This is the author’s accepted version of the article. The final version published by IEEE is O. E. Martinez-Durive, S. Bakirtzist, C. Ziemlicki and M. Fiore,
“Demonstrating Deep Learning-based Spatial Diffusion,” IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2025, pp.

TBP, doi: TBP.

Demonstrating Deep Learning-based Spatial Diffusion

Orlando E. Martinez-Durive*T, Stefanos Bakirtzis*, Cezary ZiemlickiY and Marco Fiore*
*IMDEA Networks Institute, Spain, TUniversidad Carlos III de Madrid, Spain, ,iUniversity of Cambridge, United Kingdom,
YSENSE / Orange Innovation, France
{orlando.martinez, marco.fiore} @imdea.org, ssb45@cam.ac.uk, cezary.ziemlicki@orange.com

Abstract—Metadata geolocation, i.e., mapping information col-
lected at a cellular Base Station (BS) to the geographical area
it covers, is a central operation in producing statistics from
mobile network measurements. This task requires modeling the
probability that a device attached to a BS is at a specific location,
and it is currently accomplished via simplistic approximations
based on Voronoi tessellations. However, Voronoi cells exhibit
poor accuracy compared to real-world geolocation data, which
can reduce the reliability of downstream research pipelines. To
overcome this limitation, DEEPMEND proposes a new data-driven
approach relying on a teacher-student paradigm that combines
probabilistic inference and deep learning. Similarly to other
benchmarks, DEEPMEND can produce geolocation maps using
only the BS positions, yielding a 56% accuracy gain compared
to Voronoi tessellations. Our demonstrator will show visual
and qualitative comparisons between DEEPMEND and several
competitor approaches, allowing users to explore BS deployments
from different geographical regions and operators.

I. BACKGROUND AND MOTIVATION

The metadata collected in operational mobile networks
provides rich information about the movement, communica-
tion patterns, activities, and interests of large populations of
subscribers, with high spatiotemporal resolution and at broad
geographical scales. Therefore, such data has been used in
various scientific fields, including networking, demography,
geography, sociology, and epidemiology, enabling dependable
quantitative analyses of phenomena that can only be studied
qualitatively otherwise. In all these studies, the metadata is
usually geo-referenced at the level of the individual Base
Station (BS). In other words, all metadata records (e.g., the
traffic generated by a device or the total demand of all devices
for a given service) are associated with the geographical site
of BS that serves the device at each time instant. Yet, network
analyses building on such metadata need to be carried out over
the continuous space of the target region and not at the discrete
BS locations only. This makes the mapping of BS-referenced
data to the underlying geographical space an essential step
in any mobile network metadata processing pipeline and calls
for spatial diffusion models that describe the probability that a
device attached to a BS is at a specific geographical location
served by that BS.

Accurate spatial diffusion models can be directly obtained
from client-side measurements or estimated by post-processing
the results of radio propagation solvers. However, these ap-
proaches are not viable in academic research, as they require
massive measurement campaigns or access to confidential
information about the network infrastructure that is typically
not available. As a result, the vast majority of the literature
has relied on simplistic approximations of spatial diffusion
based on Voronoi tessellations of the space, assuming that the
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Fig. 1: Spatial diffusion of one real-world BS, obtained from
(a) elaborate post-processing of radio propagation simulations
by a network operator based on complete RAN information,
(b) Voronoi tessellation, (c) our proposed DEEPMEND. Colors
denote diffusion probabilities over space. From [1].

metadata associated with one BS is uniformly diffused over
the surface of its Voronoi cell, as illustrated in Figure 1b.
Evidently, this approximation poses strong performance lim-
itations and yields substantial discrepancies when compared
to ground truth data, as shown in Fig. la; yet, many of the
works in the literature rely on this model due to its simplicity.
Indeed, computing a Voronoi tessellation is a straightforward
operation that only requires the geographical coordinates of
the BSs, which are typically provided to academic researchers
along with the metadata.

An alternative is a probabilistic density model that estimates
spatial diffusion via probability density inference [2]. That
allows partially overcoming the limitations of Voronoi cells
by generating a statistical representation of the location of
UE given solely its distance from the BS of attachment,
computing an approximate probabilistic spatial diffusion of
the BS. This model results in a smoothed Voronoi cell,
controlled by a power attenuation parameter that needs to be
properly configured through field measurements. An in-depth
discussion on alternative approaches can be found in [1].

II. PROPOSED SOLUTION

DEEPMEND [1] aspires to change the status quo and de-
mocratize dependable spatial diffusion by proposing a model
that can combine the minimal input requirement of a Voronoi
tessellation (i.e., the sole locations of BSs, making the model
accessible to any academic researcher) with the high accuracy
granted by a full-fledged modeling process based on operator-
proprietary information.

To this end, we use a rich set of spatial diffusion maps from
5,947 outdoor BSs located in urban, suburban, and rural areas
of France, making up the radio access network of Orange, a
major local operator. The spatial diffusion dataset is provided
directly by the network operator, and it is derived from
realistic distributions of the association probability, P({|i),
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Fig. 2: Diagram of the teacher-student workflow of DEEP-
MEND, with inputs, outputs, and interactions. From [1].

which describe the probability that a UE attached to the ¢-
th BS is located at position ¢. For each BS, the probability of
association over a 3, 600 km? area is in the form of a 600 x 600
regular grid, with the BS located at the center of the grid and
each grid element ¢ matching a 100x 100 m? physical area.

These voluminous data are used to develop DEEPMEND,
a deep learning-based spatial diffusion model [1] that ex-
ploits the concept of knowledge distillation [3]. Specifically,
knowledge distillation involves a complex and computationally
expensive model, the teacher, to derive soft labels that are
then used to train a simpler model, the student. In our
case, we consider as a teacher the model of [2], with its
hyperparameter optimally selected via an exhaustive search,
whilst the student is a deep convolutional encoder-decoder.
The general concept of DEEPMEND is shown in Figure 2. As
can be seen, the teacher model processes the BS locations and
uses an exhaustive search to determine the hyperparameter of
[2] which minimizes the Kolmogorov—Smirnov test [4] error
between the ground truth and the emerging model-based [2]
spatial diffusion distribution. That corresponds to a soft label,
i.e., a high-fidelity representation of the ground truth as shown
in Fig. 1a, which is though easier to be learned by the student
than the ground truth itself. Finally, the student model uses
these soft labels to understand how to transform simple BS
location information into realistic spatial diffusion maps for
each BS. More details on the performance and scalability of
DEEPMEND can be found in [1].

III. DEMONSTRATOR

Our demonstrator is a web app that allows the user to visu-
ally and quantitatively assess the performance of DEEPMEND
among other geolocation map approaches. The dashboard of
our demonstrator is shown in Fig. 3. The web app builds on
React.js for the User Interface, Mapbox for map visualizations,
and Python for data load and inference tasks.

The user can select the country, city, and mobile operator
of interest in the menu at the top. Currently, four countries
are available: United Kingdom, Ireland, Belgium, and France.
In the latter case, we offer more than 10 cities to visu-

https://www.deepmend.demo
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Model description:

DeepMEND. A deep learning model
trained using the teacher-student
paradigm. Base model: SDU-Net

Base Station ID: 88HX0
Lat: 48.67660

Lon: 2.13114

Height: 25m

Accuracy: 0.72 (using KS)
Difference w.r.t Voronoi: 0.56 (using KS)
Generation time: 0.054 sec

Fig. 3: Web app demonstrator of DEEPMEND.

alize, including Paris. Operators include Orange, Proximus,
Vodafone, Three, Free, and SFR. In the same menu, it is
possible to select the model to infer geolocation maps: this
list includes our proposed solution DEEPMEND together with
other benchmarks such as Voronoi and VoronoiBoost.

After selecting the country, city, and operator, the app shows
the corresponding base station deployment in the left panel.
Then, the user can zoom in and out or move over the map;
details will be displayed in a popup while the user hovers over
a base station. When a base station is selected, the ground-truth
geolocation map (if available) is shown in the top right panel.
Based on the chosen model, the app requests the inferred
geolocation map using the Python API, which is displayed
in the bottom right panel.

The bottom panel displays relevant information about the
selected base station, such as lat, long, and height. Further-
more, it also shows information about the selected model, such
as inference time, accuracy with respect to the ground truth
(if available), and error metrics compared to the corresponding
Voronoi cell and the other benchmarks. There is also an option
to show the features fed to the model.
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