ki = 1 to a 30% when kr = 0.1 and ki = 100. Indeed, when the reconfiguration cost is

higher, the system tends to allocate the maximum dedicated capacity for each slice. Finally, there is

a clear trade-off between kr and ki and their impact on resource allocation. For higher instantiation

penalties and lower reconfiguration penalties, more resources are assigned to shared capacity xs.

Conversely, for higher reconfiguration penalties, resources are allocated to dedicated capacity xd.
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Figure 4.5: Total dedicated capacity
∑

i∈S xd
i (t) and shared capacity xs(t) allocated by

AZTEC+ versus κr. Numbers denote the fraction of re-orchestration opportunities with
insufficient allocated resources.

4.5.3. Block III Internals

In Figure 4.6, the detailed operativity of Block (III) is illustrated. The vertical black line

represents the actual value of the dedicated capacity xi
d(t). The grey line represents the probability

that the real load is below the dedicated capacity (δi(t)) and the red line represents the probability

that the real load exceeds the dedicated capacity (ρi(t)), potentially leading to an SLA violation.

The probability distribution is obtained from the Helper output. The blue dot indicates the actual

real traffic value λi(t), which Block (III) is unaware of. Block (III), by solving the optimization

problem, assigns shared capacity to slice i, aiming at minimizing the red area. The green dot

represents the assigned shared capacity for slice i, xi
s(t), derived from the Block (III) output. There

are four possible scenarios to consider, as follows.

(i) No allocation. If given the dedicated capacity allocated to slice i by Block (I), the probability

of an SLA violation is 0, then Block (III) does not allocate resources from the shared capacity

(see Fig. 4.6a). Here, Block (III) observes the probability distribution derived from the helper

output and the value of static capacity xi
d(t) allocated by Block (I) and decides not to allocate

resources from xs(t).
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Figure 4.6: Different scenarios of cumulative probability of SLA violation. (a) No allocation
of shared resources. (b) SLA minimization. (c) Maximum allocation of shared resources. (d)
Overprovisioned allocation.

(ii) SLA minimization. If given a certain dedicated capacity xi
d(t), the probability of an SLA

violation is high, then Block (III) allocates resources from the shared capacity (see Fig. 4.6b). A

high probability of incurring an SLA violation is measured, and then enough resources from xs(t)
are allocated to slice i to minimize the probability of incurring SLA violations.

(iii) Max. allocation. The optimization problem solved by Block (III) allocates shared capacity to

slice i to minimize the probability of SLA violations. In a certain scenario, the allocated shared

capacity is enough to minimize the probability of SLA violations based on the information obtained

from Helper, but the actual real traffic value (λi(t)) exceeds the allocated resources xs
i (t). This

situation could occur for two reasons: either the forecast provided by Helper for that timeslot was

not accurate enough, or there were not enough shared capacity resources available. In the latter case,

Block (III) aims to allocate as many resources as possible to minimize the SLA violation penalty.

(iv) Overprovisioned allocation. A last scenario may happen when Block III allocates resources

from the shared capacity xs(t) that are not currently needed. In this scenario, the information

provided by the Helper suggests that there is a high probability of violating the SLA by only
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Figure 4.7: Instantiation normalized cost for reconfiguration cost scaling factors kr = 0.1 (a),
kr = 0.5 (b), kr = 1 (c), kr = 10 (d).

allocating the dedicated capacity xd
i (t). So, Block (III) allocates shared resources to slice i with

the intent of preventing SLA violations. However, upon computing the actual value λi(t), the

shared resources allocated were not necessarily needed as the real traffic was already below the

dedicated capacity allocated by Block (I). As a result, there is an unnecessary overprovisioning

of resources (see Fig. 4.6d). It is important to note that Block (III) operates only leveraging

information provided by the output of Helper, Block (I), and Block (II), and not using the actual

real value λi(t) that is not known at the time of allocating resources.

4.5.4. Instantiation Cost Analysis

Fig. 4.7 shows the contribution of only the instantiation to the overall cost for all the

different configurations (kr 0.1- 10, ki 1-100). We observe that for low values of reconfiguration

cost, when the instantiation cost ki increases, Block (0) selects larger extended intervals trying

to minimize the instantiation cost derived by the dedicated capacity. Nevertheless, since for

low reconfiguration cost, the system tends to allocate a higher amount of total shared capacity,

AZTEC+ overall performance is similar to AZTEC as can be seen in Fig. 4.8a. When increasing

the reconfiguration cost, AZTEC+ allocates a lower amount of total shared capacity resulting in
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Figure 4.8: Normalized monetary cost of AZTEC+ and benchmarks versus the instantiation cost
scaling factor ki for different reconfiguration cost scaling factors.

lower normalized instantiation cost mainly due to the minimization of the dedicated capacity

instantiation cost. For kr = 10, there is a decreasing step between ki = 50 and ki = 70;

allocating low amount of total shared capacity, AZTEC+ is more effective in reducing the

normalized instantiation cost by dynamically selecting the extended interval T ∗
l that minimizes the

dedicated capacity instantiation cost.

4.5.5. Monetary Cost

We next assess the performance of AZTEC+ against three benchmarks: Traffic Predictor, a

state-of-the-art mobile net-work traffic predictor [99]; Deepcog, capacity forecasting model for

network resource allocation [38] and AZTEC, as the extended and improved work [7]; all solutions

are based on custom-built DNNs. Traffic Predictor is a traditional demand predictor that is agnostic

of all resource management costs, whereas Deepcog makes anticipatory decisions on capacity

allocation that aim exclusively at minimizing the trade-off A of overprovisioning and non-serviced

demands.
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Figure 4.9: Cost breakdown for AZTEC+ (solid) and AZTEC (hatch) for the corner cases depicted
in Section 4.5.4. The cost of shared capacity is shown in gray. The cost of dedicated capacity is
shown in red at the bottom. The cost of SLA is depicted in orange, the cost of Instantiation is
shown in green, and the cost of Reconfiguration is depicted in blue.

Fig.4.8 provides the result of the comparative evaluation among AZTEC+ and the

aforementioned benchmarks, showing the overall normalized monetary cost of the anticipatory

resource management against instantiation cost ki for different reconfiguration cost kr values. The

gain of AZTEC+ compared with Deepcog and Traffic Predictor is clear as AZTEC+ outperforms

both benchmarks in any configuration. Deepcog has an increment on the cost for the operator by a

factor that ranges from 2.69× to 4.39× when the reconfiguration cost kr is kr = 0.1 (Fig. 4.8a)

and ranges from 8.91× to beyond 30× for high reconfiguration costs (Fig. 4.8d). As expected, the

benchmark solutions suffer more when reconfiguration costs grow, which they neglect. However,

even in a situation favorable to reconfiguration-agnostic approaches where such costs are small

(e.g., for kr = 0.1), AZTEC still yields a lower economic fee. Then, we can discriminate two

scenarios: Deepcog vs. Traffic Predictor and AZTEC+ vs. AZTEC. The cluster of Deepcog and

Traffic Predictor remains constant regardless of reconfiguration. The capacity predictor of Deepcog

avoids SLA violations by overprovisioning. At the same time, the Traffic Predictor, using MSE as

a loss function, tends to forecast the traffic without discriminating if the predicted value is higher

(overprovisioning) or lower (SLA violation) than the truth value. Depending on the value of ki,

the instantiation cost may become higher than the SLA cost, meaning that using Deepcog can be

more expensive than using a standard loss function for forecasting.
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For low reconfiguration cost ( kr = 0.1), AZTEC+ monetary cost is almost the same as

AZTEC, being slightly worse (Fig. 4.8a). When the reconfiguration cost (kr = 0.5) is increased,

the normalized cost of AZTEC+ decreases substantially, using bigger extended intervals and less

shared capacity. This is thanks to the dynamic selection of T ∗
l , which varies depending on the

instantiation cost, while for AZTEC it is set manually. From kr = 0.5 (Fig. 4.8b), the usage

of an optimization block for selecting T ∗
l in order to minimize the instantiation cost, leads to

outperforming AZTEC from ki = 10 onwards, in a range of 1.62× to 2.27×. For kr = 1, (Fig. 4.8c)

AZTEC+ outperforms AZTEC in the whole range of ki, from 1.08× to 3.38×. In the extreme

case of kr = 10 (Fig. 4.8d), AZTEC+ outperforms AZTEC from 1.11× to 5.85×. The conclusion

is that depending on the reconfiguration cost, we achieve a benefit in terms of monetary cost by

automatically selecting the best-extended interval. AZTEC extended interval manual selection leads

to sub-optimal performance, that can be improved by leveraging the novel introduced framework,

that automatically and dynamically selects the window that minimizes instantiation cost.

4.5.6. Monetary Cost Breakdown

This section analyzes how each cost impacts the extreme cases (kr=0.1, ki=1; kr=10, ki=1;

kr=0.1, ki=100; kr=10, ki=100). We will compare our performance with the primary benchmark,

AZTEC, to depict the intrinsic contribution of the different costs. Regarding the scenario with

kr=0.1 and ki=1 (Fig. 4.9a), it is important to note that we will encounter more overprovisioning

costs and more SLA violation, but less instantiation cost. The overall cost is higher than AZTEC.

This is mainly due to a larger extended interval (21 vs 6), which means AZTEC+ experiences

more overprovisioning and SLA. Despite the overall cost, having a low reconfiguration cost kr

often leads to a more extensive span of shared capacity. However, the larger window also results

in more overprovisioning costs. We also achieve our primary goal, minimizing the instantiation

cost. When the reconfiguration cost is high (kr=10, ki=1, Fig. 4.9c), AZTEC+ tends to have

negligible shared capacity. In this case, we have less overprovisioning cost, less SLA cost, and

less instantiation cost, having a slightly bigger window size (7 vs 6). When kr=0.1 and ki=100

(Fig. 4.9b), we observe a considerable instantiation cost. Even with a huge window, we can

observe how significant the instantiation penalty is. This is due to the cost of instantiating the

total shared capacity. Since kr is low, the system allocates a large total shared capacity, which is

costly to instantiate while minimizing the cost derived from the allocation of the dedicated capacity.

Still, AZTEC+ provides a similar overall monetary cost. Lastly, for kr=10, ki = 100, shown in

Fig. 4.9d, AZTEC+ tends to have a lower amount of total shared capacity allocated due to a high

reconfiguration cost. Thus, in this case, AZTEC+ minimizing the dedicated capacity instantiation

cost results in minimal overall instantiation cost.
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Figure 4.10: Extended Interval T ∗
l across 12 cities of France for different kr and ki.

4.5.7. Comprenhensive City Analysis

After demonstrating that AZTEC+ cost minimization and extended interval optimization

effectively outperformed the existing benchmarks, we extend our investigation to a broader urban

context. The goal is to validate the scalability and adaptability of our enhanced model across

different cities in France. Specifically, we examine the potential variances in the Extended

Interval T ∗
l of our model in the following cities: Dijon, Grenoble, Lille, Lyon, Marseille,

Montpellier, Nantes, Nice, Paris, Reims, Rennes, and Strasbourg. For each city, we deploy

the AZTEC+ framework aiming to identify the values of T ∗
l for the different ki and kr that

minimize the overall cost.

Fig. 4.10 illustrates the selected extended interval T ∗
l for various configurations of kr and ki for

the 12 cities mentioned previously. The primary finding is that as the instantiation cost ki increases,

the model selects a longer extended interval Tl∗. This is because instantiate resources becomes

more expensive. As a result, the system tends to select a larger extended interval. Additionally,

for any instantiation cost ki, an increase in kr leads to a lower selected extended interval T ∗
l . In

essence, we observe a trade-off between the impact of kr and ki. When both values are low, ki

has a greater impact on the selection of T ∗
l (resulting in a larger value). If ki remains low but kr

increases, the window T ∗
l decreases. When both increase, the window continues to grow. Given the

complexity of the framework and the heterogeneity of the different services’ time series for each

city, it is evident that some outliers deviate from the overall trend. However, it is important to note

that also for these outliers selected values of T ∗
l effectively minimizes the overall instantiation cost.
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4.6. Summary

This chapter presented AZTEC+, a multiscale time orchestration framework that optimizes

operational costs for network slicing. It focuses on minimizing costs from overprovisioning, SLA

violations, resource allocation, and resource instantiation by leveraging AI-based forecasting and

optimization algorithms. AZTEC+ divides network capacity into dedicated and shared resources for

each slice, ensuring dynamic and efficient resource management. The chapter highlights the trade-

offs involved in balancing cost and performance, emphasizing zero-touch resource orchestration.

It concludes with an in-depth evaluation of AZTEC+ and its performance, demonstrating its

effectiveness compared to existing benchmarks.





5 Mobile Networks: Taxonomy,
Roaming, Performance and

Optimization

In this chapter, we will conduct an in-depth exploration of end-user performance across various

MNAs as they deliver services like web browsing and video streaming in the context of NSaaS

while users are roaming. Roaming is a crucial service that facilitates the operations of MNAs in

multiple countries, eliminating the necessity of seeking a local communication provider in each

country where their end-users are active. MNAs have the possibility to either connect to directly

connect to a local MNO or to leverage on the extensive global network infrastructure established

by international carriers, such as incumbent tier-one operators like T-Mobile, Telefónica or Tata.

Our focus will be on understanding how effectively different MNAs support high-demand

applications delivered as NSaaS during roaming, using performance metrics that directly impact

user experience, such as DNS resolution times and traceroute paths. These metrics are vital for

assessing routing efficiency and potential latency issues, both of which are critical for seamless

web browsing and video streaming. By analyzing these performance aspects within the roaming

context, we aim to provide insights into optimizing NSaaS offerings, particularly regarding how

different network connection choices impact end-user experience when crossing borders.

5.1. Roaming for Virtual Operators

MNOs have customers, which are the end-users of mobile devices that normally attach to

the MNO’s network to access mobile communications services. The MNO represents the Home

Mobile Network Operator (HMNO) for these end-users. The customers of an MNO can also

attach to other radio networks owned by different MNOs. This happens when the HMNO does

not offer radio coverage in the geographical region where the end-user wants to connect and

access mobile communication services. A typical example for this is when the end-user travels

abroad, in a foreign country. In this case, the end-user is roaming, and thus can attach to a “visited”

cellular network, which the visited MNO operates in the foreign country. Mobile roaming is a

fundamental characteristic of mobile service, which the cellular ecosystem enables through a

tightly interconnected network of carriers and MNOs [54].
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Figure 5.1: Internet access options when roaming home-routed roaming, local breakout, and IPX
hub breakout roaming configurations.

5.1.1. Roaming Background

MNOs commonly connect with each other through an IP Packet Exchange (IPX) network.

An IPX [54] is a hub service, to which MNOs connect over a private IP backbone network.

Usually, telco carriers operate as IPX-Ps, offering the IPX service, and interconnecting in a full

mesh with all the other IPX-Ps to for the IPX Network. An IPX-P has connections to multiple

MNOs, and thus enables each MNO to connect to other operators via a single point of contact.

The interconnections between MNOs are accompanied by roaming agreements that enable the

operators to apply policies, control network access for roaming subscribers, and manage their

roaming services. Figure 5.1 illustrates the three main schemes that MNOs employ for providing

data roaming services, which we further describe below.

With Home-routed Roaming (HR) [100], the IP address of the roaming user is provided by

the home network. All traffic to and from the mobile user is routed through the home network, for

which a GPRS Tunneling Protocol (GTP) tunnel is set up between the User Plane Function (UPF)

of the visited network and the UPF of the home network (solid red path in the figure) for the Data

plane connection and Security Edge Protection Proxy Network Function (SEPP) of the visited

network and the home network for the Control plane connection. With the IP end point in the

home network, all services will be available in the same way as in the home network.

When Local Breakout (LBO) [100] is used, the IP address of the roaming user is provided by

the visited network. The GTP tunnel is terminated at the UPF of the visited network and IP-based

services can be accessed directly from there (purple path in the figure). This does not add latency

and reduces network resource usage, but may restrict access to private services in the user’s home

network. Service control and charging also become more complex using LBO.
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IPX Hub Breakout (IHBO) [54], or regional breakout, provides an alternative to overcome

the limitations of home-routed roaming and local breakout. Here, the IP address of the roaming

user is provided by the IPX network. The GTP tunnel from the UPF in the visited network

terminates at a UPF in the IPX network (green path in the figure). There may be multiple UPFs

so that latency and resource usage can be reduced by selecting one geographically close to the

visited network. As the IPX network maintains a trusted relationship with the home network, it

may assign an IP address recognized by the home network to the roaming user, thereby allowing

the user access also to private services in the home network. IHBO can also simplify setup and

management as a single GTP tunnel, terminated in the IPX network, can be used for roaming users

from different home networks.

These configurations might have an impact on the communication performance [101]. For

instance, when the node accesses services inside the visited network, the performance is likely

to be worse in the HR case, because all packets travel twice between the visited and the home

country; less so when the communication peer is in a third country and minimally when accessing

services in the home country. This may also have implications in the selection of Content Delivery

Network (CDN) when roaming abroad, because the mobile user will access a server in the home

network rather than one close to their location.

5.1.2. Mix-and-match: MVNO and MNA Roaming

In this section, we discuss and analyze the global operations for the different types of (virtual)

operators we introduced in Section 2.3.1 (see Figure 5.2). Previous work [101] shows that currently,

the vast majority (if not all) MNOs use HR for roaming, assuming the associated performance

penalties that it implies. As we show in the first column of Figure 5.2, this means that the MNO

relies for radio access on the visited MNO, while using its own core network functions.

In the case of the MVNO, when end-users of MVNOs roam internationally, there are several

options for managing their connectivity. Given that, by definition, a light MVNO relies on a single

base MNO, it then follows that they also rely on the roaming agreements that the base MNO has

with visited networks in the roaming location. The difference between the light MVNO and the

full MVNO is that, in the latter case, since the MVNO operates their own core network, they also

handle roaming independently from the base MNO (e.g., they rely on a roaming hub service from

an IPX-P). Thus, the full MVNO use their own core network for the roaming solution, while the

light MVNO relies on the base MNO’s core network.

Regarding the MNAs, since they rely on multiple base MNOs (accross different economies),

they can obtain connectivity while roaming through a local MNOs with which they have a direct

agreement (i.e., the local MNO in the visited country acts as a base MNO for the MNA) or they

can connect to a visited MNO that has a roaming agreement with one of the MNA’s base MNO

elsewhere. Depending on whether it is a full or a light MNA, it will use its own core network, or it

will rely on the core network of one of the base MNOs. Notably, multi-country MNA break out in

the same country or in the same region where the device is roaming.
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Figure 5.2: Roaming operations for the different types of mobile operators.

Thick MNAs, however, bring more complexity to the landscape: they only operate specific

network functions (e.g., they operate only the pGw/UPF over third-party infrastructure) and they

are able to leverage the eSIM technology as well. Providers like Airalo or HolaFly function as

thick MNAs, and they partner with few base MNOs to sponsor the eSIMs that travelers can use

world-wide, either in roaming or native configuration.

5.2. Experimental Setup

We perform a number of experiments to understand roaming operations for MNAs and

characterize their performance. To this end, we subscribe to several MNAs in the U.S., and

we perform the experiments while roaming in different countries in Europe (Spain) and the US. For

Europe, we use three different MNAs, namely Google Fi, Truphone and Twilio. For the US, we

also characterize the performance of Google Fi and Truphone. Also, we will run the experiments

using the local MNOs that have partnership with the aforementioned MNAs. Later in the document,

we will provide a detailed explanation for our choice of also using KPN (Netherlands), elucidating

the reasons behind this selection within the context of our study. Fi is Google’s MNA service. Fi is

only available for U.S. customers. This means that we must activate any new Fi account in the

U.S., and, only after that, we can use it internationally.1 Fi only works with a limited set of mobile

phones, and some features (e.g., the capability of dynamically switching between underlying

MNOs) are supported only in a subset of the devices that are “designed for Fi”,2 which in most

cases only include the U.S. version of the devices. Fi automatically connects to the Virtual Private

Network (VPN) provided by Google. This not only provides security for the connection, but it

also allows to preserve the IP address used by the mobile device when communicating (even if the

1Activate Google Fi service: https://support.google.com/fi/answer/6078618?co=GENIE.Platform%3DiOS&hl=en&
oco=0

2Fi supported phones: https://fi.google.com/about/phones/.

https://support.google.com/fi/answer/6078618?co=GENIE.Platform%3DiOS&hl=en&oco=0
https://support.google.com/fi/answer/6078618?co=GENIE.Platform%3DiOS&hl=en&oco=0
https://fi.google.com/about/phones/
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MNO used to attach to the network varies). It is possible to disconnect the VPN service manually.

In the US, Fi uses T-mobile, Sprint and U.S Cellular as base MNOs3. Fi also connects to a

large number (millions, as claimed by Fi) of pre-selected WiFi hotspots. While roaming, Fi claims

that it has coverage is over 200 countries, but provides very little information about how they

achieve this. In particular, Fi announced an agreement with MNO Three (owned by Hutchison

Telecommunications) to improve performance for end-users in roaming [102]. While the selection

of the base MNOs is automatic, it is possible to force the the MNOs used by Fi using dialer

codes [103]. These codes allow the selection of the base MNOs; however, they do not allow the

explicit selection of the visited MNOs while roaming. Changing the base MNOs may affect the

visited MNOs (which depends on the roaming agreements of the base MNOs with the visited

MNOs available in the visited countries. Based on the publicly available information, we classify

Fi as a light MNA, according to our proposed taxonomy.

Truphone is an MNA with headquarters in the UK, and with (MVNOs) separate agreements

with base MNOs in 8 countries (Australia, Germany, Hong Kong, Poland, Spain, the Netherlands,

United Kingdom and the United States) and “bi-lateral roaming agreements in place with a wide

range of operators around the world” (from https://en.wikipedia.org/wiki/Truphone). Truphone

is a light MNA, as per the taxonomy we propose. The company has built a mobile network with

core network technology distributed across four continents. Truphone uses these local Point of

Presence (PoP) to reduce the distance that mobile traffic has to travel, which comes with a promise

to reduce latency, and improve the end-user experience.

Twilio’s Super SIM is an MNA targeting IoT devices [104]. Twilio’s Super SIM can connect

to 343 networks in 174 countries [105] and it uses its own mobile core that runs in the AWS

cloud. As such, Twilio’s Super SIM is a full MNA according to our taxonomy. However,

local breakout outside the U.S. is still under development at the time of this writing. We

also tested Twilio’s Wireless SIM, which is an MVNOs operating on top of T-Mobile (US)

as base MNOs (similar to Google Fi) [106].

To perform the measurements in Europe, we subscribed to the three aforementioned MNAs

services in the US, and ran experiments while roaming in Europe (Spain). For the US measurements,

we also subscribe the two most impactful MNAs while roaming in USA. For end-user equipment,

we use Pixel 4A (U.S. version) mobile phones in all experiments. In addition to the MNA

services, we also subscribe to a local MNOs, namely, Orange (Spain), T-Mobile (US) and AT&T

(US) , in order to be able to compare the MNA roaming solution with a local breakout roaming

configuration. Moreover, we also subscribed to Three (UK/AT based), in order to also consider the

case of a regional breakout in Europe (based on the configuration of Fi). Finally, we subscribed to

KPN (Netherlands), since our subsequent experiments in the US reveal that Truphone’s e-SIM

configurations are based in the Netherlands, and they have chosen KPN as base MNOs. In the

case of Fi, we can use the dialer codes we described earlier to select the base MNOs, so we

toggle between the different possibilities available during the measurements. Also, in the case of

3See the answer to “What is unique about Google Fi’s network?” in the FAQ: https://fi.google.com/about/faq/.

https://en.wikipedia.org/wiki/Truphone
https://fi.google.com/about/faq/
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Fi, even though the default behavior is to connect the VPN, we performed measurements with

and without VPN. In Table 5.1 we include all configurations that we used for our experiments

while measuring in Spain.

Table 5.1: Experimental configurations: MNAs, base MNOs and visited MNOs we used for
measurements in Spain. the Breakout column includes the breakout point identified through our
experiments.

Name MNA Base MNO Visited MNO Comments Breakout
Fi/TM/VPN Fi T-Mobile (US) Vodafone (ES) VPN enabled US

Fi/TM/noVPN Fi T-Mobile (US) Vodafone (ES) VPN disabled US
Fi/3/VPN Fi Three Movistar / Orange/ Vodafone/ Yoigo VPN enabled US

Fi/3/noVPN Fi Three Movistar / Orange/ Vodafone/ Yoigo VPN disabled UK
Truphone Truphone Orange (ES) N/A Europe

Twilio_WS N/A T-Mobile (US) Movistar MVNO US
Twilio_SS Twilio N/A Movistar MNA US

Orange N/A Orange (ES) N/A Baseline (Spain) Spain
3NET N/A Three Movistar / Orange/ Vodafone/ Yoigo UK

Table 5.2: Experimental configurations: MNAs, base MNOs and visited MNOs we used for
measurements in the US. the Breakout column includes the breakout point identified through our
experiments.

Name MNA Base MNO Visited MNO Comments Breakout
Fi/TM/VPN Fi T-Mobile (US) N/A VPN enabled US

Fi/TM/noVPN Fi T-Mobile (US) N/A VPN disabled US
Truphone Truphone KPN (NL) AT&T (US) Europe

KPN N/A KPN(NL) AT&T (US) Europe
T-Mobile N/A T-Mobile ( US) N/A Baseline (US) US

AT&T N/A AT&T (US) N/A Baseline (US) US

For each of these configurations, we run the following set of experiments:

Traceroute: We performed a number of traceroutes to discover and characterize the

paths from the end-user to reach different destinations. We selected targets in the US (i.e.

home), in Spain (visited country), in Belgium (visited region) as well as content served by a

CDN.

DNS measurements: We measured the resolution time for both cached and non cached

domain names.

Web performance: We measured the Page Load Time (PLT) for web pages hosted

by a server located in the US (home), Spain (visited country), Belgium (visited region) as

well a served by a CDN.

Video performance: We measured the average quality, the number of rebuffering

events and the bandwidth obtained while streaming.
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5.3. MNA Roaming Configuration

In order to learn about the MNAs’ underlying infrastructure and roaming configuration, we

run traceroute from end-users (roaming) in Spain towards four different targets in Europe and

in the US. We repeat the measurements for each experimental end-user SIM configuration that

we include in Table 5.1. We select as targets simple web pages that are not served by CDNs, and

operate from servers located in different countries (namely, ucla.edu (US), uclouvain.be (Belgium)

and url.edu (Spain)). In addition, we also target a web page served by a CDN (i.e., mit.edu). We

performed 20 traceroute measurements for each target, and we only keep the minimum RTT value

observed for each hop, as we are interested in measuring the fixed components of delay at this

stage. We also run additional tests to further assess performance in Section 5.4.

We analyze the data paths, and infer the roaming configuration these operators deploy (e.g., HR,

LBO or IHBO). We infer the geolocation of each hop along the data paths that traceroute uncovers.

For this, we use reverse DNS information, WHOIS information and the Maxmind geolocation

database. We acknowledge the limitations of all these approaches, and mention that given the

country-level geo-location we aim to achieve, the approach we use is accurate enough [107].

By extending the scope of our analysis to include traceroutes from the US, we aim to not only

corroborate our previous findings but also to deepen our understanding of the infrastructure and

roaming configurations specific to the US context. To ensure consistency and comparability with

the previous study, we employ the same set of target destinations consisting of web pages hosted

on servers in Europe and the US. This set includes umich.edu4 as a representative target in the

US, along with uclouvain.be (Belgium) and url.edu (Spain) as targets in Europe. Additionally, we

consider a web page, mit.edu served by a CDN. We repeat the measurements for each experimental

end-user SIM configuration described in Table 5.2. It is worth noting that the difference in

Google Fi between both scenarios (Europe and US) is that in Europe we were able to connect to a

regional breakout (e.g. 3 Network) and the partner T-Mobile whereas in US we only connect to

T-Mobile. Similar to the previous study, we perform 20 traceroute measurements for each target

from the US end-users, compute all available routing paths and record the minimum RTT values

observed for each hop. The geolocation of each hop is inferred using reverse DNS information,

WHOIS and Maxmind geolocation database, following the methodology established in the previous

study. The limitation of these approaches will be discussed later. By conducting this comparative

analysis, we aim to gain insights into the potential variations in the infrastructure and performance

characteristics of MNAs when serving domestic users in the US compared to international roaming

users in Europe. In the subsequent subsections, we will conduct a detailed analysis and comparison

of parallel experiments. These include tracing routes from Europe to the United States and vice

versa (Sec.5.3.1), within Europe, and within the U.S. (Sec.5.3.2), as well as to CDNs (Sec.5.3.3).

4In our previous paper, we used ucla.edu as an US domain, but at the day of performing experimentation in the US,
ucla.edu runs in a CDN. Thus, we found another website with the same features that ucla.edu had in 2022
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Figure 5.3: Hops encountered with the latency towards targets in US, Belgium, Spain
and within a CDN.

5.3.1. Traceroute EU-US and US-EU

Figure 5.3e shows the delays for each hop replying to the traceroute probes from a mobile

device (roaming) in Spain towards a server (ucla.edu) located in the US (the home country). We

can observe that the overall delay to the target varies between 200 ms and 240 ms (20% variation)

across the different SIM configurations (Table 5.1).

One major difference that we observe is the relative location of the transatlantic link in the path.

When we measure Fi/T-Mobile (with and without VPN) or Fi/3/VPN, we find that the transatlantic

link is before the first hop. The large delay value we measure in the first hop (≈200ms), and the

inferred geo-location of the IP address of the first hop in the US both corroborate our deduction.

However, when using the Orange Spain subscription (i.e., the visited MNO that Fi attaches to

in Spain when using Three as base MNO), we find that the first hop geolocates in Spain (the delay

is ≈40 ms, and the geolocation of the IP of the first hop maps to Spain). We can easily identify the

transatlantic link later in the path due to the large increase in the delay (≈200ms), and due to the

fact that the IP geolocation shifts from Spain to the US.

In the case of Fi/3/noVPN we find that the first hop is within Europe (but not in Spain), and that

the transatlantic jump also happens later along the path. Similarly, for Truphone, we observe that

the first hop is within Europe (but not in Spain) and it behaves similarly to a local MNO (namely,

similar to Orange Spain, as we observe in the Fig. 5.3e). However, Truphone has slightly higher

delay values in the first hop compared to Orange Spain, since it breaks out in the Netherlands.

When using Twilio, we observe two large increases in the delay, one in the first hop (≈150ms),

and another one later on (an extra of ≈100ms).

For Google Fi, we further explain the different delay values we observe as effects of two
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specific design factors that the MNA includes in their roaming implementation, namely the HR

roaming configuration and the location of the VPN endpoint. When the VPN is enabled, the first

hop in the data path is the other VPN tunnel endpoint. From the experiments, we conclude that

this is located within Google’s infrastructure in the US. So when the VPN is enabled, the traffic is

routed to Google in the US, and then towards the Internet through Google.

When we disable the VPN, we observe the effect of HR roaming. When using Fi/T-Mobile,

we note that the traffic is first routed to T-Mobile in the US, and it then exits to the Internet through

T-Mobile’s US network. When using Fi/Three or directly Three, we note that the traffic is first

routed to Three network in Europe and then to the Internet through Three’s network.

In the case of Twilio, we can explain the behavior we capture because Twilio breaks out in the

East Coast (VA) [104], while our target is located on the West Coast.

For Truphone, since Truphone breaks out in Europe, the behavior we observe is very similar to

the local MNO (i.e., Orange Spain).

Figure 5.3a and 5.3b show the delays for each hop replying to the traceroute probes

from a mobile device (roaming) in the US towards a server (url.edu) located in Spain and

(uclouvain.be) in Belgium.

We can observe that the overall delay to the target varies between 150 ms and 200 ms (20%

variation) across the different SIM configurations (Table 5.2) for the Spanish server and between

120ms and 180 for the Belgium Server. We observe again the transatlantic link, in this case for all

SIM configurations but not KPN. This is because KPN already has the first hop in europe, inducing

a high penalty already in the first hop. The large delay value we measure in the first hop (150ms) ,

and the inferred geo-location of the IP address of the first hop in the Europe both corroborate our

deduction. For the server located in Spain, KPN has a delay on the last hop of ≈ 200ms and for

the belgian server, 150ms , this is due to having the server located very close to the breakout point.

However, when using the T-Mobile or AT&T subscription (i.e., the visited MNOs that Fi and

Truphone attaches to in the U.S,respectively), we find that the first hop geolocates in the US (the

delay is ≈ 30 ms for T-Mobile and ≈ 40ms for ATT, and the geolocation of the IP of the first hop

maps to US). We can easily identify the transatlantic link later in the path due to the large increase

in the delay (≈100ms), and due to the fact that the IP geolocation shifts from the US to Spain.

When using GF/TM/noVPN, we observe that it has the same hops and almost same latencies for

both servers than TMobile, indicating that has the same routing for the packets than TMobile. In

the case of GF/TM/VPN, the VPN tunneling induces to a complete diferent path of hops for the

packets, having a higher first hop delay (aprox 70ms) but having an approximate delay in the last

hop, but having way less hops compared to GFI/TM/noVPN and T-Mobile (7 vs 14 hops for spain

and 5 vs 12 hops for belgium). For Truphone, we observe that the eSIM configuration belongs to

its base MNO, KPN, but it has the breakout point in the US, since it first hop is in the US. It is

worth nothing that its first hop, even being in the US, is the one with higher latency compared with

GFIs and the benchmarks (≈ 100ms). We can also identify the transatlantic link later in the path

due to the increase in the delay (≈150ms).
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5.3.2. Traceroute EU-EU and US-US

We next analyze the traceroute results we collect from measuring towards a server located in

Belgium (uclouvain.be), which we show in Fig. 5.3f. In the previous section, the measurements

target located in the US. (ucla.edu) forced all the data paths to traverse from Europe to the

US. Consequently, the home routed roaming configuration of the MNAs did not translate into

a significant impact in the overall experienced delay, even when using a local MNO from

Spain, such as Orange. In our current setup, we do observe significant difference in the overall

delays as a consequence of HR roaming, because we keep both the target and all the end-user

devices within Europe.

We observe that for Orange, Truphone and Fi/3/noVPN we measure a significantly lower

delay (between 50 ms and 75 ms) than the remaining SIM configurations. For both Twilio setups

we measure 220 ms of total delay (200% to 300% increase compared to the above-mentioned

operators). Even more, both Fi setups with VPN enabled as well as Fi/T-Mobile/noVPN have

a delay ranging between 300 ms and 400 ms, which represent 500% to 700% increase compared

to the values we measured for the above-mentioned group of operators. We conclude that these

latter SIM configurations are impacted by circuitous routes from Spain to Belgium through the

US. This hairpinning effect is either because of the VPN (for Google Fi) or because of the HR

setup for roaming traffic flowing from Spain to Belgium. We observe smaller delay values for

Orange, Truphone, Fi/3/noVPN because the corresponding traffic never leaves Europe, taking

a much shorter path. We find that Twilio (in both configurations) also uses HR roaming, but the

breakout geo-locates on the US East Coast. Thus, the penalty in terms of latency is lower than

we measure for Fi/T-Mobile, which breaks out in the US West Coast.

To further analyze the impact of the content location within Europe, we further run traceroute

experiments between a mobile device in Spain and a server also located in Spain. We show our

result in Figure 5.3h. If we look at the total delay we captured, we find that Orange Spain gives

the smallest overall delay. We observe the second-smallest overall delay when using Fi/3/noVPN

and Truphone, while the other cases (Fi/T-mobile with and without VPN and Fi/3/VPN) suffer an

exceedingly larger delay (with Fi/T-Mobile/VPN being the largest).

Similar to the previous cases, we can explain these results as side-effect of a combination of

HR and VPN tunnelling. However, in this case, the situation is more extreme because both the

mobile device and the server are located in the same visited country, so the circuitous routing

through the US or through the UK injects the extra delay towards the foreign network twice (to go

and to come back to Spain). We validate this by the two large leaps in delay in Figure 5.3h (one

for the first hop and another one later in the path). Nevertheless, the breakout in Europe (Three,

Fi/Three, Truphone) introduces a significantly lower delay than the breakout in the US (for all

other Fi configurations and Twilio). In the following, we study the traceroute results we collect

from measuring towards a server located in the US, which we show in Fig. 5.3d. We observe that

for GFI/TM/VPN , GFI/TM/noVPN, TMobile and ATT the delay is significantly lower (between
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50 ms and 75 ms) than for Truphone and KPN. It is the same behaviour that we observed in the

EU-EU Traceroute, where Orange, Truphonem and Fi/3/noVPN, having the breakout in Europe,

had the lowest latency compared with the other SIM configurations. For Truphone, we observe

that it already starts with 100ms of delay in the first hop, and it increases until aprox 180ms. we

conclude that this is happening because Truphone’s breakout is in the south west coast and the

measurements were taken in middle-east of US and we are acessing to umich.edu (Michigan).

Finally, for KPN, we observe the same behaviour as FI/TM/noVPN, FI/TM/VPN, and Twilio

setups, having a notably big first hop delay ( aprox 180ms) and achieving 300ms. Again, this is the

behaviour observed due to HR setup for roaming traffic.

5.3.3. Traceroute to a CDN

In this section, we discuss the traceroute results we collected when measuring towards a

CDN-hosted web service (i.e., mit.edu). In this case, the CDN replica located close to the breakout

point (where the end-user traffic is injected to the public Internet) provides the web content, and

thus represents the target for our measurements. We illustrate our results in Figure 5.3g. As

expected, we observe that the end-user experienced the shortest delay when using Orange Spain,

followed by Fi/Three without VPN, Truphone and Three – all Europe-based operators. Both Twilio

solutions, Fi/3/VPN, and Fi/T-mobile (with and without VPN) resulted in much higher delays. This

implies that when the MNA deploys the VPN and/or the HR roaming to the USA, the end-user is

accessing a content replica in the US. When using Fi/3/noVPN or Truphone, the end-user accesses

a content replica in Europe (but not in Spain), resulting in a shorter overall delay. We measure the

smallest overall delay when using Orange, which means that the end-user retrieves the content

from a replica in Spain.

In the Measurements done in the US, we observe that ATT is the one with the shortest delay

(30ms), followed by GF/TM/noVPN, Tmobile and GF/TM/VPN, accessing all of them so the

closest CDN from where the measurements were taken. Next, we find Truphone that has a smiliar

delay in the first and in the last hop (90-110ms), since it is accessing to the closest CDN in the west

coast. Regarding KPN, we also observe the same performance than FI/TM/VPN FI/TM/noVPN

and Fi/3/VPN in the prior measurements, the end-user is accessing to a replica in the Netherlands,

resulting in a high overall delay.

5.3.4. Takeaways

MNOs usually deploy the HR configuration for international roaming (Section 5.1). This

configuration results in an added latency penalty for the end-user, especially when the other

end of the communication is located topologically close to the visited location of the roaming

device [101,108]. We observe a similar behavior for the three MNAs we measured. The difference,

however, comes from the capability of the MNA to change their base MNO (nationally and

internationally), thus implicitly also changing their “home” operator.
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For the delay measurements, we used as a baseline the delay we observe when using Orange

Spain subscription within Spain. This is the delay the end-user would experience when directly

attaching to a local network in the visited country.

Google Fi: When T-Mobile (without VPN) is the base MNO, Fi home-routes the traffic back

to the US, resulting in large penalties for end-users roaming in Spain. This is especially noticeable

when accessing content available locally in Spain/Europe. Even in the case when we target content

served by a CDN, we still observe a large delay penalty. The only case when no significant delay

is added is when the end-user targets content only available in the US. However, using T-Mobile as

base MNO is not the default policy Fi has for end-users roaming in Europe. When in Europe, Fi

switches to using Three as a base MNO. When using Fi/Three without VPN, the latency penalty

(albeit still existent in some cases) drops. This is because, even with HR roaming, the distance

between the visited location and the new “home” location (i.e., U.K.) is smaller compared to

relying on T-Mobile. This approach is a middle-ground between LBO and HR, and significantly

reduces latency with a small overhead in terms of roaming agreements (only one extra agreement

for a whole region). We model this configuration as a “regional breakout” model, similar to the

IPX breakout model.

However, the benefits the “regional breakout” bring are lost when the Fi end-user enables the

VPN service (which is the default behavior for Fi), because the other endpoint of the tunnel is

located in the US.

When measuring from the US, we observe a very similar performance with its base MNO,

namely, T-Mobile, in both configurations (i.e. with and without VPN). As it is a service that

you can only subscribe within the US, it makes sense that they have a better performance in the

US in all configurations than in Europe if the packets should be routed to the HR. We observe

that having the aforementioned Regional Breakout, the first hop has 4 times longer delay than

doing HR (20 ms GFI/TM/noV PNUS vs 80 ms delay GFI/Three/noV PNEurope) for all

the accessed domains. On the contrary, accessing to a domain within Europe, the last hop using

regional breakout decreases dramatically the delay ( 127 ms GFI/TM/noV PNUS vs 58 ms

delay GFI/Three/noV PNEurope ) demonstrating the huge impact that and advantages that

Regional Breakout has for users in roaming.

Truphone: Overall, we observe that Truphone provides a delay experience slightly higher than

that of the local MNO in the visited country (i.e., Orange Spain) as it breaks out in Netherlands.

From the measurements performed in the US, we find that the breakout point is in the west-coast

of the US, having a worse performance than GFI but still improving its base MNO, namely, KPN,

that is using HR. Also, Truphone was worse performance than ATT, its visited MNO. We thus

confirm that Truphone uses their POPs to implement the Regional Breakout approach to reduce

the distance that mobile traffic has to travel. We observe that this indeed reduces the delay.

Twilio: In the case of Twilio, both configurations (i.e., Super SIM and Wireless SIM) rely

on HR roaming back to the USA with the corresponding penalties in terms of delay.5 However,

5Some resources within the Twilio (i.e., the Super SIM API and Internet breakouts outside of the United States,
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because Twilio breaks out in the US East Coast, the penalties are reduced in our case that the

device is roaming in Europe. Devices roaming in the Asian Pacific region for instance, should

observe the opposite effect.

5.4. MNA Performance

Our traceroute results confirmed that MNOs implement "regional breakout" to reduce the

distance that mobile traffic has to travel compared to the HR roaming configuration. However, it

is unclear how this approach further improves the end-user experience for popular applications

and services. In this section, we evaluate the impact of the MNA roaming configuration on DNS

resolution delay, web browsing performance and video streaming quality.

5.4.1. DNS Resolution Delay

We measure the DNS resolution delay using the different experimental configurations in

Table 5.1 for Europe and Table 5.2 for the US to compare their performance. We first measure the

resolution delay for a non-cached name. In order to do that, we set our own authoritative domain,

and we configure it with a wildcard DNS record, so it responds to all names under that domain. We

then perform queries for unique names under our domain, ensuring that the name queried is never

repeated, ensuring that caching is not involved in the resolution. One of the authoritative servers is

located in Spain, serving the worst case for roaming devices as we inferred from the traceroute

experiments (see Figure 5.3). For the USA measurements, we also configured a wildcard DNS

resolver using Amazon Web Services (AWS), specifically on the Amazon S3 platform located in

the US. We did 20 queries for each experimental configuration for the end-user SIM.

In Figure 5.4a, we show the delays we measure while querying a non-cached and cached domain

names. We note that two clusters of operators emerge while querying non-cached domain names.

First one includes both VPN-enabled Fi configurations (namely, Fi/TM/VPN and Fi/3/VPN),

which exhibit the largest DNS resolution delay, followed by Fi over T-Mobile without VPN

(Fi/TM/noVPN), and the two Twilios SIMs.6 We observe that a second cluster of operators

includes Three, Fi over Three (without VPN), Truphone and, finally, the (native) Orange with the

smallest delay. We obtained similar results to Orange Spain with other local MNOs (e.g., Vodafone

Spain), which, again, we do not include in Figure 5.4 to improve readability. These operators show

much smaller resolution delay, comparable to the one a use connecting via a local operator in the

visited country might experience.

Overall, we find that both VPN-enabled Fi configurations experience a surprisingly long delay

(i.e., the mean delay is over 550 ms) and also a high variance. Fi over T-Mobile without VPN

such as Frankfurt, Germany) are still in Pilot or Beta at the time we performed our measurements in July-August 2021.
Thus, our results are consistent with the Twilio configuration for Super SIM, where traffic breaks out to the Internet via
the Twilio Mobile Core in Ashburn, US.

6Figure 5.4 depicts only one Twilio configuration (Twilio_WS) to avoid cluttering the plot; however, we found very
similar results for both Twilio solutions for connectivity.



82 Mobile Networks: Taxonomy, Roaming, Performance and Optimization

FI/3/VPN
FI/3/noVPN

FI/TM/VPN
FI/TM/noVPN

Orange
3NET Truphone

Twilio SS
0

100

200

300

400

500

600

700

La
te

nc
y 

(m
s)

Non-Cached
Cached

(a)

FI/TM/VPN
FI/TM/noVPN

T-Mobile
Truphone

ATT KPN
0

100

200

300

400

500

600

700

La
te

nc
y 

(m
s)

Non-Cached
Cached

(b)

Figure 5.4: DNS resolution delays we measured for a non-cached and a cached DNS name in (a)
Spain and (b) US, using different experimental configurations for the end-user SIM (see Table 5.1)
and Table 5.2.

follows, with a mean delay of over 350ms. Then, we find Twilio with a mean delay close to 250ms.

The two remaining configurations (Fi/3/noVPN and Truphone) have a mean delay close to 150

ms, while for the native Orange Spain configuration we obtain a mean close to 50 ms. Based on

this, we conclude that the HR Roaming configuration which routes the traffic back to the USA

imposes a penalty of 200-500ms compared to LBO roaming configuration. This accounts for a

penalty that can vary between 300% and 1,000%. In the same time, we find that the regional

breakout MNA leverage (e.g., here in the case of Fi using Three as base MNO and no VPN) only

bring an extra 100 ms of delay, which accounts for 200% penalty. In particular, Truphone delivers

best on the promise of offering optimal (i.e., close to using a local operator in the visited country)

global experience to the end-user. Even when measuring with an US Truphone subscription in

Spain, we note that the Mobile Country Code (MCC) / Mobile Network Code (MNC) (MCCMNC)

changes to the one of the local operator Truphone registered in Spain.

In Fig.5.4b we show the delays for the US measurements, for the resolution delay for a non-

cached name, we observe that ATT and T-Mobile, as expected, have the mean lowest resolution

delay, i.e. 50 ms. Then, we find that FI/TM/VPN and FI/TM/noVPN have a similar behaviour,

with some variance, but with a mean delay of 170 ms and 120 ms, respectively. As observed

in Figure 5.3, GFI/TM/VPN has some delay incurred by the VPN tunneling, producing higher
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resolution delays. Next, we find Truphone, that has a higher resolution delay mean with some

variance, i.e. 200 ms +- 50ms. This is due to have the breakout point in the west coast as

commented in (see Sec. 5.3). Finally, the remaining configuration, namely, KPN, has a mean value

of 240 ms. We see again how the HR roaming imposes a penalty of 100-200 ms compared to

LBO roaming configuration. For this exoeriment, we can compare the performance of KPN ( EU

MNO accessing to US domain from the US) with FI/3/VPN, FI/TM/VPN, FI/TM/noVPN and

Twilio’s (US services accessing to Spanish domain from the US), and we observe that KPN has a

dramatically smaller DNS resolution delay for the Non-cached domains.

We next measure the delay for the resolution for a query that is present in the resolver’s cache.

To ensure this, we make a first query for a domain name in order to populate the resolver’s cache.

We next clear the DNS client cache (to force the client to query the resolver again), and query for

the same domain name to measure the DNS resolution time. We repeat this 20 times for three

popular domains (namely, www.amazon.com, www.facebook.com and www.youtube.com).

In Figure 5.4a, we compare the DNS resolution delay for a cached name with that of

non-cached ones for Spain measurements. Overall, we find similar relative performance across

the different configurations to that we observed in the case of querying a non-cached domain. The

absolute values, however, as well as the absolute differences are smaller than in the case of the

DNS queries for the non-cached domains. Indeed, for both configurations of Fi over T-Mobile

and for Fi/Three with VPN, the delays are in the order of 250 ms. This is followed by Twilio

with 150ms mean delay, while for Fi/Three without VPN and Truphone the delays are in order

of 100ms. We observe that for Orange the DNS resolution delay drops to 50ms in median. This

means that the penalty for using Home Routing back to the US is 300% - 400%, while for the

regional breakout the penalty is 100% compared to the potential local breakout..

In Figure 5.4b, we compare the DNS resolution delay for a cached name with that of non-cached

ones for Spain measurements. Again, we follow the same procedure as in the measurements taken

in Spain, doing a first query for a domain name to populate the resolver’s cache, cleaning the DNS

client cache and query for the same domain name to measure the DNS resolution time. Overall,

the performance we observe is relatively similar to the both (cached- non cached measurements in

Spain) and non-cached in the US, that in absolute values are smaller. For T-Mobile and ATT, the

mean resolution delays are in the order of 40 ms. These are followed by the both FI Configurations

(noVPN / VPN) with around 60 ms and 80 ms, respectively. For Truphone has a delay of 110 ms

and KPN of 200ms. Again, in the measurements in the US the overall resolution delay was lower,

because the Regional Breakout was in the same country. What we observe is that, for Truphone,

the geolocation of the POP plays a role in the latency of the packets and resolution delay, even

being in different countries in the case of Europe, it has a lower resolution delay compared to the

one in the US, having twice the distance to the breakout point. (ES-NL, 1400km. US west cpast,

US middle-west, 3000 km).

www.amazon.com
www.facebook.com
www.youtube.com
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Figure 5.5: PLT measured towards web pages in US (ucla.edu), Belgium (uclouvain.be), Spain
(url.edu) and within a CDN (mit.edu) from a mobile device roaming in (a) Spain and (b) US with
different SIMs (see Table 5.1 and Table 5.2. For the web pages located in US, in (a), we use
ucla.edu and in (b), we use umich.edu.

5.4.2. Web Performance

While DNS resolution plays a crucial part in the overall performance of the service MNAs offer

to their end-users, it might not necessarily translate into a significant impact on the end-user QoE.

In order to further capture how the different MNA solutions actually deliver on end-user experience,

we measure the impact of the delay introduced by the different experimental configurations on

web browsing. We use the PLT metric to characterize web performance, which captures the time it

takes for a webpage to load. We extract the PLT from the Navigation Timing API [109], available

in native android web browser (Google Chrome). We calculate the PLT from initiation (the

LoadEventStart) to completion (the NavigationStart), when the page is fully loaded

in the browser. Essentially, this is the time it takes for the last object in the page to download.

It occurs when all the HTML files and any sub-resources (images, fonts, css, videos, etc.) are

loaded. Note that not all these elements are actually required to complete the rendering of the

visible portion of the page. Though many other metrics focus on different aspects of webpage

performance, recent studies [110] showed that PLT is good enough to capture the experience

of the users in various radio contexts, showing strong correlation to other QoE metrics such as

First Paint or Speed Index. Thus, in this paper we focus on the PLT, which we use as a proxy

for end-user QoE.

We measure the PLT using the different configurations for the end-user SIM (see Table 5.1 and

Table 5.2), while targeting different web pages. We selected web pages of roughly the same size

(with a 5% range) in different geographic locations For the measurements done in Spain, we select

www.ucla.edu in the US, www.uclouvain.be in Belgium, www.url.edu in Spain and www.mit.edu

which is served by a CDN. For the measurements done in the US, we use the same web pages,

but changing the one in the US because at the day of the extension, www.ucla.edu has moved to a

ucla.edu
uclouvain.be
url.edu
mit.edu
www.ucla.edu
www.uclouvain.be
www.url.edu
www.mit.edu
www.ucla.edu
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CDN. Thus, we select www.umich.edu as web page in the US for the experiments in the US. For

each end-user SIM configuration and for each web page, we collect 20 different measurements.

We show our results in Figure 5.5.

We observe similar trends to the ones we obtained in the case of the DNS resolution delay

(Figure 5.4) and traceroute (Figure 5.3). As before, the penalties are much larger when the web

server is in Spain, followed (closely) by the case of the web server hosted in Belgium , and, finally,

the server in the US, where the overall penalty is significantly smaller. Regarding the content served

by the CDN, the overall PLT is smaller in all the cases, but the relative differences remain similar

to the previous cases. In all cases, the smallest PLT is achieved with the native service offered

by Orange in Spain. We then observe the cluster of MNAs which delivers the closest experience

to that of the native operator, namely Fi over Three without VPN (Fi/3/noVPN) and Truphone.

Next, we have Twilio and, finally, with the highest PLT, we see both VPN-enabled configuration

for Fi (Fi/3/VPN, Fi/TM/VPN), as well as Fi over T-Mobile with no VPN (Fi/TM/noVPN). We

would like to highlight that serving content through a CDN – while it reduces the delay for all

configurations – does not eliminates the differences in the PLT for the different configuration. This

is so because, even when a CDN is used, the content is retrieved from the replica that is closest to

Internet access point associated to the end-user (i.e., the breakout point). When HR roaming or

VPN are used, the mobile accesses to a replica in the U.S.A. while when using Three, and Fi/Three,

the mobile connects through U.K. and access to a replica in Europe while connective native, the

mobile connects to a replica that is likely to be in Spain.

For the US measurements, we observe analogeous trends from the ones obtained in Spain. In

the context of this experiment, the US functioned as both the home and visited country for Google

Fi and the local MNOs. However Truphone had a different home and visited country, which might

have contributed to its comparatively larger latency. In this case, the penalties when accessing to a

web server in Belgium are slightly large than the ones for Spain and followed by the server in the

US, where the global penalty observed is substantially lower. Again, for the CDN web server, the

overall PLT is the smallest in all cases, and the configuration with the least one is T-Mobile. We

observe a similar experience when using GFI wtih and without VPN to T-Mobile, even having a

marginally better experience when accessing to the web server located in the US (i.e. 0.5s faster).

This is something that will not change the QoE of an end-user. When we use Truphone, we observe

the largest PLT of the MNA configurations, having an even larger PLT for accessing the web server

located in the US than the ones located in Europe. When roaming in the US (KPN configuration)

we observe the clear effect of HR roaming: When accessing to the US server, the penalty obtained

is much larger than the one in Europe, having a slightly difference between Belgium and Spain (

being Belgium smaller because it is closer to the Breakout point).

5.4.3. Video Performance

Though web browsing represents a critical service in the mobile Internet ecosystem, video

traffic accounts for the largest proportion. In this section, we thus investigate how the different

www.umich.edu
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MNA configurations in roaming impact the video delivery performance. We run active end-user

measurements using the YoMoApp [111]. YoMoApp is developed by Wurzburg University that

allows to rate the stream quality of YouTube videos, as well as obtain different metrics from the

network. Once the measurement completes, it uploads to yomoapp.de/dashboard/, from where

it is possible to retrieve the results. The tool allows us to measure the video quality, download

throughput, stalling events, and also capture the radio access technology and buffer level.

We measure the video performance using the different configurations in Table 5.1, except

for Twilio. We omitted Twilio from these tests because their products are oriented to IoT.

Though they do offer video streaming APIs, the amount of traffic we needed to perform

the video tests proved to be prohibitive.

We played short videos (2-3 min) from YouTube. We used three different videos, a sports

video7, a music video8 and a movie trailer9, to be representative of the different types of content

available. We measured each video/configuration combination 20 times. We next present and

analyze the results of the measurements obtained when the MNA end-user is roaming in Spain. In

Figure 5.6b we show the time spent in each quality for the different configurations for the music

video. We mention that we obtained similar distribution for the other types of videos.
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Figure 5.6: Video performance for each configuration in (a) USA and (b) Spain.

We can observe that for Three UK, Fi with Three (without VPN), Truphone and Orange, the

videos render in the highest resolution (1080p) – while in Fi over Three with VPN and for Fi over

T-Mobile with VPN, the most common quality is 720p. Furthermore, for Fi with T-Mobile without

VPN the most common quality is 480p, dropping to 360p 10% of the times.

Moreover, we look into the initial delay and the buffer levels in the video traces (these results

are not presented here due to space limitations). We observe that Fi over Three with VPN and Fi

7https://www.youtube.com/watch?v=JEoubjE2PBQ
8https://www.youtube.com/watch?v=l6N-Yq9Fw4U
9https://www.youtube.com/watch?v=0WVDKZJkGlY

yomoapp.de/dashboard/
https://www.youtube.com/watch?v=JEoubjE2PBQ
https://www.youtube.com/watch?v=l6N-Yq9Fw4U
https://www.youtube.com/watch?v=0WVDKZJkGlY
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over T-Mobile with and without VPN have introduced significant initial delay (highest initial delay

is experienced by Fi over T-Mobile without VPN) compared to the other setups. We also observe

that these three setups experience much lower buffer levels compared to the other setups, indicating

inefficient use of buffering mechanism. We conclude that the long link delays experienced with

these three setups, impact the ABR mechanisms in a negative way, leading to a much lower video

quality experience compared to the other setups.

We again confirmed the result of the previous experiment. We observe that for Truphone, and

Google Fi without VPN, the videos are mostly rendered in the highest resolution, and for Google

Fi with VPN, the most common resolution is 720p. The good performance of Truhpone counter the

previous results from DNS and web experiments, where Truphone was the worse configuration. It

proves that depending on the use case, the QoE can change. TMobile and ATT are outperformed by

Truphone and Google Fi without VPN. These findings contradict the expectation in the sense that

MNOs should have better performance than MNAs who leverage their infrastructures to provide

services, as is confirmed in the web experiments. We attribute this anomaly to ISP-level throttling.

Previous research has uncovered instances of US ISPs throttling multimedia streaming services.

To investigate this, we utilized WeHe [112], a VPN-based traffic differentiation detection tool. Our

test results revealed that T-Mobile and AT&T were indeed throttling YouTube video playback,

while Truphone and Google Fi showed no signs of such behavior. In conclusion, the exceptional

performance of Truphone and Google Fi suggests that US MNOs can indeed provide superior

services to subscribers. Given that Google Fi mainly relies on T-Mobile and Truphone primarily

depends on AT&T in the area where we conducted our experiments, the performance discrepancy

between these MNAs and their partner MNOs indicates that the MNO’s does not classify the traffic

generated by all the MNAs in our study.

5.4.4. Takeaways

We find that the HR roaming configuration all MNAs deploy impacts in a similar way critical

services for the end-user, namely DNS resolution, web browsing and video streaming. However, by

switching the "home" (i.e., the base MNO) closer to the end-user visited country, some MNAs such

as Google Fi and Truphone succeed in reducing the penalty that home routed roaming introduces.

Google Fi: The use of regional breakout in Europe on top of Three’s network helps Fi to

reduce significantly the delay their users experience in Europe. For DNS resolution, we find that

using Three as base MNO reduced the delay penalty to 200% from 300%-1000% compared to

using a local native operator. In terms of further impact on application performance, we find

that Fi/3/noVPN allowed the end-user to stream videos in the higher resolution (1080p), and

also provided the closest web browsing performance to that a local MNO would provide. When

operating in the US, we observe a very similar performance to its MNO, namely T-Mobile, having

the big difference when using video application, where Google Fi was able to outperform T-Mobile.

Twilio: With the SuperSIM solution still in a very early roll-out phase at the time of our

measurements campaign (July-August 2021), we find that the Twilio end-user is still impacted
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significantly by the HR roaming setup. Given that their breakout point is closer to the visited

location (Spain) than the ones for Fi over T-Mobile or Fi with VPN active, we find a slightly better

performance for this MNA.

Truphone: Leveraging their mature setup with different PoPs, we find that Truphone is able to

deliver the performance closest to the one provided by a local MNO in a visited country in Europe.

This is true for all the different services and applications we tested. From the US perspective, we

observed that Truphone was not able to achieve the same performance than in Spain. This is due to

the PoP in the US, located in the middle-west and the domain analyzed located in the west coast.

Again, for the Video measurements, it outperformed its benchmark MNO, namely AT&T, due to

ISP-level Throttling on the MNO side.

As a conclustion, our experiments yielded insightful results concerning the performance of

the analysed MNAs and MNOs. This demonstrates the potential of MNAs to offer robust and

efficient services that are on par with or even surpass those of established MNOs in certain aspects.

In terms of web performance, our study revealed some interesting trends. The local MNOs often

outperformed the MNAs, with the latter exhibiting slightly longer page load times (PLT). However,

it is noteworthy that the differences in PLT were not so substantial as to impact the end-user

experience severely. This suggests that MNAs can deliver satisfactory web performance despite

operating on top of existing MNO infrastructures. The video performance tests provided some

unexpected results. Despite the MNAs leveraging the infrastructure of MNOs, Truphone and

Google Fi without VPN demonstrated superior video performance in certain scenarios. This

could potentially be attributed to ISP-level throttling practices by certain MNOs. These findings

underscore the importance of examining network performance under diverse real-world conditions,

as well as the need for more transparent network management policies. While MNOs often

exhibited superior performance metrics in our tests, MNAs proved to be robust alternatives that

can offer competitive services. This reveals the potential of MNAs to disrupt the traditional mobile

network market by offering flexible and efficient services.

5.5. Regional Breakout in 5G

The split of user/data plane from the control plane at both the radio front [113, 114] and the

core [115] is one of the major upgrades in 5G. This paves the way not just for better management

of data and control packets, but also to enable truly global operations of an MNO. We argue that,

with this approach, any MNO can potentially convert into a global provider, avoiding HR roaming

configuration, and enabling the end-user to achieve a good experience potentially world-wide

through regional breakout. We envision a scenario where the MNO provides the local breakout

solution to each end-user. In this section, we provide a proof-of-concept implementation and

evaluate how the separation at the mobile core can support global operations.
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Table 5.3: Locations of deployed UPF and DNN names as identified by the UEs to breakout at a
visited location (namely, US or Germany).

UK US EU (Germany)

BO type
Home
(London)

Edge
(Vodafone)

Edge
(Verizon)

Local
(Las Vegas)

Regional
(Oregon)

National
(Ohio)

Edge
(Vodafone)

Regional
(Frankfurt)

DNN edge.london home edge.sfo local.las regional.or national.oh edge.ber regional.fra

Table 5.4: Ping latency (in ms) to the instances deployed across various zones in the AWS from an
instance located at same zone as Edge.

Edge Local Regional National Home
0.22 ± 0.03 26.2 ± 0.08 49.8 ± 0.1 78.6 ± 1.5 157.3 ± 0.2

5.5.1. Experimental setup

We utilise the edge (wavelength), local and regional deployments of Amazon global

infrastructure [116] to deploy control and user plane functions of open-source 5G implementations

(namely, Open5GS [117] and UERANSIM [118]).

Infrastructure. The setup we build aims to emulate different roaming configurations (see

Section 5.1). For this, we rely on the global infrastructure including both storage and compute

services that AWS offers. This includes:

a regional infrastructure with data centers present in a region (e.g., US East/Ohio

region). Within this deployment, a cluster of isolated and physically separate data centers

are found in a geographical area.

a local infrastructure hosted as an extension of regional infrastructure to run latency

sensitive and high bandwidth applications. For example, Netflix uses AWS local zone

deployments for their content creation process.

an edge infrastructure hosted within telecommunications providers’ data centers and

connected to the operator’s 5G network. We consider this as first point an user can breakout

to the Internet from MNOs network.

Connectivity. For our pilot deployment, we assume an end-user with 5G connectivity who

has their network home location in the UK. To emulate the user roaming behavior, we test two

different scenarios, where the user roams in two locations: (i) in the US (San Francisco) and

(ii) within Europe (Berlin, Germany). With current 4G/LTE technologies, the default roaming

configuration would be HR roaming, where the traffic is routed back to the UK. We argue that, by

using 5G Control and User Plane Seperation at the core, we can keep the control plane functions

in the trusted, centralized home network location, while dynamically moving the user plane

function with the roaming user. We handle this connectivity by deploying control and user planes

built using Open5GS [117]. We deploy the control plane, which includes SMF and AMF, at

the regional infrastructure in the user’s home location (London, UK). The user plane enables

breakout to the internet, and hence we deploy it across multiple locations in the US and EU (as
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Figure 5.7: Page load time to different websites in function of the breakout point considered for the roaming
configuration.

per Table 5.3). The selection of UPF to breakout is chosen by the Deep Neural Network (DNN)

setting in the 5G UE. We use UERANSIM [118] to deploy a simulated environment of 5G RAN

and 5G UE in the edge infrastructure.

We leverage the different existent AWS architecture to place the UPF at various locations in

relation to the roaming end-user. Namely, we emulate the case of edge breakout by placing the

function in the AWS wavelength deployment within the carrier infrastructure. We use one such

existing Wavelength Zone in the US (Verizon central office in San Franciso), corresponding to

breaking out the visited MNO, very closely to the location of the end-user. We then migrate the

UPF further from the visited location (but still within the visited country) in each of the roaming

scenarios, as we show in Table 5.3.

The UE and the migrated UPF instance across the Amazon EC2 zones in the US, UK and

EU are connected via a private backbone network [119] and through virtual private cloud peering

connections [120]. We show ping latency within the instances in the US and to UK (home) in

Table 5.4.

5.5.2. Pilot Results

In order to capture the end-user performance under the scenarios we include in Table 5.3,

we measure web performance. We focus on the PLT as the representative metrics, similar to our

approach in Section 5.4. We use as target the same four website as previously in Section 5.4.2

(namely, www.ucla.edu in the US, www.uclouvain.be in Belgium, www.url.edu in Spain and

www.mit.edu which is served by a CDN). We show our results in Figure 5.7. We use as a baseline

the measurements for the non-roaming scenario (marked “home (UK)” in Figure 5.7). The goal
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of our measurements analysis is to establish which roaming configuration can offer the same

performance that the end-use enjoys while at home. We find than when content is served by a CDN,

the regional breakout configuration offers comparable performance to the no-roaming scenario,

regardless of the location where the end-user travels (e.g., US or Germany, in our case). This is a

direct consequence of the close location of the content replica to the end user, which is dictated by

the location of the breakout point. From the case of end-user roaming in the US, we see that the

local breakout configuration yields similar performance to regional breakout, likely as a results of

the small distance between the locations of the infrastructures used in this scenario.

When a CDN is not serving the web content, the distance between the location of the end-

user breakout point and the content location impacts the web performance. For example, if edge

breakout in San Francisco offers the optimal performance for accessing content hosted in California

(ucla.edu), we see this is no longer the case when accessing content hosted in Europe (uclouvain.be,

url.edu). The PLT we measure in this latter case is, in fact, similar to the one we measure under the

HR roaming configuration. The same is true for accessing US-based content from Germany, under

the regional breakout configuration. Surprisingly, however, we find that the PLT for Europe-hosted

web content is slightly smaller in the US (San Francisco) edge breakout scenario than all of the

other configurations (local/regional/national/home breakout). We conjecture that this is a side-

effect of relying on the carrier’s infrastructure (i.e., Verizon), while for the other configurations the

AWS private backbone impacts the delays between the various instances (see Table 5.4).

The results we present here invite more broader discussions on the role of cloud service

providers in supporting cellular connectivity providers. Given the freedom that the 5G allows in

terms of dynamically locating the UPF for a roaming user, we envision this as a first step towards

an adaptive approach for managing the end-user cellular connectivity.

5.6. Applicability

There are a growing number of use cases that heavily rely on roaming, enabled by both the

surge in demand for global deployment of IoT devices (e.g., smart meter, connected cars) with

pre-provisioned connectivity [17], and in the demand for global seamless connectivity from digital

nomads. A new breed of global operators aims to directly respond to the needs of such users

(e.g., Twilio for IoT and Fi & Truphone for digital nomads) through specialized applications such

as web browsing and video streaming NSaaS, offering tailored solutions that cater to the unique

requirements of each application.

Our work shows that light MNAs such as Fi still have to mitigate the impact of latency, and

consider regional breakout solutions. Furthermore, MNAs that deploy VPN features should also

consider deploying them in the same regional breakout approach, to enable the privacy and security

benefits for their end-users without penalizing performance.

Full MNAs (such as Twilio) should carefully consider the underlying infrastructure hosting

their core network, as this will impact the performance. Our work highlights that one option might
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be to explore using CDNs with a wide geographical footprint as underlying infrastructure, and

benefit from dynamically migrating different core functions to the optimal location.

For app developers, our work gives tangible insights into what they might expect in terms of

performance from this new breed of global operators. Thus, an app developer or app provider (i.e.,

the entity providing services through the internet) who is aware of the performance limitations of a

global connectivity model can accommodate and potentially mitigate them (e.g., for multimedia

streaming apps, the developer might consider using larger buffers for video). This is especially

relevant for the services aimed at IoT devices that IoT vendors distribute worldwide, and that are

permanently roaming.

5.7. Summary

This chapter presented a comprehensive study on the performance of MNA under roaming

conditions, focusing on end-user experiences in Spain and the USA. It begins with an overview of

the evolution and classification of MNOs, MVNOs, and MNAs under roaming conditions. The

chapter explores the challenges that MNAs face in managing network complexity to sustain QoE for

services like web browsing and video streaming NSaaS. It examines critical performance indicators,

such as DNS resolution delay and traceroute metrics, and discusses the impact of different solutions

on implementing international roaming effectively. One of the key insights revealed in this research

is the significant throttling applied by MNOs in the United States specifically to video streaming

services—a practice that is notably absent among MNAs It then discusses the implementation of

the 5G Control and User Plane Separation (CUPS) concept, which enhances roaming efficiency by

separating the control and user planes. The chapter concludes by comparing MNA and local MNO

performance, showcasing the benefits of the CUPS-enabled Regional Breakout (RBO) solution in

improving global cellular operations.
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Perspectives

Network slicing will be a crucial technology of 5G to enhance the profit of the MNO.

In this thesis, we investigated two ways of doing that. Firstly, we developed a system for

doing overbooking of the network. Secondly, we showed how to minimize the prominent

costs of the network.

We also give a shed light on the network performance and analysis from an end-user

perspective in roaming, developing a comprehensive taxonomy of MNO, MVNO and MNA.

We have determined the main research problems and by using AI and Optimization Algorithms,we

designed novel algorithms and solutions to enhance MNO profit and explored the current 5G

roaming environment.

6.1. Main Takeaways

In the first Chapter of the thesis, We proposed a novel solution for NSaaS overbooking

that builds on joint DL and optimization at different timescales in order to maximize the net

profit of the MNO.

Our model, kaNSaaS, was compared against legacy and state-of-the-art overbooking-based

methods for NSaaS management in presence of slice demands of unprecedented realism. We have

proved that, under real-world service-level demands collected in a large-scale production network

and with realistic operating cost margins, the net profit of the MNO from a practical overbooking-

based NSaaS solution can be multiplied by a factor four. We also presented kaNSaaS, a practical

solution that achieves the gains above over legacy NSaaS models, and largely outperforms the

state-of-the-art scheme for NSaaS overbooking. This suggests that the potential of overbooking

is boosted for typical real uses cases where the margins of mobile operators are rather limited.

We have also seen that the orchestration layer plays an important role in terms of scalability

and amount resources required for the MNO Indeed, at RU level, the temporal series of traffic

demand is more bursty and noisy, with traffic peaks considerably exceeding the average traffic

demand, whereas at the city level the traffic is smoother and with less variability w.r.t. the average
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at each given day time. This induces that as the capacity required to serve the peak throughput

exponentially increases as we approach the RU layer. is much higher that the capacity required at

CN, following the mathematical truth that the sum of maxima is always greater or equal than the

maximum of the sum. Furthermore, the benefit of overbooking does not depend on the network

dimensionality, and the overbooked allocation can give us more than a 200% extra profit over the

standard approach. Ultimately, our work shed new light on the performance and clear advantages

of overbooking under real-world slice demand scenarios. These results and the fact that we intend

to openly release our code and the synthetic data used for part of the evaluation pave the road to

further research towards production-grade deployments of overbooking in future sliced networks.

In Section 4.2, we introduced AZTEC+, a framework able to minimize the overall cost of

the network. In the context of ever-increasing complex networks and the need of zero-touch

management AZTEC+ demonstrates the viability of automatically optimizing the different cost

trade-offs that happen in a virtualized mobile network, to minimize resource provisioning. In detail,

AZTEC+ automatically selects resource orchestration intervals based on past service-level demands.

We evaluate AZTEC+ with data coming from a large-scale production network over different cities

in France. Our experiment shows that, depending on the different cost factors contributing to the

overall network, AZTEC+ outperforms the different benchmarks by a factor up to 5.85×.

In Chapter 5, we introduced a way to analyze the operations of MNAs and consider

their potential development. We expanded the existing taxonomy of MVNOs to include

the concept of MNA. Our research involved measuring the roaming operations of three MNAs

with different operational models: Twilio, Truphone, and Fi from Europe and the US. We evaluated

their performance and measured the impact of their operational approach on various applications

such as DNS, web browsing, and video streaming. We discovered that, unlike MNOs and MVNOs

which rely on HR roaming, MNAs are gradually adopting limited forms of LBO roaming. While

current MNA operations may not enable LBO in the visited country, some implement regional

breakout to keep traffic within the same continent/region and avoid long transoceanic links. This

difference is clearly seen in the performance of the various applications we tested. Our goal was to

understand the operational models of MNAs and their impact on application performance, rather

than to compare the different MNOs and MNAs tested. We also observed how the location of the

breakout point significantly affects the end-user’s QoE and how MNAs can outperform MNOs

depending on their network configuration for certain applications. Furthermore, we investigated

the potential evolution of the MNA model and explored the performance gains that could result

from fully utilizing LBO. Depending on the application, regional breakout can provide significant

benefits, and there are limited additional advantages from implementing full LBO.
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The research conducted in this thesis sheds light on the potential of integrating AI in network

slicing in 5G to enhance the profit of the MNO and analyzes the current roaming environment. We

can disseminate three main takeaways from this work and the perspective for future work:

1. We have demonstrated that using different multi-time orchestration approaches, combining

AI and optimization, the MNO can obtain more profit doing (I) overbooking of network

slices and (ii) reducing the overall cost of the network leveraging zero-touch management.

Future extensions could leverage the proposed frameworks and tailor them to required QoS

2. We showed the clear benefit that gives having RBO for the end-user performance, obtaining

similar results than the home MNO. The perspective that we deliver for the MNOs will

help to the future network deployments to help the ever-increasing diverse categories of

devices that are currently using internet, offering seamless connectivity around the world

with the required QoS. Also, our work gives tangible insights into what they might expect in

terms of performance from this new breed of global operators. Thus, an app developer or

app provider (i.e., the entity providing services through the internet) who is aware of the

performance limitations of a global connectivity model can accommodate and potentially

mitigate them (e.g., for multimedia streaming apps, the developer might consider using

larger buffers for video). This is especially relevant for the services aimed at IoT devices

that IoT vendors distribute worldwide, and that are permanently roaming.

6.2. Perspectives

6.2.1. Short-to-medium-term Perspectives

The presented research lays the groundwork for immediate and practical applications in

optimizing network slicing and roaming within 5G networks in the short to medium term. One

of the most promising developments is the adoption of the overbooking framework by MNOs.

This system offers a low-cost approach to significantly enhance profitability without requiring

major infrastructure changes. In the next two to three years, MNOs will likely implement pilot

projects, testing the overbooking system in localized environments. These early trials will allow

operators to measure its real-world performance and adaptability to fluctuating network demands.

As network slicing becomes more prominent, these systems will play a key role in dynamically

adjusting resources while maintaining the required QoS. AI integration will refine this process,

allowing for better prediction of traffic surges or drops, thus fine-tuning resource allocation to

maximize both profit and performance.

In parallel, AZTEC+ will find applications in resource optimization across larger, more

complex urban networks. This AI-driven system allows operators to automatically manage the

trade-offs between cost and performance in resource provisioning. As 5G networks expand and

more traffic is handled in real time, automated systems like AZTEC+ will become essential to
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reducing operational costs while maintaining network efficiency. Early implementations will likely

focus on refining machine learning algorithms to predict traffic patterns based on user behavior,

enabling more precise orchestration of resources. As this technology matures, it could extend

beyond telecommunications, integrating with other smart systems in cities, such as transportation

networks and energy grids, to improve overall resource management.

Roaming will also see significant enhancements, particularly through the advancement of RBO

mechanisms used by MNAs. These systems, which reduce latency by breaking out traffic within

the same region, are becoming more relevant as MNAs expand their operations. Within the next

few years, MNAs will improve RBO capabilities, offering better connectivity for services like

video streaming and IoT-based applications. These enhancements will be crucial as IoT devices

increasingly rely on global connectivity, and applications demand low-latency performance. By

optimizing RBO, MNAs will provide more seamless connectivity across regions, helping ensure

that performance remains consistent, even when devices are permanently roaming.

6.2.2. Long-term Perspectives

In the long term, the evolution of 5G technologies will lay the groundwork for more advanced

systems, including 6G networks, where the integration of AI, machine learning, and network

virtualization will become even more critical. The developed overbooking framework could

become an integral part of fully autonomous networks, where slices dynamically adjust resources

based on real-time demands and AI-powered predictions of future traffic patterns. As AI systems

become more sophisticated, the role of human oversight in network management will continue

to diminish. Network slicing will evolve to cater to more complex applications, such as fully

autonomous vehicles, remote surgeries, and ultra-reliable low-latency communications. AI-driven

resource allocation will not only manage the telecommunications resources more effectively but

also integrate with other verticals, such as energy management or smart transportation, optimizing

resources across sectors.

Beyond 5G, as 6G networks begin to take shape, research into AI-driven cost optimization

could play a pivotal role in creating intelligent, self-sustaining networks. These networks will be

characterized by their ability to autonomously negotiate resource allocations between different

services, ensuring optimal performance without operator intervention. AI systems will likely take

on a broader role, managing real-time economic models for resource pricing, where operators

can dynamically adjust prices based on real-time demand and network availability. Additionally,

the proposed frameworks could promote fairness among Mobile Network Operators (MNOs)

by ensuring equitable resource distribution and pricing transparency. For instance, AI systems

could balance resource allocations between competing MNOs to prevent monopolization or

underutilization of resources, fostering a more competitive and collaborative telecommunications

ecosystem. This evolution could be further supported by blockchain or distributed ledger

technologies, ensuring secure and transparent management of resources and pricing models

across multiple operators.
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As we look further into the future, zero-touch management systems will evolve into holistic,

fully autonomous networks. These systems will operate with minimal human intervention,

capable of self-diagnosis, self-healing, and self-optimization, ensuring network stability and

efficiency despite unexpected demand surges or disruptions. The AI systems managing these

networks will be context-aware, meaning they will not just respond to traffic patterns but also

predict and prepare for future needs, considering factors like seasonal variations, user behavior,

and even non-telecommunications-related data like energy consumption or traffic congestion.

Fairness considerations could also extend to these AI-driven systems, ensuring that resources are

equitably distributed across stakeholders, thus balancing economic incentives with service quality

and user experience.

On the roaming side, MNAs will likely blur the lines between traditional MNO models and new

global connectivity approaches. As LBO becomes fully integrated into roaming systems, MNAs

will provide seamless global connectivity that is indistinguishable from local service, significantly

improving user experience for both individual users and IoT devices. Roaming systems in 6G and

beyond will offer ultra-reliable, low-latency connections across borders and regions, supporting

a wide range of applications, from autonomous vehicles to global industrial IoT systems. The

research into MNAs’ performance under various configurations will provide a critical foundation

for these developments, particularly as roaming agreements evolve to support more complex use

cases and services. In addition to enhancing user experience and global connectivity, future systems

could explore mechanisms to ensure fairness in roaming cost models and service prioritization

among operators, especially in high-demand scenarios.

In summary, the long-term future of telecommunications will be characterized by the growing

autonomy of network management systems and the increasing integration of AI-driven solutions

in both overbooking and cost optimization frameworks. These advancements will drive the

telecommunications industry toward more flexible, efficient, and scalable networks, capable of

supporting the complex and diverse applications that will define the next generation of connectivity.

Furthermore, the integration of fairness mechanisms into these frameworks will play a crucial

role in promoting balanced competition and equitable access to network resources, ensuring that

advancements benefit all stakeholders in the ecosystem.
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