
Demonstrating Distributed Inference
in the User Plane with DUNE

Beyza Bütün∗†, David de Andres Hernandez∗†, Josue Miguel Aguilar Polo∗, Michele Gucciardo‡, Marco Fiore∗
∗IMDEA Networks Institute, Spain, †Universidad Carlos III de Madrid, Spain, ‡NEC Laboratories Europe, Spain

∗{beyza.butun, david.deandres, josue.aguilar, marco.fiore}@imdea.org, ‡michele.gucciardo@neclab.eu

This is the author’s accepted version of the article. The final version published by IEEE is B. Bütün, D.A. Hernandez, J.M.Aguilar Polo, M. Gucciardo and
M. Fiore, “Demonstrating Distributed Inference in the User Plane with DUNE,” IEEE INFOCOM 2025 Demo Session - IEEE International Conference on
Computer Communications, 2025, doi: TBD.

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Deploying Machine Learning (ML) models in the
user plane enables low-latency and scalable in-network inference,
but integrating them into programmable devices faces strin-
gent constraints in terms of memory resources and computing
capabilities. In this demo, we show how the newly proposed
DUNE, a novel framework for distributed user-plane inference
across multiple programmable network devices by automating
the decomposition of large ML models into smaller sub-models,
mitigates the limitations of traditional monolithic ML designs.
We run experiments on a testbed with Intel Tofino switches using
measurement data and show how DUNE not only improves the
accuracy that the traditional single-device monolithic approach
gets but also maintains a comparable per-switch latency.

I. BACKGROUND AND MOTIVATION

User-plane programmability is revolutionizing traditional
network functions like telemetry, load balancing, caching,
and intrusion detection by fostering innovation and improving
efficiency. Notably, programmable network hardware has made
it possible to deploy Machine Learning (ML) models in
the user plane for in-network inference. ML models, trained
offline, can be integrated into programmable switches or smart
Network Interface Cards (smartNICs), allowing packet-level
processing at line rate with ultra-low latency.

This approach significantly improves delays, scalability,
and cost-efficiency compared to traditional control-plane ML,
which involves cross-plane interactions and additional hard-
ware overhead. Yet, embedding ML models into program-
mable devices remains challenging due to limited compute
capabilities, memory constraints, and internal architectures not
accounting for ML operations.

To address these challenges, prior solutions have focused
on tailoring ML models for single devices, such as switches
or smartNICs, by leveraging techniques like Decision Trees
(DTs), Random Forests (RFs), or Neural Networks (NNs).
These models typically operate at the packet-level [1], flow-
level [2], or both [3], [4], but their implementation has
remained monolithic, confined to a single piece of network
hardware. While effective in certain scenarios, this approach
underutilizes the inherently distributed nature of modern net-
works, which consist of multiple switches and middleboxes,
and limits the classification accuracy achieved. A more flexible
and scalable strategy is distributing ML inference tasks across
multiple devices, allowing packets and flows to be processed
collaboratively as they traverse the network. By decomposing
ML models into smaller sub-models, different devices can per-
form portions of the inference task, leading to more efficient
resource usage and enhanced scalability.

II. PROPOSED SOLUTION

DUNE [5] addresses the shortcomings of traditional mono-
lithic solutions by proposing a novel framework for executing
distributed user plane inference in real-world programmable
hardware. The fully automated framework breaks down large
ML models, trained for complex inference tasks, into simpler
sub-models that (i) are compatible with the programmable
network constraints and (ii) jointly execute different portions
of the desired inference task. Through original optimization,
the framework aims to preserve accuracy while minimizing
sub-model complexity. Moreover, it supports any class of input
ML model, and enables joint packet- and flow-level inference.

The design of DUNE is automated with the following steps:
(i) Labeled historical measurement data is used to create a
highly accurate monolithic ML model for the target traffic
analysis task, independent of network hardware constraints.
(ii) The monolithic ML model is analyzed to generate an im-
portance matrix WWW that expresses the relevance of features in
explaining output variables and an accuracy vector fff of the in-
ference quality for each class. (iii) The information in WWW and
fff is used to partition the original inference task into sub-tasks,
each focusing on a subset of input features and corresponding
output variables. DUNE optimizes this partitioning through a
custom heuristic that groups variables explainable by compact
feature sets. (iv) Dedicated ML sub-models are trained for
each sub-task using its input features, ensuring compatibility
with user-plane hardware constraints. (v) The sub-models are
executed sequentially to perform the original inference task,
with their order optimized based on their reciprocal accuracy
to minimize misclassifications and maximize overall inference
performance, as errors can propagate through the chain.

Once the ordered ML sub-models are prepared, they are
deployed as P4 programs on programmable user-plane devices.
As shown in Figure 1 in three distinct blocks, each switch
performs three key operations: inference-aware forwarding for
traffic filtering, flow management for storing stateful informa-
tion on target flows, and inference for classifying packets us-
ing packet-level features and incorporating flow-level features
once sufficient packets are observed. Each sub-model classifies
a distinct portion of the traffic. As illustrated in Figure 1, the
flows classified by the first sub-model (green) are not reclas-
sified by subsequent sub-models, while unclassified flows by
the first sub-model (grey) are classified by the next one (red).
Upon classification, the control plane updates forwarding rules
and release flow management resources. When sub-models are
simple, multiple models can be deployed on the same switch.



Figure 1: Demo setup, and mapping of the logical components
of the control and user planes into the testbed hardware. Two
switches are shown for ease, but there are three in the demo.

III. DEMONSTRATION

This demo demonstrates how distributed inference executed
by DUNE outperforms existing traditional monolithic solutions.

A. Demonstration setup

Figure 1 shows an overview of the components of the
demo which are mapped into five hardware devices i.e., two
servers and three programmable switches, shown as two in
the diagram for the sake of simplicity, linked via QSFP28
interfaces at 100 Gbps, depicted at the bottom of the figure.

The two off-the-shelf servers have AMD EPYC 24-core
processors at 2.8GHz and 128GB of RAM. Server #1, hosting
the traffic source, replays captured pcap traces using Tcpreplay
to inject target traffic for inference (shown in gray) into
the switch. The traffic from the source is forwarded through
Edgecore switches equipped with an Intel Tofino BFN-T10-
032Q chipset, where each runs a sub-model of DUNE for dis-
tributed line rate inference. Each switch hosts all the important
modules of the DUNE solution, the inference-aware forwarding
block, the flow management block, and the inference module.
Finally, server #2, serving as the traffic sink, captures outgoing
traffic from the switch with a dedicated Tcpdump instance. It
generates a pcap file for PL solutions, which is then analyzed
by the controller.

The controller, running on server #2, has multiple roles.
First, for each experiment, it sets up the switch by loading the
corresponding model’s table entries. Second, it updates the
forwarding table right after the classification of a flow. Third,
after each experiment, it analyzes the captured pcap traces
and the received packet digests to calculate the classification
performance of the benchmarks and DUNE in terms of macro,
weighted, and micro F1-score. It also gets latency information
from an instance of the Intel P4Insight tool it runs. Finally,
the controller feeds the statistics dashboard with data for on-
screen display, as shown in Figure 1.

The performance of DUNE and benchmarks are displayed in
a dashboard fed by the controller. The dashboard consists of
two main areas, as depicted in Figure 1. We show the topology

Performance Latency

Dataset Mousika Jewel Dune No inference Mousika Jewel Dune

UNSW 64.921% 65.718% 70.263% 852.54 871.64 981.47 1137.70

ToN-IoT 47.099% 61.718% 67.541% 852.54 869.18 1015.08 1183.61

Table I: Performance of DUNE and the benchmarks in terms
of macro F1-score and based on flow-level metric, and latency
(ns) across three switches.

of the displayed solution and live performance results in terms
of macro F1 score during each evaluation in the first area
(top) and then compare the overall performance results and the
total latency of each solution in the second area (bottom). The
dashboard displays the results of a solution after selecting the
solution and use case by clicking the corresponding buttons.
B. Experiments

We use the 2 datasets considered in [5], namely ToN-
IoT (attack classification) and UNSW (device identification),
for evaluation. We train models for DUNE and two bench-
marks, i.e., Mousika [1] and Jewel [4] and implement them
in P4. We then run 60-second experiments per use case and
solution to evaluate classification performance and end-to-end
latency. For a fair comparison, the reported latency accounts
for the three switches, reflecting DUNE’s distributed archi-
tecture. For monolithic models, the first switch incurs both
forwarding and inference latency, while subsequent switches
only experience forwarding latency. In DUNE, all switches
combine the latency of forwarding and inference.

We first run legacy forwarding just to calculate the total
latency across three switches, which is 852 ns, as shown in
Table I. As no inference is involved, performance metrics
are not displayed on the dashboard. Next, we sequentially
run Mousika, Jewel, and DUNE. The results show that DUNE
outperforms all the benchmarks with the gain of 4.5% and
5.8% macro F1 score compared to the second-best model
in UNSW and ToN-IoT, respectively, as shown in Table I.
DUNE improves classification performance and enables packet-
and flow-level ML inference on production-grade hardware,
adding only in average 308 ns, 290 ns, and 162 ns of latency
across three switches compared to no inference, Mousika,
and Jewel, respectively. The total inference latency remains
approximately 1µs across three switches, which is negligible.

ACKNOWLEDGMENTS

This research was supported by ORIGAMI project (GA
101139270) funded by SNS JU and the European Union. M.
Fiore is Talent Attraction fellow (2023-5A/TIC-28944) and
B. Bütün predoctoral fellow (PIPF-2022/COM-24867), both
being co-financed by Comunidad de Madrid.

REFERENCES

[1] G. Xie et al., “Mousika: Enable general in-network intelligence in
programmable switches by knowledge distillation,” in INFOCOM, 2022.

[2] A.T-J. Akem et al., “Flowrest: Practical flow-level inference in program-
mable switches with random forests,” in INFOCOM, 2023.

[3] G. Zhou et al., “An efficient design of intelligent network data plane,” in
32nd USENIX symposium on security, 2023.

[4] A.T-J. Akem et al., “Jewel: Resource-efficient joint packet and flow level
inference in programmable switches,” in INFOCOM, 2024.

[5] B. Bütün et al., “Dune: Distributed inference in the user plane,” in
INFOCOM, 2025. [Online]. Available: hdl.handle.net/20.500.12761/1883


