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Abstract—The realization of efficient Artificial Intelligence (AI)
solutions for the optimization of next-generation Radio Access
Network (RAN) relies on the availability of expansive, high-quality
datasets that accurately capture nuanced, site-specific conditions.
However, obtaining such abundant, domain-specific measurements
poses a significant challenge, especially as network complexity
and energy efficiency demand surge toward 6G. In response,
we introduce GenerativeAI-enabled Digital Twin (Gen-TWIN),
a synthetic data generation framework underpinned by a soft-
attention LSTM-based generative adversarial network (soft-GAN).
Our model augments realistic transmitter and receiver-focused RF
datasets by supplementing scarce empirical samples and providing
the synthetic data volumes essential for training advanced AI
models on RAN. Accuracy results show that soft-GAN provided
19% performance improvement compared to baseline models.

Index Terms—Digital Twin, Generative AI, O-RAN, Generative
Adversarial Network, 5G/6G.

I. INTRODUCTION

The evolution of communication networks has been marked
by continuous technological advancements and a growing
complexity in network management. Among the significant
innovations in this landscape is the concept of Digital Twin
(DT), which has its roots in the industrial and manufacturing
sectors [1] but has recently found extensive applications in
communication networks [2]. Initially, DTs were leveraged to
create virtual replicas of physical assets to optimize operations,
predict failures, and enhance the overall system performance.
In the context of Fifth Generation (5G) networks, DTs
have facilitated enhanced performance monitoring, predictive
maintenance, and improved service quality through the creation
of highly accurate virtual models of network elements and
their behaviors. These virtual models have enabled network
operators to simulate and analyze various scenarios, leading
to better-informed decisions and more efficient resource
allocation. However, as we transition towards Sixth Generation
(6G) networks [3], the complexity and scale of network
operations are expected to surge exponentially. This growing
complexity makes it increasingly difficult to create and manage
accurate DTs at scale, necessitating the integration of Artificial
Intelligence (AI) to enhance scalability [4].

Generative Artificial Intelligence (GenAI), particularly mod-
els such as Generative Adversarial Networks (GANs) [6] and
Variational Autoencoders (VAEs), offer a robust framework

for the creation and enhancement of DTs. Leveraging these
capabilities, GenAI can also be employed to generate network
data and enhance DT constructions [7]. The recent research
report on DTs from the O-RAN ALLIANCE next Generation
Research Group (nGRG) also mentions Synthetic Data Gener-
ation and Data Augmentation topics [8]. Accordingly, training
robust AI/ML models (e.g., AI/ML models deployed in RAN
Intelligent Controllers (RICs) that power Digital Twin for Radio
Access Network (DT-RAN) deployments are often constrained
by the difficulty of acquiring sufficient site-specific data [9].
According to the use case based on the report, a beamforming
optimization model trained exclusively with dense urban data
from San Francisco is unlikely to generalize to the nuanced traf-
fic patterns, propagation environments, and interference condi-
tions of a rural cell site in California. Data augmentation serves
as a solution to existing limitations of DT-RAN. Although time
series augmentation has been explored in the literature [10],
studies on data augmentation specifically for DT-RAN remain
scarce [11]. Furthermore, existing DT-RAN research does not
specifically address Open Radio Access Networks (O-RAN).

To address these challenges, we propose the novel
GenerativeAI-enabled Digital Twin (Gen-TWIN) platform
(see Fig. 1), which leverages our innovative soft-GAN model.
This a sophisticated soft-attention GAN based on Long
Short-Term Memory (LSTM) layers meticulously designed
to generate synthetic DT-RAN Radio Frequency (RF) data
for both transmitter and receiver ends. Our model can be
used to augment the limited datasets collected through field
measurements by synthetically replicating key features of RF
signals. The core results of our study are summarized as new
contributions (“C") as follows:

C1. We propose the Gen-TWIN platform, integrating Digital
Twin and Generative Artificial Intelligence layers.

C2. We design a novel soft-attention LSTM-based time-series
GAN model, named soft-GAN, specifically for DT-RANs.

C3. To evaluate the performance of soft-GAN, we implement
and compare it against various baseline generative models.

II. GEN-TWIN PLATFORM

Our proposed platform comprises two integral components,
DT and GenAI layers, as can be seen in Fig. 1.
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Fig. 1. Left: O-RAN Digital Twin Layer; Colosseum—the world’s largest wireless network emulator with hardware in the loop [5] to create a comprehensive
twin of the O-RAN network. Right: Generative AI Layer; Proposed soft-GAN Model — soft-attention-LSTM based Generative Adversarial Network.

Digital Twin Layer: Colosseum has 128 pairs of general-
purpose compute servers and Software-Defined Radios (SDRs),
referred to as Standard Radio Node (SRN); an advanced
channel emulation system, known as Massive Channel
Emulator (MCHEM); a cutting-edge AI/ML infrastructure;
a Channel emulation generator and Sounder Toolchain
(CaST) [12]; and a digital twin O-RAN system. Each SDR
is connected to a Dell server via a National Instruments/Ettus
USRP X310 SDR using a dedicated 10 Gbps link. Users
can reserve SRNs and deploy custom or pre-configured open-
source cellular protocol stacks using Linux Container (LXC).
MCHEM is responsible for creating digital representations
of real-world RF propagation scenarios, accurately reflecting
the state of the RF channel at specific time instances. At its
core, MCHEM consists of four quadrants containing 64 Field
Programmable Gate Arrays (FPGAs) and 128 SDRs that handle
the conversion between RF and baseband signals. For advanced
AI/ML deployments, two NVIDIA DGX A100 stations with
8 GPUs each, providing 10 petaFLOPS of compute power.

Generative AI Layer: Our GAN framework can be
described by the following minmax game:

min
G

max
D

Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))],
(1)

where:

• x represents real In-phase and Quadrature (IQ) data
samples from DT layer.

• pdata(x) denotes the distribution of real time series data.
• z represents random noise vectors sampled from a prior

distribution pz(z) (e.g., a Gaussian distribution).
• G(z) generates synthetic IQ data samples from the noise

vector z.
• D(x) represents the probability that x originates from

the real data distribution rather than from G.

In the context of IQ data augmentation, the generator G learns
to produce realistic IQ data sequences, while the discriminator
D tries to distinguish between real and synthetic IQ data.

The training process iteratively updates the parameters of
G and D using gradient-based optimization. Specifically, the
discriminator is trained to maximize the likelihood of correctly
distinguishing between real and synthetic samples:

LD=−Ex∼pdata(x)[logD(x)]−
Ez∼pz(z)[log(1−D(G(z)))].

(2)

The generator is trained to minimize the likelihood of the dis-
criminator correctly distinguishing synthetic from real samples:

LG=−Ez∼pz(z)[logD(G(z))]. (3)

These loss functions are alternately optimized in each iteration,
leading to the gradual improvement of both networks. Once
trained, the generator can produce synthetic univariate time
series that augment the original dataset. Given a noise vector z,
the generator produces a synthetic time series x̂=G(z). These
synthetic samples can be used to increase the size of the training
dataset, thereby improving the performance and generalization
of machine learning models. The augmented dataset X′ can be
represented as X′=X∪{G(zi)}Ni=1 where X is the original
dataset and N is the number of synthetic generated samples.

III. DATA AUGMENTATION WITH soft-GAN

A. Fundamentals of soft-GAN Model

The values of the time series data are denoted as mi,t∈R,
where i ∈ {1,2,3, ... ,N} represents the index of individual
samples and t∈{1,2,3,...,T} indicates the time points. The
associated matrix of time feature vectors is X1,T =(x1,...,xT )
in RD×T , where D represents the number of time features.
Consequently, we take the time series to have a fixed length ζ ,
denoted as M̂i,t,ζ =(m̂i,t,...,m̂i,t,ζ). Then, using a generator
function G and a fixed time sequence t, we can model
M̂i,t,ζ =G(n,ϕ(i),Xt:t+ζ), where n is a noise vector and ϕ



is an embedding function that maps the index of the time
series to a vector representation. In the generator G and
discriminator D, we use a soft attention mechanism along with
convolutional spectral normalization SN as described in [13].

For a sequence of length l, we can write:

p :Rnfxl→Rn
′
fxl

x 7−→γsoftA(f(x)+f(x))
(4)

f(x)=SN(LeakyReLU(c(x))), (5)

where n
′

f is the number of output features, c is the convolution
operator, and softA is the soft-attention mechanism. We use
LeakyReLU [14] to avoid the well-known dying ReLU problem
where neurons can become inactive and always output zero
for any input. On the generator side, we add a spectral
normalization layer to further stabilize the training process and
prevent sudden escalation of the gradient magnitude [15]. ϕ is
a learnable parameter that, when indexed to 0, influences the
network’s ability to learn local features through the function p.

soft-GAN Generator: The first layer of the generator, G1,
uses the main function block p:

G1:Rn
′
fx2

3

→Rnfx2
3

M̂0 7−→M̂1=p(M̂0),
(6)

where i∈ [2,L]. G1 maps two channel-separated IQ sequences
M̂i−1 to an output M̂i, then applies an upscale to the function
block p:

Gi :R
nfx2

i+2

→Rnfx2
i+3

M̂i−1 7−→M̂i=p(UP (M̂i−1)).
(7)

In the last layer of the generator, a multivariate sequence
is obtained univariately as M̂i,t,ζ through a one-dimensional
convolution operation.

soft-GAN Discriminator: The discriminator design is the
same as the generator. The discriminator maps the generator’s
output M̂i,t,ζ and Xt:t+ζ to a discriminator score d. The
LeakyReLU activation function is then used as follows:

dL+1 :R
1+D,ζ→Rnf ,ζ (8)

(M̂L+1,Xt:t+ζ) 7−→M̂L=LR(c1(M̂L+1,Xt:t+ζ)), (9)

where i ∈ [2,L]. Downscaling is then applied to the main
function block:

di :R
nfx2

i+3

→Rnfx2
i+2

Yi 7−→Yi−1=DOWN(m(Yi)).
(10)

The final operation is handled by a fully connected layer:

d1 :R
nf →R

Yi 7−→Y0=SN(FC(LeakyReLU(softA(c(Y1)))))
(11)

Algorithm 1 soft-GAN Generator

Input: Noise vector z∈R(batch_size,seq_len,input_dim)

1: Input: Real IQ Samples
2: First LSTM Layer: Process IQ and z with an LSTM

layer having 256 units, return sequences, dropout of 0.3,
and recurrent dropout of 0.3.

3: h1=LSTM256(z)
4: Batch Normalization: Normalize the output.
5: h1=BatchNorm(h1)
6: Second LSTM Layer: Process the output with another

LSTM layer having 256 units, return sequences, dropout
of 0.3, and recurrent dropout of 0.3.

7: h2=LSTM256(h1)
8: Batch Normalization: Normalize the output.
9: h2=BatchNorm(h2)

10: Third LSTM Layer: Process the output with another
LSTM layer having 128 units, return sequences, dropout
of 0.3, and recurrent dropout of 0.3.

11: h3=LSTM128(h2)
12: Spectral Normalization: Normalize the output.
13: h3=SpectNorm(h3)
14: Attention Mechanism: Apply soft-attention to the output

and concatenate it with the LSTM output.
15: attention_out=Attention(h3,h3)
16: context_vector=Concat(h3,attention_out)
17: Fully Connected Layer: Apply a dense layer with 128

units and LeakyReLU activation.
18: d1=Dense128(context_vector,activation=’LeakyReLU’)
19: Dropout: Apply dropout with a rate of 0.3.
20: d1=Dropout0.3(d1)
21: Output: Apply a final dense layer with 2 units to produce

the synthetic IQ data.
22: output=Dense2(d1)
23: Return: Samples

B. Data Collection

The data collection operation aims to collect IQ samples
that can serve as a baseline for the data augmentation step.
We collect IQ samples through two different testbeds: (i)
POWDER for real-world data, and (ii) Colosseum for emulated
data. A summary of the parameters for the data collection
is shown in Table I. Additionally, Fig. 2 depicts the data
collection scenarios for the real world (POWDER), and the
digital world (Colosseum). The POWDER testbed [16] is a
city-scale facility located at the University of Utah in Salt Lake
City, UT. The platform supports a wide range of hardware
and software configurations, enabling experimentation with
real-world Over-The-Air (OTA) scenarios and the development
of new wireless technologies. It provides various types of
end-to-end software-defined nodes with different capabilities,
deployed across the university campus.

In our real-world OTA data collection, we leverage two of
its rooftop base station nodes, as shown by the red circles in
Fig. 2: Honors and USTAR. For the emulation data, we utilize



Table I
DATA COLLECTION PARAMETERS SUMMARY BETWEEN THE TWO TESTBEDS:

POWDER FOR OTA DATA, AND COLOSSEUM FOR EMULATED DATA.

Parameter POWDER Colosseum

SDR USRP X310 USRP X310
Nodes Honors and USTAR Rooftop BS Digitized Honors and USTAR Nodes
Frequency 3.46-3.465 GHz 1 GHz
Bandwidth 1-10 MHz 80 MHz
Time Capture 30 seconds 30 seconds
Capture Size 2,57 GB 2,96 GB
Sample Time 10 MS/s 10 MS/s
Tx gain 25 dB 15-25 dB
Rx gain 25 dB 15 dB

Real World Digital World

CaST

Friendship

Behavioral

Dentistry

Honors

Browning

MEB USTAR

200 m 200 m

1

2
3

4

5
6

7

8

Fig. 2. Data collection scenarios for the real world (POWDER, left picture)
and digital world (Colosseum, right picture). The red circles indicate the
actual nodes used for data collection. Colosseum node 6 is a remnant of the
now-decommissioned POWDER Medical Tower Rooftop node.

Colosseum’s capabilities for digitization of the real-world [17].
We use a DT representation of the POWDER platform to recre-
ate a similar real-world environment in an emulated one. Thus,
we use the POWDER scenario created and described in [18] to
collect the data between the same digitized nodes for Honors
and USTAR rooftop base stations, digitized as nodes 1 and 5.

As shown in Table I, in both cases, we leverage USRP
X310 as SDR hardware. The frequencies used for POWDER
fall in the CBRS band between 3.46 and 3.465 GHz with
bandwidths of 1 MHz and 10 MHz, respectively. In contrast,
Colosseum uses its typical emulation of the baseband signal
with a frequency of 1 GHz and a bandwidth of 80 MHz.
The data capture duration for both platforms is 30 seconds
per use case, with a sampling frequency of 10 megasamples
per second. The transmission and reception gains of each
SDR vary between 15 and 25 dB to compensate for the long
distance of about 800 meters between the two nodes.

In each scenario, we leverage CaST [12], which is based on
the GNU Radio software development toolkit, to send a Binary
Phase-Shift Keying (BPSK)-modulated Galois Linear Feedback
Shift Register (GLFSR) code sequence from the sender node
(Honors) and to store the raw received IQ samples without
any processing or equalization on the receiver side (USTAR).

IV. EXPERIMENT EVALUATIONS

A. Hyper-parameter Tuning and Training

In our training stage, the initial step in handling the dataset
involves splitting it into three distinct parts: 80% training set,
10% validation set, and 10% test set. This division ensures
that the model has adequate data for training, tuning, and
evaluation, ultimately leading to better performance and
generalization. Preprocessing is a critical step in preparing the

Table II
HYPER-PARAMETER TUNING STAGE OF soft-GAN

Hyper-param. Search Space Selected Parameter

Input size [2, 4, 8, 16, 32] 8
Hidden layers [1, 2, 3] 3
Hidden layers [0.5, 1.5, 2.0, 3.0, 5.0] 2.0 x Input Size
Learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01] 0.005
Batch size [64, 128, 256, 512, 1024] 256
Loss Function [MAE, MSE, sMAPE] MAE
Training steps [1000, 5000, 10,000, 20,000, 40,000] 20,000
Optimizer [RMSprop, SGD, Adam] Adam
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Fig. 3. soft-GAN training and validation loss over epochs (left picture).
Generator and discriminator loss over epochs (right picture).

data for training. The main goal is to normalize the IQ data
to ensure consistency and stability during the training process.
Normalization involves scaling the data so that its values fall
within a specific range, -1 to 1. We achieve this by computing
the mean (µ) and standard deviation (σ) of the training data
and then normalizing each data point accordingly.

Table II shows our parameter space. During the
hyperparameter tuning stage, an input size of 8 achieves
a balance between model complexity and performance.
Larger input sizes increase the model’s complexity without
significantly improving performance. Having three hidden
layers allows the model to capture more complex patterns in the
data. Setting the hidden layer size to 2×InputSize ensures that
the network has sufficient neurons to learn intricate features of
IQ samples without overcomplicating the model. A learning rate
of 0.005 is a moderate choice that facilitates faster convergence
while avoiding the pitfalls of overshooting the optimal point,
which can occur with a higher learning rate. A batch size of
256 provides a good compromise between training stability
and computational efficiency. We found that larger batch sizes
require more memory and longer computation times per update,
while smaller batch sizes lead to noisy gradient estimates.

As shown in Fig. 3 (left), both training and validation losses
start at a relatively high value, around 1.2. This is expected
as the model begins learning the data patterns from scratch.
As training progresses, both losses decrease significantly,
stabilizing at lower values, around 0.2. The training loss exhibits
a smoother decline compared to the validation loss, which
shows more fluctuations. However, these fluctuations are within
a narrow range, and both losses remain close to each other
throughout the training process. This behavior suggests that the
model is learning effectively without overfitting. If the model
were overfitting, we would observe the validation loss diverging
from the training loss, with the validation loss increasing while
the training loss continues to decrease. Conversely, underfitting
would be indicated by both losses remaining high and not



Table III
NRMSE AND CONTEXT FID-SCORES (LOWER VALUES IN THESE METRICS

INDICATE BETTER MODEL PERFORMANCE)

NRMSE Context FID-scores

Models 128 256 128 256

TimeGAN 0.27±0.06 0.26±0.02 0.23±0.04 0.63±0.10
Autoencoder 0.45±0.07 0.43±0.01 0.58±0.03 0.42±0.10
BiLSTM 1.03±0.055 0.97±0.003 1.07±0.20 0.92±0.07
BiLSTMGAN 0.95±0.06 1.13±0.04 0.71±0.01 0.23±0.05
CnnGAN 1.87±0.07 2.73±0.02 1.87±0.09 1.63±0.06
soft-GAN (ours) 0.23±0.02 0.21±0.07 0.15±0.01 0.09±0.04

Table IV
DISCRIMINATIVE AND PREDICTIVE SCORE RESULTS (LOWER VALUES IN

THESE METRICS INDICATE BETTER MODEL PERFORMANCE)

Discriminative Score Predictive Score

Models 128 256 128 256

TimeGAN 0.028±0.003 0.013±0.01 0.019±0.08 0.17±0.03
Autoencoder 0.15±0.03 0.17±0.08 0.24±0.09 0.23±0.01
BiLSTM 0.04±0.03 0.053±0.002 0.18±0.04 0.13±0.04
BiLSTMGAN 0.113±0.09 0.088±0.02 0.27±0.017 0.09±0.03
CnnGAN 0.43±0.08 0.39±0.01 0.36±0.008 0.33±0.004
soft-GAN (ours) 0.017±0.02 0.013±0.06 0.016±0.004 0.009±0.006

Table V
COMPARISON OF CLASSIFICATION PERFORMANCE OF BASELINE MODELS

Models Accuracy Precision Recall F1-score

TimeGAN 0.83 0.68 0.84 0.87
Autoencoder 0.88 0.63 0.82 0.85
BiLSTM 0.78 0.70 0.80 0.81
BiLSTMGAN 0.83 0.73 0.81 0.83
CnnGAN 0.77 0.61 0.79 0.73
soft-GAN (ours) 0.93 0.78 0.91 0.89

decreasing significantly. The close alignment of the training
and validation losses in our model demonstrates a good balance,
indicating that the soft-GAN is generalizing well to unseen data.

Figure 3 (right) plot shows the generator and discriminator
losses over the epochs. Initially, both losses start high, around
1.0, which is typical at the beginning of GAN training.
As training proceeds, the generator loss decreases steadily,
stabilizing around 0.1 to 0.2. The discriminator loss also
decreases but at a slower rate and stabilizes around 0.2 to 0.3.
This dynamic is crucial in GAN training. The generator aims
to produce data that the discriminator cannot distinguish from
real data, while the discriminator aims to correctly identify real
and generated data. The observed balance between these losses
indicates that the training process is stable. If the discriminator
loss were to decrease too rapidly, it would suggest that the
discriminator is too powerful, making it difficult for the
generator to improve. On the other hand, if the generator loss
were too low compared to the discriminator loss, it might
indicate mode collapse, where the generator produces limited
diversity in the generated data. The balance observed here
suggests that both the generator and discriminator are improving
in tandem, contributing to the overall performance of the model.
The stability and convergence of these loss curves provide a
numerical testament to the model’s performance. The training
and validation losses stabilizing around 0.2, and the generator
and discriminator losses around 0.1 to 0.3, indicate that the
model has learned the underlying data distribution effectively.

Fig. 4. Components of real and generated samples in the PCA subspace;
Generated samples (marked as “×”) exhibit a substantial overlap with the
real samples (marked as “+”).

Fig. 5. Spectrogram of soft-GAN generated synthetic RF (25 dB gain) Signals

B. Performance Comparison with Baseline Models

In this section, we provide a comprehensive evaluation of
the proposed soft-GAN architecture against baseline models
for time-series data augmentation, all trained on our dataset, in-
cluding TimeGAN [10], Autoencoder [19], BiLSTM [20], BiL-
STMGAN [21], and CNNGAN [22]. The performance metrics
presented in Table III include Normalized Root Mean Squared
Error (NRMSE) and Context Fréchet Inception Distance (FID)-
scores, which are widely used in computer vision to evaluate the
quality of synthetic data [23]. Table IV includes Discriminative
and Predictive Scores, derived as evaluation criterion from
baseline work [10], where a post-hoc time-series classification
model (2-Layer LSTM) is trained to distinguish between origi-
nal and generated sequences, labeled as "real" and "generated,"
respectively. The classification error on a held-out test set is
reported as a quantitative metric for similarity assessment. In
Table V, the results are presented using well-known classifica-
tion metrics, including accuracy, precision, recall, and F1-score.

Performance results show that the use of a soft-attention
mechanism allows the model to focus on the most relevant parts
of the input sequence, enhancing its ability to capture long-
range dependencies and intricate patterns in the time-series
data. Table III shows how soft-GAN achieves an NRMSE of ap-
proximately 0.23 and 0.21, outperforming the best-performing
baseline, TimeGAN, whose NRMSE ranges from 0.26 to 0.27.
Statistically, this equates to about an 11–19% reduction in the



NRMSE relative to strong baselines. Lower NRMSE signifies
a tighter fit of the generated time series to the real data
distribution, indicating that soft-GAN’s internal soft-attention
and recurrent mechanisms effectively preserve key temporal
dependencies. Decreasing the FID-score relative to leading
baselines suggests that soft-GAN maintains more accurate local
and global temporal structures. Table IV shows that for 128-
length sequences, soft-GAN achieves a Discriminative Score
approximately 39% lower than TimeGAN (0.017 vs. 0.028) and
significantly lower than all other baselines. This improvement
at the 256-length scale is also notable, matching TimeGAN at
approximately 0.013 but with a more stable variance. Such a
low Discriminative Score suggests that the synthetic sequences
from soft-GAN are statistically indistinguishable from real
data, reinforcing that our generative model is not merely
capturing coarse trends but rather the nuanced statistical
behavior observed in authentic RAN measurements.

To further validate the utility of generated data, Table V
presents results from a classification task trained on synthetic
samples. soft-GAN achieves an accuracy of 0.93, outperforming
all baselines by at least 5 percentage points. Its F1-score
of 0.89 represents a ∼ 9% improvement over the closest
competitor. This higher classification metric confirms that
soft-GAN does not just produce visually or statistically similar
data, but also preserves class-discriminative features. Higher
precision results of our model indicate that soft-GAN has
a lower false positive rate. Soft-GAN improves accuracy by
5-11% over TimeGAN and 7-19% over BiLSTM.

The Principal Component Analysis (PCA) projection in
Fig. 4 offers a reduced-dimensionality view of both real and
soft-GAN generated samples. If we consider the distributions
of points along each principal component axis, the generated
samples do not form a distinctly separate cluster; rather, they
integrate into the same regions occupied by the real samples.
This suggests that the generative model has learned not only
the mean and covariance structure of the underlying data but
also the higher-order moments that define the geometry of
the data manifold in a lower-dimensional space. The close
spatial proximity and pattern similarity between real and
synthetic points implies that soft-GAN captured complex
temporal correlations, amplitude variations, and other spectral
signatures pertinent to RAN signals. The spectrogram in Fig. 5
provides a joint time-frequency representation of a soft-GAN
generated RF signal at 25 dB signal power level. By applying
a time-frequency decomposition—commonly via Short-Time
Fourier Transform (STFT)—we visualize how signal energy
is distributed across frequencies as a function of time. The
generated spectrogram exhibits key spectral and temporal
patterns that mirror realistic RF conditions.

V. CONCLUSION

In this work, we introduced Gen-TWIN, a synthetic
data generation DT platform, that fulfills the data-intensive
demands of advanced DT-RAN operations. By producing
high-fidelity RF signals, Gen-TWIN empowers AI-driven
network management with richer, more representative training

sets. The resulting improvements in model accuracy and
robustness underscore the platform’s potential to catalyze the
evolution toward highly efficient, next-generation DT-RANs.
Subsequent research may explore incorporating multi-modal
data sources into Gen-TWIN’s generative framework, further
diversifying training sets and model robustness.
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