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Abstract

Industrial defect detection is crucial for ensuring the quality of industrial
products. Defects on the surface of industrial products are characterized by
multi-scale, multi-type, rich small objects, and complex background interfer-
ence. Particularly, detecting small objects in multi-scale defects under complex
background interference poses significant challenges for defect detection tasks.
Improving the algorithm’s ability to detect industrial defects, especially enhanc-
ing the detection capability for small-size defects while ensuring that the inference
speed is not excessively impacted, is a longstanding challenge. To achieve accurate
and rapid detection in the field of industrial defect detection, this paper proposes
a PCP-YOLO anchor-free network method for small object detection. Initially,
the anchor-free YOLOv8 is used as the detection framework, eliminating the influ-
ence of anchor-related hyperparameters and improving the detection capability
for multi-scale and small-size defects. Subsequently, a lightweight and non-deep
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feature extraction module, PotentNet, is designed and introduced in the back-
bone network to enhance the extraction of fine-grained defect features in images.
Then, in the neck network, a feature fusion module with polarized self-attention,
C2f ParallelPolarized, is designed to enhance the model’s ability to fuse features
of small-size defects in images from the perspectives of polarized filtering and
increasing the dynamic range of attention. Finally, CARAFE is used to replace
the original upsampling module in the neck network to enhance the model’s abil-
ity to utilize semantic information around points near features in images. This
method has been evaluated on public datasets NEU-DET, PCB-DET, and the
real industrial scene dataset GC10-DET. The mAP@0.5 values are 79.4%, 96.1%,
and 77.6% respectively, which are 2.7%, 2.4%, and 2.7% higher than those of
the YOLOv8 detection method, significantly outperforming the SOTA detection
methods. The inference speed of this method ranks second among 13 models.
The results show that PCP-YOLO is promising for real-time defect detection in
industry.

Keywords: Industrial defect, YOLOv8, Small object detection, Feature
enhancement, Feature fusion Anchor-free network

1 Introduction

Defect detection is an indispensable part of industrial production and plays a crucial
role in ensuring product quality. During the production and usage of industrial prod-
ucts, various scales of surface defects may occur due to factors like material quality,
production equipment, and manufacturing processes[1]. These defects can affect the
appearance and performance of industrial products, thereby reducing production effi-
ciency and even causing engineering safety incidents[2]. However, if these defects can
be accurately and rapidly identified during the industrial production process, such
potential issues can be somewhat mitigated[3].

Nevertheless, defect detection is not an easy task. Industrial defects often exhibit
more complex characteristics, generally characterized by varying defect scales, a
prevalence of small-sized defects, and complex background interference[4]. These char-
acteristics pose significant challenges for industrial defect detection. Moreover, in
practical industrial applications, the speed of defect detection models is also critical,
necessitating tools capable of real-time industrial defect detection tasks[5].

Evolved from convolutional neural networks, the SSD[6], YOLO series[7], and
RCNN series[8] are representative baseline models for object detection, widely applied
in various scenarios. These detection models include RCNN, Fast-RCNN[9], Faster-
RCNN[10], and others. Although these models are accurate and precise, their slow
speed does not meet the real-time requirements of industrial scenes. Single-stage detec-
tion models, which balance detection precision and speed, are capable of real-time
defect detection[11]. Therefore, compared to two-stage detection models, single-stage
models better meet the growing detection needs of modern industry and are easier to
apply in practical industrial scenarios.
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To enhance the feature extraction capability of the model, related teams have
added large parameter modules such as attention mechanisms, transformers, and
residual connections to the backbone network of single-stage detection models. While
these modules do enhance feature extraction to some extent, they usually involve
many parameters and multiple modules, inevitably increasing the network’s depth and
impacting detection speed. However, the feature maps in the backbone network do not
contain rich position and semantic information. Merely enhancing the feature extrac-
tion capability of the backbone network is insufficient to meet the needs of defect
detection applications for position and semantic information[12]. Even if some feature
information is enhanced, as it is transmitted to deeper feature extraction layers and
the feature fusion network in the neck, the enhanced feature information often gets
lost again, especially details and positional features related to small objects. Therefore,
enhancing only the backbone network’s feature extraction capability is inadequate,
and emphasis should also be placed on lightweight enhancements.

For feature fusion optimization, typical methods design new feature propagation
and interaction paths to enhance the network’s capability for feature fusion from the
perspective of enhanced feature extraction[13]. Although this method can effectively
improve the detection of multi-scale defects, it may not substantially enhance the
detection capability for small-size defects under complex background interference due
to limited small-size defect feature information and excessive interference features[14].

Considering the applicability of these two mainstream improvement methods, this
study starts with how to rationally improve the backbone network of the base model
without introducing excessive parameters, enhance the feature extraction capability of
the backbone network, and improve the components used for feature fusion in the neck
network of the base model, filtering out interference features to enhance the detection
capability of small targets in multi-scale defects. Consequently, this paper develops a
new deep learning method, the anchor-free PCP-YOLO, aimed at achieving precise
and rapid detection of industrial multi-scale defects.

In summary, the main contributions of this paper are as follows:
Employing the PCP-YOLO method for detecting small target defects in multi-scale

defect backgrounds, which is more precise and lightweight compared to traditional
models. Moreover, the use of an anchor-free structure eliminates the influence of arti-
ficially designed prior anchors, allowing more flexible detection of multi-scale and
small-scale defects.

Designing and introducing lightweight and shallow feature extraction modules,
PotentNet, within the backbone network to enhance the model’s capability to extract
fine-grained defect features from images.

Enhancing the model’s feature fusion capability for small-size defects in images
through the design of the Polarized Self-Attention module, C2f ParallelPolarized,
which strengthens feature fusion by polarized filtering and expanding the dynamic
range of attention, while employing CARAFE to replace the original upsampling mod-
ule in the neck network, enhancing the model’s ability to utilize semantic information
around points near image features.
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2 Related work

Compared to two-stage object detection algorithms, single-stage object detection algo-
rithms strike a better balance between precision and speed and are widely applied in
the industrial detection field. Represented by SSD and the YOLO series, these single-
stage algorithms use a standalone network to directly classify and adjust the predicted
bounding boxes through anchors[15]. The latest YOLOv8 algorithm achieves state-
of-the-art (SOTA) performance in the object detection field, offering faster inference
speed, higher detection precision, and smaller model size. Unlike previous YOLO series
algorithms, YOLOv8 employs an anchor-free mechanism, which helps enhance its per-
formance in defect detection and reduces reliance on manually designed components.
However, YOLOv8 still faces limitations inherent to single-stage object detection
algorithms, such as false positives, missed detections, and limited accuracy in tasks
targeting defects with complex backgrounds and multiple scales[16]. These issues stem
from the YOLO series’ backbone network’s limited ability to extract features of multi-
scale defects in complex backgrounds and the neck network’s insufficient integration
of fine-grained, small-size features.

Various teams have made series of improvements based on the YOLO model series.
These improvements focus on enhancing the original algorithm’s backbone network,
neck network, and anchor design. Kou et al.[17] proposed a defect detection algorithm
based on YOLOv3, incorporating dense convolutional blocks and an anchor-free fea-
ture selection mechanism into YOLOv3’s backbone network, capable of performing
simple defect detection tasks but with low precision, making it unsuitable for detect-
ing multi-scale defects in actual industrial scenes; Dong et al.[18] introduced a parallel
hybrid attention mechanism into the backbone network of an improved YOLOv5 algo-
rithm to enhance feature extraction, but this method’s attention mechanism, involving
deeper network layers, affected the model’s computational speed and still fell short in
integrating features of various defect scales; Xu et al.[19] enhanced the feature extrac-
tion ability of YOLOv5’s backbone network by integrating a CA attention mechanism,
but the method still showed limitations in detecting multi-scale defects; Lu et al.[20]
replaced the original algorithm’s backbone network with a ShuffleNet network and
added an SE attention module, effectively enhancing the backbone network’s feature
extraction capability, but without rich feature mapping of position and semantic infor-
mation in the backbone network, solely strengthening the feature extraction capability
is insufficient for the demands of defect detection tasks; Zhao et al.[21] introduced a
ResNet module into the backbone network of a steel surface defect detection algorithm
based on YOLOv5 and modified the FPN structure to DFPN in the neck network,
which improved the overall detection precision and feature fusion capability of the
model, but it still failed to effectively enhance the detection capability for multi-scale
defect features; Wang et al.[22] proposed a method based on an improved YOLOv7
for detecting defects on steel surfaces, utilizing a weighted bidirectional feature fusion
network to further integrate multi-scale features, but this method only considered
improving feature propagation paths and failed to effectively filter invalid information
interference from complex backgrounds, limiting the model’s ability to recognize small-
scale defect features; Yang et al.[23] developed a defect feature detection method based
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on an improved YOLOv8, which involved replacing the backbone network with a Swin-
Transformer module and introducing a new bounding box loss calculation method,
effectively improving the overall detection accuracy of the original algorithm, but this
method, using deeper network layers and introducing a large number of parameters,
overlooked the need for model lightness; Weining Xie et al.[24] proposed a steel sur-
face defect detection algorithm based on an improved YOLOv8, enhancing the model’s
ability to extract features of multi-scale defects, but the algorithm model introduced
a large number of parameters, resulting in slower detection speed; Qian et al.[25] pro-
posed an improved YOLOX algorithm based on a lightweight feature fusion network,
significantly enhancing the model’s detection speed, but still showing insufficient abil-
ity to detect multi-scale defect features; Ling et al.[26] proposed a PCB board defect
detection method based on an improved YOLOv8, enhancing the backbone network’s
feature extraction capability through an improved C2f and introducing lightweight
Ghost convolutional modules to enhance the neck network’s feature fusion capabil-
ity, although this method improved the overall detection capability compared to the
original algorithm, it still failed to effectively filter interference from complex back-
ground information and showed insufficient performance in detecting small-scale defect
features in complex backgrounds.

Despite the improvements proposed by related teams in detection performance,
their ability to detect defects in complex backgrounds with multi-scale defects remains
insufficient, especially in recognizing and locating small object defects. Therefore, this
paper proposes the PCPC-YOLO model, primarily aimed at detecting multi-scale
defects in complex background interference and effectively identifying small object
defects within multi-scale defects. Unlike the aforementioned methods, we thoroughly
analyze the correlation between small-size defects in multi-scale defect backgrounds
and the feature fusion network, focusing on the challenges of complex background
information interference. Without introducing excessive additional parameters and
structures, we enhance the model’s capability to extract features of multi-scale defects
and integrate small-size defect features, with virtually no loss in detection speed.
Additionally, we utilize the flexibility of the anchor-free mechanism to detect small-size
and multi-scale defects, eliminating the model’s dependence on human experience.

3 Developed methods for small object detection of
multiscale defects

PCP-YOLO is an algorithm model developed based on the YOLOv8n architec-
ture, specifically designed to perform multi-scale defect detection tasks. Therefore,
in this section, the developed PCP-YOLO architecture is introduced, detailing the
PotentNet module used to enhance the multi-scale feature extraction capability, the
C2f ParallelPolarized module designed to augment the fusion of small target defect
features, and the Carafe module which increases the model’s understanding of the
semantic information around defect features.
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3.1 Lightweight and non-deep feature extraction module

While the backbone network of the base model YOLOv8 already exhibits good feature
extraction capabilities, it still faces challenges in adequately extracting features from
multi-scale defects[27, 28]. A key consideration is how to enhance the model’s capabil-
ity to extract features of multi-scale defects without introducing too many parameters
and while maintaining the model’s lightweight nature.

We have drawn inspiration from the initial block design of the high-performance
non-deep network, Rep-VGG[29], and modified it to better suit the task of extract-
ing multi-scale features in real-time defect detection. This modified module, designed
to enhance feature extraction capabilities, is called PotentNet. For a non-deep net-
work with only 3*3 convolutions, one challenge is its relatively limited receptive field.
To address this issue, we constructed a layer based on the Squeeze-and-Excitation
(SE) design, termed the Skip-Pooling-Squeeze-Excitation (SPSE) layer. Traditional
mechanisms for enhancing feature extraction often involve deeper networks with more
parameters, which can impact detection speed. Therefore, we use the SPSE design,
which is applied together with skip connections and utilizes a single fully connected
layer. In the experimental section of this paper, we found that this design helps to
improve performance. Figure 1 provides a schematic of the PotentNet module structure
with the SPSE mechanism.

Fig. 1 Schematic diagram of the lightweight and non-deep PotentNet module structure

As shown in Figure 1, the PotentNet module consists of a 1*1 convolutional layer
, a 3*3 convolutional layer , an SPSE module, and a linear activation layer. The
SPSE module includes a batch normalization layer, a global average pooling layer,
a global max pooling layer, a 1*1 convolutional layer, and a linear activation layer.
When the PotentNet module receives image feature information processed by the
upper layers of the backbone network, it first sends the information to both the 1*1
and 3*3 convolutional modules and the SPSE module for processing. The information
processed by the two convolutional modules and the SPSE module is then fused,
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and finally processed by the linear activation layer SiLU before being sent into the
neck network. The SPSE module first performs batch normalization, feature fusion of
global average pooling and max pooling, convolutional feature extraction, and linear
activation on the incoming information, then performs a skip connection with the
batch-normalized information, and finally outputs the information processed by the
SPSE module. The PotentNet module does not introduce excessive network layers,
ensuring the model’s lightweight nature to a certain extent, while effectively extracting
feature information through the rational use of convolutional modules, global pooling,
and skip connection mechanisms.

3.2 Polarized Feature Fusion Module

Although the neck network of the base model YOLOv8 already performs well in terms
of feature fusion capability, it still faces challenges in sufficiently capturing small-size
feature information streams for multi-scale defect features, especially for small target
defects, which subsequently impacts the performance of feature fusion.

Fig. 2 Schematic Diagram of the Polarized-Self-Attention Network Structure

To enhance the neck network’s ability to fuse feature information, this study intro-
duces a Polarized-Self-Attention mechanism (PSA)[30], suitable for integrating small
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target defect features, and designs the C2f ParallelPolarized module equipped with the
PSA mechanism to replace the standard C2f. In the field of computer vision, research
on self-attention mechanisms primarily focuses on operating on the input tensor X with
self-attention blocks to highlight or suppress features. Traditional self-attention mech-
anisms struggle to capture rich gradients of small-scale defect features. The inspiration
for the polarized self-attention mechanism presented in this paper comes from scenar-
ios encountered in camera photography. For instance, when improving the quality of
photos taken by cameras, the camera always encounters random light causing glare
and reflections across the horizontal direction. Using a filtering mechanism that allows
light to pass only perpendicular to the horizontal direction can effectively enhance the
photo’s contrast. However, such filtered light usually has a smaller dynamic range,
thus requiring additional enhancement, such as through High Dynamic Range (HDR)
methods, which can restore details of the original scene.

Based on this concept of filtering light and enhancing the dynamic range of light,
the C2f ParallelPolarized module with the PSA mechanism was designed, incorpo-
rating two key steps: polarized filtering and expanding the attention dynamic range.
Polarized filtering involves processing feature information from both the channel and
spatial dimensions while maintaining the transmission of the original feature infor-
mation. The method to expand the attention dynamic range involves processing the
feature information from both spatial and channel dimensions, increasing the atten-
tion dynamic range of the bottleneck tensor (the two smallest feature tensors from the
polarized filtering process) through a Softmax layer, and implementing feature map-
ping through a Sigmoid layer. This method draws inspiration from HDR photography
techniques.

The structure of the PSA is shown in Figure 2, consisting of a channel self-
attention processing group and a spatial self-attention processing group. The channel
self-attention processing group includes five 1*1 Conv convolutional layers, two
Reshape layers for processing tensor dimensions, and one Softmax layer. The spatial
self-attention processing group comprises two 1*1 Conv convolutional layers, one Glob-
alPooling layer, three Reshape layers for processing tensor dimensions, one Sigmoid
activation function layer, and one Softmax activation function layer.

As shown in Figure 2, the principle of feature information processing by the PSA
module is as follows: When the PSA module receives the tensor X information from
the input, the tensor information is transmitted to both the channel self-attention
processing group and the spatial self-attention processing group for parallel process-
ing. The specific process is detailed in the following steps:In the channel self-attention
processing group: First, tensor X simultaneously undergoes operations wv and wq,
which involve simultaneous 1*1 convolution (Conv) operations. Then, the tensors
obtained from wv and wq operations are modified in different dimensions, followed by
matrix multiplication of the dimensionally altered information. Finally, the informa-
tion goes through three sequential 1*1 Conv operations before outputting the feature
information returned by the channel self-attention processing group.In the spatial self-
attention processing group: Initially, tensor X simultaneously undergoes operations
wv and wq, also involving simultaneous 1*1 Conv operations. Subsequently, the tensor
from the wv operation undergoes global pooling (GlobalPooling). Then, the globally
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pooled tensor and the tensor from the wq operation are altered in different dimensions,
followed by matrix multiplication of this dimensionally altered information. Lastly, the
process concludes with a tensor dimension change (Reshape) and activation via the
Sigmoid function, before outputting the feature information returned by the spatial
self-attention processing group. The feature information from both the channel self-
attention and spatial self-attention processing groups are added and merged, resulting
in enriched feature gradient flow information for small targets and enhanced feature
fusion capability of the neck network.The feature information from both the chan-
nel self-attention and spatial self-attention processing groups are added and merged,
resulting in enriched feature gradient flow information for small targets and enhanced
feature fusion capability of the neck network.

The PSA module’s respective calculation methods in the channel self-attention
processing group and the spatial self-attention processing group are shown in formulas
(1) and (2). In formula (1), ch represents processing related to the channel, while in
formula (2), sp denotes spatial modulation processing. In formulas (1) and (2),wv, wq,
and wz represent convolution operations with different parameters and depths. The
symbols σ1, σ2, and σ3 in formulas (1) and (2) represent different tensor reshaping
operators in the channel and spatial attention processing groups, used for Reshape
operations. The output tensor dimensions from the channel self-attention processing
group and the spatial self-attention processing group are both C ∗H ∗W . The feature
vectors output from both groups are added together, resulting in a fused feature vector
after the application of the polarized self-attention mechanism. The calculation meth-
ods for FSG and FSM are shown in formulas (3) and (4), representing the processes of
the Sigmoid activation function and the Softmax normalization layer, respectively. In
formula (4), xj refers to the vector being processed, and Np indicates the total number
of categories in the normalization process.

Ach(X)=FSG[Wz|Θ1
((σ1(Wv(X))∗FSM (σ2(Wq(X)))))] (1)

Asp(X)=FSG[σ3(FsM (σ1(FGP (Wq(X))))∗σ2(Wv(X)))] (2)

FSG(X) =
1

1 + e−x
(3)

FSM (X) =

Np∑
j=1

exj∑Np

m=1 e
xm

xj (4)

As shown in Figure 3, the C2f ParallelPolarized module primarily consists of
CBS units and PolarizedBottleneck units. The PolarizedBottleneck comprises two
CBS units and one PSA unit. This process extracts features of different levels and
abstraction from the input data through CBS units and multiple PolarizedBot-
tleneck units, and fuses the resampled features using element-wise addition. The
C2f ParallelPolarized module effectively utilizes the bottleneck module to expand gra-
dient branches, ensuring a lightweight structure while obtaining richer gradient flow
information. Such a branch design helps increase the network’s non-linear capacity and
representational ability, thereby enhancing the network’s capability to model complex
data and achieve better feature fusion results.
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Fig. 3 Schematic Diagram of the C2f ParallelPolarized Module

To further highlight the feature fusion capabilities of the C2f ParallelPolarized
module, research was conducted using both the C2f module and the
C2f ParallelPolarized module for feature map visualization on the NEU-DET dataset.
As shown in Figure 4, column (a) represents the defect detection results of the corre-
sponding detection models, while columns (b) and (c) show the visualization effects
of feature maps at specific network layers for the corresponding models. From Figure
4, it is evident that the network with the C2f ParallelPolarized module performs bet-
ter, accurately locating defect areas and suppressing irrelevant regions. In contrast,
the C2f module fails to precisely locate defect areas and erroneously focuses on some
background regions.

Fig. 4 Feature map visualization comparison of C2f and C2f ParallelPolarized modules on the
NEUDET dataset.Column (a) represents the defect detection results of the corresponding detection
models, while columns (b) and (c) show the visualization of feature maps at specific network layers
for the corresponding models.
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3.3 Upsampling Module with Enhanced Understanding of
Semantic Features

In the feature fusion process of the base model’s neck network, upsampling is a crucial
step. The purpose of upsampling is to scale low-resolution feature maps to the same
size as high-resolution feature maps to facilitate feature fusion or multi-scale object
detection. However, the base model still uses nearest neighbor interpolation for upsam-
pling, which determines the upsampling kernel solely based on the spatial position of
pixels and does not utilize the semantic information of the feature maps. This method
ignores the potential influence of surrounding feature points and has a small recep-
tive field, resulting in poor quality of the upsampled images. This paper adopts the
CARAFE, a lightweight upsampling operator with a larger receptive field[31], replac-
ing the original upsampling operator in the base model. This change maintains the
lightweight nature of the neck network while better utilizing the semantic information
of the feature maps.

Fig. 5 Structural diagram of the upsampling operator CARAFE

The overall sampling process of CARAFE is shown in Figure 5. First, for the input
feature map χ with shape H ∗W ∗C, a 1*1 convolutional layer is used to compress the
input channels from C to Cm to reduce the model’s parameters and computational
costs. Next, based on the feature map with shape H ∗ W ∗ Cm, convolutional layers
are used as content encoders to predict the upsampled kernel, resulting in a reshaped
upsampled kernel of shape H ∗W ∗ σ2k2up, where σ is the upsampling factor and kup
is the receptive field size of the feature recombination process. Then, the channels are
expanded in the spatial dimension, resulting in an upsampled kernel of shape σH ∗
σW ∗k2up. Finally, the upsampled kernel is normalized so that the sum of convolutional
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kernel weights equals one. In the feature recombination module, for each position
in the output feature map, it is mapped back to the input feature map, taking a
kup∗kup region centered on it, and the predicted upsampled kernel is dot-multiplied to
obtain the output value. The same position across different channels shares the same
upsampled kernel, resulting in an upsampled feature map χ∗ of shape σH ∗ σW ∗ C.

3.4 Architecture of the developed PCP-YOLO network for
defect detection

To improve the accuracy and detection speed of small target defect detection tasks
within multi-scale defects in industrial scenarios, and to facilitate the deployment of
the model on edge computing devices, we propose the PCP-YOLO network structure.
The network architecture of PCP-YOLO for defect detection is illustrated in Figure
6, comprising three parts: the backbone, neck, and head networks. Initially, the input
part of PCP-YOLO uniformly adjusts the resolution of the input image to 640*640;
next, the backbone network extracts feature information from the input image through
a series of convolution-based modules; subsequently, the backbone network outputs
low, medium, and high-level feature maps to the neck network for feature fusion,
which then transmits three scales of fused feature maps to the head network; finally,
the head network predicts the position and size of target objects based on the three
feature maps outputted by the neck network.

Fig. 6 Structure of DsP-YOLO network

The architecture proposed in this paper is built on the basic paradigm of
YOLOv8n. Lower layers contain rich positional information, while higher layers have
rich semantic information. For multi-scale defect features, improvements to the back-
bone network are made from the perspective of mining semantic information within
multi-scale defects. Unlike the base model, the study introduces the lightweight and
shallow PotentNet network module at higher levels of the backbone network to enhance
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its feature extraction capability. The neck network uses the classic FPN and PAN
structures, with the FPN structure constructing a feature upsampling path through
a horizontal connection at the top of the backbone, involving the fusion of lower and
higher-level features. The PAN structure enhances the transfer of lower-level features
to higher-level ones by constructing horizontal and vertical paths to fuse features of
different resolutions. Differing from the base model’s FPN structure using the C2f
module, the study, inspired by polarized filtering and High Dynamic Range (HDR)
enhancement, designs the C2f ParallelPolarized module equipped with the PSA mech-
anism. This module captures the flow of small target defect features within multi-scale
defects more effectively than C2f and is more lightweight, resulting in better fusion of
small target defect features within multi-scale defects. Additionally, the original near-
est neighbor interpolation upsampling method of the base model is replaced with the
Carafe upsampling operator. This operator is more lightweight compared to the origi-
nal network’s upsampling operator and better aligns low-resolution feature maps with
high-resolution feature maps of the same size, further enhancing the neck network’s
feature fusion capability.

4 Experiment

The research uses PCP-YOLO for training, validation, and testing on the NEU-
DET, PCB-DET, and GC10-DET datasets. Additionally, PCP-YOLO’s detection
performance is compared with models from related research, and an analysis of the
experimental data is conducted. Descriptions of the datasets are provided in Section 4.1
of this chapter, while the experimental environment, evaluation metrics, and detailed
experimental results are presented in Sections 4.2, 4.3, and 4.4, respectively.

4.1 Dataset description

To fully verify the effectiveness and generalization performance of this method, this
paper utilizes three popular public datasets: the NEU-DET and GC10-DET datasets
for steel surface defect detection, and the PCB-DET dataset for PCB defect detection.
Detailed information about these datasets is shown in Table 1. The table includes
columns for Dataset, representing the name of the dataset; Defect type, indicating the
types of defects in each dataset; Total images, showing the number of images in the
dataset; Image size, displaying the dimensions of the images; and separate columns
for Train, Validation, and Test, which indicate the number of images in each dataset
used for training, validation, and testing, respectively.

Table 1 Detailed information on the NEU-DET, PCB-DET, and GC10-DET datasets

Dataset Defect type Total images 3 Images size Train Validation Test

NEU-DET 6 1800 200*200 1260 270 270
PCB-DET 6 693 3034*1586 555 555 69
GC10-DET 10 2280 2048*1000 1824 228 228
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(1) NEU-DET: This is an open dataset for steel surface defect detection created by
Northeastern University. It includes six typical types of surface defects on hot-rolled
strip steel: crazing (Cr), inclusion (In), patches (Pa), pitted surface (Ps), rolled-in
scale (Rs), and scratches (Sc). Examples of these six defects are shown in Figure 7.
The dataset contains a total of 1800 images, with 300 images for each defect type. In
the experiments of this paper, we divided the dataset in an 8:1:1 ratio, consisting of
1260 training images, 270 validation images, and 270 test images.

Fig. 7 Annotated representative defects in NEU-DET: (a) crazing(Cr), (b) inclusion(In), (c)
patches(Pa), (d) pitted surface(Ps), (e) rolled-in scale(Rs), and (f) scratches(Sc)

(2) PCB-DET: As shown in Figure 8, this is the PCB defect dataset released by
Peking University. It includes six types of defects: mouse bite (Mb), short (Sh), spur
(Sp), spurious copper (Spc), missing hole (Mh), and open circuit (Oc). The dataset
contains a total of 693 images. In the experiments of this paper, we divided the dataset
into 555 training images, 69 validation images, and 69 test images.

(3) GC10-DET: As shown in Figure 9, this is a public dataset of steel plate surface
defects collected in a real industrial setting. It includes ten types of defects: punch hole
(Ph), weld line (Wl), crescent-shaped notch (Cg), water stain (Ws), oil stain (Op),
silk mark (Ss), inclusion (In), rolling pit (Rp), crease (Cr), and waist fold (Wf). The
dataset contains a total of 2280 images. In the experiments of this paper, we divided the
dataset into 1824 training images, 228 validation images, and 228 test below images.

These three types of datasets contain a variety of defect features across different
scales, making them suitable for training and validating the capability of models to
detect small and medium-sized targets in multi-scale defect detection. Additionally,
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Fig. 8 Annotated representative defects in PCB-DET: (a) missing hole(Mh), (b) mouse bite(Mb),
(c) open circuit(Oc), (d)short(Sh), (e) spur(Sp), and (f) spurious copper(Spc)

Fig. 9 Annotated representative defects in GC10-DET: (a)Pu, (b) Wl, (c) Cg, (d)Ws, (e) Os, (f)
Ss, (g) In, (h)Rp, (i) Cr, and (j) Wf

as shown in Figures 7-9, the defects in these three datasets also exhibit characteris-
tics such as background interference, lighting effects, small sample sizes, and extreme
aspect ratios, which pose challenges to real-time and accurate defect detection.

4.2 Experimental environment

The experimental environment in this paper operates on a Linux operating system.
The hardware specifications include an i9-13900HX CPU and an NVIDIA GeForce
RTX 4060 GPU. We use the PyTorch deep learning framework to conduct our exper-
iments. The version of the PyTorch framework is 2.1.0, and the version of CUDA is
12.1.

In this study, the deep learning methods used maintain the same hyperparameters.
Likewise, although fine-tuning hyperparameters remains an unresolved challenge that
requires extensive research, the focus of this paper is on developing a new industrial
defect detection model with a specially designed architecture, rather than optimizing
hyperparameters. The settings of the model hyperparameters are shown in Table 2.

4.3 Experimental metrics

To comprehensively evaluate the accuracy of the model, this paper employs the most
classic verification metrics such as precision, recall, Average Precision (AP), and Mean
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Table 2 Initialization parameters of our method

Parameters Value Description

Learning rate 1e-5 Initial learning rate
Decay strategy Cosine Description of the learning rate decline strategy
Optimizer SGD The type of the optimizer
Momentum 0.937 Impulse value setting during training
Weight decay 5e-4 The parameter settings for overfitting
Total epochs 200 The number of training rounds
Btach size 16 The capacity of every batch

Average Precision (mAP), with mAP as the main evaluation criterion. As shown in
equations (5) to (8), the definitions of these metrics are as follows:

Precision =
TP

(TP + FP )
(5)

Recall =
TP

(TP + FN)
(6)

AP =

∫ 1

0

p(r)dr (7)

mAP =
1

n

n∑
i=1

APi (8)

Here, TP represents the number of samples that the model correctly identifies as
positive and are indeed positive, FP represents the number of samples that the model
incorrectly identifies as positive but are actually negative, and FN represents the
number of samples that the model incorrectly identifies as negative but are actually
positive. p(r) denotes the function of recall, and n is the number of samples in a certain
category. APi represents the classification detection accuracy for the first category.

Furthermore, to assess the detection speed of the model and evaluate its real-
time detection capability, the study employs Frames Per Second (FPS) to reflect the
inference speed of the model. FPS indicates the number of image frames processed
by the model per second. The higher the FPS value, the faster the model’s defect
detection speed. It is worth noting that when calculating the FPS for all models, we
standardized the batch size of the model to 1.

4.4 Experiments results

4.4.1 Performance comparisons

To verify the effectiveness of the proposed method, the baseline model YOLOv8 and
the model proposed in this paper, PCP-YOLO, were tested on the NEU-DET, GC10-
DET, and PCB-DET datasets. The results of the models on the metrics of precision
(P), recall (R), and mean Average Precision (mAP) are shown in Tables 3 and 4.

Among them, the indicator ”↑5.5” indicates that the mAP of the developed PCP-
YOLO is 5.5% higher on the corresponding defect type than the baseline model
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Table 3 Detection performance of YOLOv8 and PCP-YOLO on
NEU-DET and GC10-DET datasets.

Dataset Methods Defect Type P% R% mAP%

NEU-DET

YOLOv8

Cr 44.7 40.7 40.3
In 78.1 74.2 77.6
Pa 81.3 98.6 97.1
Ps 81.1 85.7 88.7
Rs 66.5 61.7 64.1
Sc 80.2 91.7 92.3

PCP-YOLO

Cr 60.2 42.4 44.5(↑4.2)
In 85.0 72.7 81.6(↑4.0)
Pa 90.4 92.7 96.5(↓0.6)
Ps 87.7 81.0 90.2(↑1.5)
Rs 85.2 48.0 69.6(↑5.5)
Sc 85.3 87.6 94.1(↑1.8)

GC10-DET

YOLOv8

Pu 97.8 93.9 98.8
Wl 78.7 86.3 82.5
Cg 85.3 99.1 96.9
Ws 78.5 80.6 82.5
Os 86.3 52.7 71.9
Ss 74.5 57.1 63.4
In 80.1 22.3 43.3
Rp 24.3 50.1 57.3
Cr 53.0 66.7 72.6
Wf 68.8 55.3 80.0

PCP-YOLO

Pu 96.1 97.0 98.8(equals)
Wl 78.7 86.8 83.3(↑0.8)
Cg 83.7 98.7 96.4(↓0.2)
Ws 70.6 83.9 86.8(↑4.3)
Os 78.9 55.5 70.9(↓1.0)
Ss 73.2 67.9 71.9(equals)
In 78.4 33.3 42.5(↓0.8)
Rp 27.9 50.1 57.3(equals)
Cr 89.9 77.8 78.1(↑5.5)
Wf 70.4 83.3 90.0(↑1.0)

YOLOv8, ”↓0.2” represents that the mAP is 0.2% lower on the corresponding defect
type than YOLOv8, and ”equals” means that the mAP is equal to that of the base-
line model on the corresponding defect type. Other cells in the table follow a similar
notation. A detailed discussion follows.

The PCP-YOLO model’s performance on the NEU-DET dataset is shown in Table
3. Among these, except for a 0.6% decrease in the average precision (mAP) for the Pa
defect, the average precision for other defects has improved. Additionally, the predic-
tion precision (P) for all defects has improved, indicating that our approach effectively
compensates for the deficiencies of the anchor-free mechanism. In these six types of
defects, the Cr defect and Rs defect are typical small and medium-sized objects. The
original YOLOv8’s mAP values for Cr defect and Rs defect were only 40.3% and
64.1%, respectively. Due to the embedding of our proposed PotentNet structure in the
backbone network, it effectively enhances the feature extraction capability of the back-
bone network, performing better extraction of multi-scale defect feature information.
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At the same time, in the neck network, we transformed C2f into C2f ParallelPolarized,
which has polarized filtering and high dynamic range enhancement capabilities, effec-
tively capturing the feature flow information of small target defects and enhancing
the neck network’s ability to integrate features of small target defects. Our method
increased the mAP values for Cr defect and Rs defect by 4.2% and 5.5%, respectively.
Besides these two defect types, other defect types in industrial production exist in
various scales, often appearing in the form of small and medium-sized objects, thus
our method enhances the detection of these defects.

Table 4 Detection performance of YOLOv8 and PCP-YOLO on
PCB-DET.

Dataset Methods Defect Type P% R% mAP%

PCB-DET

YOLOv8

Mh 99.0 98.6 99.5
Mb 96.2 78.5 84.7
Oc 99.9 86.7 95.4
Sh 96.7 94.9 95.7
Sp 99.9 86.5 91.8
Spc 95.8 95.3 96.9

PCP-YOLO

Mh 99.0 98.3 99.5(equals)
Mb 93.4 87.4 94.3(↑9.6)
Oc 99.5 93.3 95.9(↑0.5)
Sh 97.3 91.5 95.4(↓0.3)
Sp 97.3 89.2 94.0(↑2.2)
Spc 94.1 95.3 97.6(↑0.7)

To further understand the small object detection capabilities of the developed
PCP-YOLO and the baseline model YOLOv8, the study plotted the PR curve for
both the PCP-YOLO model and the baseline model based on experimental results.
The PR curve, constituted by the coordinates of testing precision and recall, has an
area around it known as mAP. The PR curve for both methods are shown in Figure 10,
where Figure 10(a) represents the PR curve of the baseline model, and Figure 10(b)
represents the PR curve of the PCP-YOLO model. According to Figure 10, the area
enclosed by the PCP-YOLO is greater than that enclosed by YOLOv8. The overall
mAP@0.5 of the PCP-YOLO model on the NEU-DET dataset is 79.4%, which is 2.7
percentage points higher than the baseline model. It is important to emphasize that
among these six steel defects, the defects characterized by small objects are inclusion
defects, patches, and pitted surface defects. From the PR curve diagram, it is evident
that the PR curve area enclosed by the PCP-YOLO model for these three small target
defects is significantly larger compared to YOLOv8.

To further validate the superiority of the proposed PCP-YOLO model over the
baseline model, the study conducted a validation using the GC10-DET dataset
from a real industrial scenario. As shown in Table 3, compared to the baseline
model YOLOv8, PCP-YOLO has significantly improved detection precision for seven
defects in the GC10-DET dataset. Specifically, the detection precision for Cr and Ws
defects increased by 5.5% and 4.3%, respectively. This indicates that PCP-YOLO
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effectively enhances the detection precision for small-sized defects. Additionally, PCP-
YOLO significantly improved the recall rate for all defects, a crucial indicator for
assessing whether detection targets are missed, demonstrating PCP-YOLO’s superior
performance in detecting small objects among multi-scale defects.

Fig. 10 The PR curves for YOLOv8 and PCP-YOLO on the NEU-DET dataset. (a) The PR curves
of YOLOv8 on the NEU-DET dataset. (b) The PR curves of PCP-YOLO on the NEU-DET dataset.

Given that the images in the NEU-DET and GC10-DET datasets are of steel
surface defects, and the images’ background information tends to be dim, further val-
idation was conducted to verify whether the model can still outperform the baseline
model under backgrounds of varying richness. The study used the PCB board defect
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dataset PCB-DET released by Peking University for this purpose. The PCB-DET
dataset features many small-sized defects in complex backgrounds, and the dataset
itself has richer background information. As shown in Table 4, for the Mb defect, our
method improved the recall rate by 8.9% compared to the baseline model. This indi-
cates that PCP-YOLO enables the model to capture more contextual information,
thereby enhancing the model’s recall rate. PCP-YOLO showed a slight decrease in
mAP for the Sh defect but was generally consistent with the baseline model. Besides
the Mb defect, the PCP-YOLO model also demonstrated excellent detection perfor-
mance for the Sp defect, with a mAP improvement of 2.2% compared to the baseline
model, indicating our method’s good understanding of small object defect features.
Moreover, the mAP for other defects also saw improvements compared to the base-
line model. This proves the exceptional performance of the PCP-YOLO model on the
PCB-DET dataset.

Table 5 Defect detection results on NEU-DET dataset.

Methods mAP@0.5 of Top5/% mAP@0.5/% GFLOPS Parameters FPS

Faster R-CNN [10] 76.8 70.8 83.4 41.3 M 24.0
SSD [6] 78.1 71.0 30.6 24.5 M 43.3
RetinaNet [32] 68.2 63.2 74.5 36.4 M 28.7
YOLOX [33] 76.6 70.3 26.8 8.9 M 69.2
YOLOv7 [34] 79.7 73.2 103.2 36.5 M 40.7
YOLOv7-tiny [34] 78.9 68.6 13.1 6.0 M 86.2
YOLOv8 83.9 76.7 8.1 3.6 M 169.2
MSC-DNet [35] 85.2 79.4 78.0 34.1 M 14.1
RDD-YOLO [21] 83.1 77.6 145.6 57.0 M 48.3
DCNN [36] 83.8 76.3 89.8 40.9 M 52.0
DsP-YOLO [2] 85.8 80.4 28.5 11.1 M 86.9
PCP-YOLO 86.6 79.4 9.2 3.8 M 151.4

From Table 5, it is evident that our model significantly leads other SOTA models
in mAP. In terms of model inference speed, our model ranks second among the 13
compared models. Compared to the baseline model YOLOv8, our model reduced FPS
by 16.8. This is because our improvements add a minimal amount of computation
to the model, which is negligible in real-world application scenarios. From lines 8, 9,
and 10, it can be seen that compared to current research in defect detection models,
our model achieves higher mAP@0.5 and faster inference speed in the same datasets.
Additionally, our model is also optimal in terms of the number of parameters and
computational complexity. From Tables 5 and 6, although PCP-YOLO’s mAP@0.5 is
10.0% lower than DsP-YOLO’s mAP@0.5, PCP-YOLO only performs lower than the
DsP-YOLO model in the Cr defect category, but outperforms DsP-YOLO in small-
scale defects Pa and Ps, with mAP@0.5 surpassing by 1.5% and 8.1%, respectively.
At the same time, the PCP-YOLO model has faster inference speed and a smaller
model size, making it more suitable for use in real-time industrial defect detection
tasks that require speed and model size. Regarding the poor performance in the Cr
category of defects, mainly due to the NEU-DET dataset’s crack (Cr) images being
less distinct and of lower data quality, including DsP, methods in relevant studies have
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not increased the mAP@0.5 for this type of feature above 55%, indicating the low
image quality of Cr defects in the dataset. Therefore, the study added the calculation
of the mAP@0.5 for the top five ranked features, essentially calculating the mAP@0.5
excluding Cr features, namely mAP@0.5 of Top5. From the column of mAP@0.5 of
Top5, the PCP-YOLO model reached 86.6, which is the best among other SOTA
models. Overall, our model is clearly superior to all other SOTA models and can
satisfactorily meet the requirements of industrial defect detection tasks.

To verify our model’s detection capabilities for each defect on the NEU-DET
dataset, we compared the mAP@0.5 values of several mainstream models across vari-
ous defects, as shown in Table 6. It can be seen that our model outperforms all SOTA
models in detecting most defects. This model has improved detection outcomes, partic-
ularly for defects that are a mix of small to medium scales under complex background
interference. This is because the PCP-YOLO model incorporates the PotentNet mod-
ule, which further extracts higher-level features of multi-scale defects. The CARAFE
module captures the semantic information around feature points, enhancing the under-
standing of multi-scale feature information. Moreover, C2f ParallelPolarized in the
neck network captures stronger small-scale feature flow information, achieving better
feature fusion for more effective small-scale feature mapping.

Table 6 Detection results for each defect on the NEU-DET dataset.

Types YOLOv7 YOLOv8 Faster R-CNN SSD RDD-YOLO DsP-YOLO PCP-YOLO

Crazing 40.4 40.3 41.2 35.7 50.1 54.5 44.5
Inclusion 79.6 77.6 73.9 79.3 81.7 84.0 81.6
Patches 90.2 97.1 91.7 85.2 92.6 95.0 96.5
Pitted surface 77.7 88.7 72.0 80.9 83.7 82.1 90.2
Rolled-in scale 60.1 64.1 54.8 63.8 69.2 72.7 69.6
Scratches 90.9 92.3 92.0 81.3 88.3 94.1 94.1
Overall mAP 73.2 76.7 70.8 71.0 77.6 80.4 79.4
mAP of Top5 79.7 83.9 76.8 78.1 83.1 85.8 86.6

To further validate the generalization ability of the PCP-YOLO model, we con-
ducted comparative experiments on each model using the real industrial scenario
dataset, GC10-DET. As shown in Tables 7 and 8, the PCP-YOLO model achieved an
mAP@0.5 of 77.6% on this dataset, which is a 2.7% improvement over the baseline
model YOLOv8, and higher than other SOTA models. In terms of inference speed, the
FPS of the PCP-YOLO model reached 134, slightly lower than the baseline model, but
it already meets the requirements for industrial real-time detection. Figure 11 shows
the detection effects of the PCP-YOLO model on the GC10-DET dataset. The first
element of the predicted labels in the figure is numerical, sequentially corresponding
to the 10 respective defect labels. Since the public dataset uses annotation names dif-
ferent from the English abbreviations used in this paper, the first digit in the label
shown in the detection images corresponds to the defect label. For example, the label
”6 siban” in the figure corresponds to the sixth defect label in this paper, the Ss
label. Other labels in the illustration follow this rule. From Figure 11(a), it is known
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that the baseline model had issues with missed detections, however, the PCP-YOLO
model avoided these issues. Figures 11(b) and 11(c) show that both PCP-YOLO and
the baseline model detected the correct defect features, yet PCP-YOLO, compared
to the baseline model, has higher detection accuracy for small-scale defects in com-
plex backgrounds. From Figure 11(d), it is evident that the baseline model had false
detection issues, however, PCP-YOLO avoided this problem and accurately predicted
the defect labels and identified the defect locations with high precision. Therefore, the
PCP-YOLO model exhibits superior performance, avoiding false and missed detec-
tions compared to the baseline model, and demonstrates higher detection accuracy for
small objects within multi-scale defects.

Fig. 11 The detection performance of the PCP-YOLO model on the GC10-DET dataset.

Table 7 Defect detection results on GC10-DET dataset.

Methods mAP@0.5/% GFLOPS Parameters FPS

Faster R-CNN [10] 67.3 83.4 41.3 M 23.8
YOLOv7 [34] 69.9 103.2 36.5 M 40.1
YOLOv7-tiny [34] 64.5 13.1 6.0 M 84.0
YOLOv8 74.9 8.1 3.11 M 161.0
RDD-YOLO [21] 74.9 145.6 57.0 M 47.8
DCNN [36] 74.8 89.8 40.9 M 51.2
DsP-YOLO [2] 76.3 28.5 11.1 M 85.4
PCP-YOLO 77.6 9.2 3.8 M 134

As shown in Table 8, the detection performance of different models on various
defects in the GC10-DET dataset is presented. PCP-YOLO achieved the highest
mAP@0.5 for the Ws, Ss, In, and Wf defects, especially for the Ws defect, where its
mAP@0.5 value is significantly higher than that of the other models. This indicates
that PCP-YOLO exhibits better performance on this dataset compared to the other
tested models.

To further validate the robustness of the PCP-YOLO model, we conducted com-
parative experiments using SOTA models and our model on the PCB-DET dataset. As
shown in Tables 9 and 10, our method achieved an mAP@0.5 of 96.1, which is a 2.4%
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Table 8 Detection results for each defect on the GC10-DET dataset.

Types YOLOv7 YOLOv8 Faster R-CNN RDD-YOLO DsP-YOLO PCP-YOLO

Punching hole 96.4 98.8 89.9 99.0 96.7 98.5
Welding line 71.0 82.5 58.5 89.5 92.5 83.3
Crescent gap 90.4 96.9 97.9 94.0 98.7 96.4
Water spot 64.4 82.5 56.3 68.7 70.8 86.8
Oil spot 72.4 71.9 72.0 70.0 66.5 70.9
Silk spot 64.0 63.4 47.5 63.1 58.5 71.9
Inclusion 30.1 43.3 21.7 31.7 23.0 42.5
Rolled pit 35.0 57.3 54.5 63.8 79.9 57.3
Crease 99.5 72.6 94.5 99.5 94.5 78.1
Waist folding 75.4 80.0 80.0 70.2 81.6 90.0

Overall mAP 69.9 74.9 67.3 74.9 76.3 77.6

improvement over YOLOv8 and higher than other SOTA models. In terms of inference
speed, YOLOv8 had the highest FPS. Compared to the baseline model YOLOv8, our
model’s FPS decreased by 15.7, but it still meets the performance requirements for
real-time detection. Figure 12 shows the detection results of the PCP-YOLO model
on the PCB-DET dataset, and it can be seen from Figure 12 that the PCP-YOLO
model exhibited good performance across all defect features.

Fig. 12 The detection performance of the PCP-YOLO model on the PCB-DET dataset.

As shown in Table 10, the detection performance of different models on vari-
ous defects in the PCB-DET dataset is presented. Our model achieved the highest
mAP@0.5 for the Mb, Oc, and Sp defect features, and the average detection precision
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Table 9 Defect detection results on PCB-DET dataset.

Methods mAP@0.5/% GFLOPS Parameters FPS

Faster R-CNN [10] 67.3 83.4 41.3 M 23.8
YOLOv7 [34] 69.9 103.2 36.5 M 40.1
YOLOv7-tiny [34] 64.5 13.1 6.0 M 84.0
YOLOv8 74.9 8.1 3.11 M 161.0
RDD-YOLO [21] 74.9 145.6 57.0 M 47.8
DCNN [36] 74.8 89.8 40.9 M 51.2
DsP-YOLO [2] 76.3 28.5 11.1 M 85.4
PCP-YOLO 77.6 9.2 3.8 M 134.0

(mAP@0.5) for the remaining features reached above 94%, slightly higher than the
baseline model and comparable to the other models. This indicates that the improve-
ments we made to the baseline model are effective, and our model has better detection
performance compared to the other models.

Table 10 Detection results for each defect on the PCB-DET dataset.

Types YOLOv7 YOLOv8 Faster R-CNN RDD-YOLO DsP-YOLO PCP-YOLO

Mouse bite 83.4 99.5 80.1 93.1 92.6 99.5
Open circuit 76.9 84.7 65.5 91.8 94.3 94.3
Spur 73.3 95.4 79.3 89.4 93.4 95.9
Spurious copper 71.1 95.7 79.6 85.3 95.2 95.4
Missing hole 97.5 91.8 89.7 99.5 99.5 94.0
Short 99.4 96.9 99.8 99.0 99.5 97.6
Overall mAP 83.6 94.0 82.3 93.0 95.8 96.1

4.4.2 Ablation study

To further investigate the contributions of the PotentNet, C2f ParallelPolarized, and
CARAFE modules to the model’s performance, we conducted ablation experiments on
the NEU-DET dataset. The experimental results are shown in Table 11. As indicated
in Table 11, the baseline model YOLOv8n achieved an mAP@0.5 of 76.7%, with 3.60
M parameters and an FPS of 169.2. When the PotentNet module was embedded in
the backbone network based on the baseline model, the mAP@0.5 increased by 0.6%,
but the number of parameters increased by 0.12M, and the FPS decreased by 27.0.
Building on this, the neck network was modified by replacing the original nearest
neighbor interpolation upsampling method with CARAFE upsampling, resulting in
an mAP@0.5 increase to 78.2%, a parameter increase to 3.86M, and an FPS increase
of 26.6. Further, by modifying the original C2f module in the neck network to the
C2f ParallelPolarized module with a polarization self-attention mechanism, a 1.2%
improvement in mAP@0.5 was achieved, reaching 79.4%, with 3.87 M parameters and
an FPS of 151.4. Compared to the other control groups in the ablation study, the PCP-
YOLO model, although introducing more parameters, achieved the highest mAP@0.5,
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with an FPS comparable to the baseline model, meeting the dual requirements of high
precision and real-time performance in industrial defect detection.

Table 11 The ablation experiments on NEU-DET.

Methods mAP@0.5/% Parameters FPS

Baseline 76.7 3.60 M 169.2
+PotentNet 77.3 3.72 M 142.2
+CARAFE 77.8 3.14 M 143.5
+Polarized 77.3 3.01 M 170.0
+PotentNet+CARAFE 78.2 3.86 M 168.8
+PotentNet+C2f ParallelPolarized 78.1 3.87 M 145.1
+CARAFE+C2f ParallelPolarized 78.1 3.15 M 167.6
PCP-YOLO 79.4 3.87 M 151.4

4.4.3 Superiority verification of the developed PCP structure
compared to other structures

To demonstrate the rationale of our proposed method, the study explored the embed-
ding positions of the PotentNet module in the backbone network and the positions
and quantities of the C2f ParallelPolarized modules in the neck network. The exper-
imental results are shown in Table 12. Additionally, to prove the superiority of our
proposed method, we investigated the rationality of the C2f modification by embed-
ding different attention modules in the C2f. The experimental results are presented in
Table 13.

Table 12 Impact of adding same modules at different locations on model
performance for the NEU-DET dataset.

Baseline Add Module Position mAP@0.5% Parameters FPS

YOLOv8

PotentNet

P6 76.7 3.18 M 172.4
P7 76.2 3.72 M 179.2
P8 76.4 3.72 M 174.6
P9 77.3 3.72 M 142.2

C2f ParallelPolarized
P13 77.0 3.02 M 165.8
P16 77.2 3.01 M 185.6

(P13,P16) 77.3 3.01 M 170.0

The research utilized the NEU-DET dataset to explore the impact of embedding
the PotentNet module in the backbone network and the C2f ParallelPolarized module
in the neck network, both in terms of position and quantity. This was done by verifying
the relevant metrics of the model with the same module added at different positions.
The experimental results are shown in Table 12. In Table 12, the ”Baseline” column
represents the baseline model used, the ”Add Module” column represents the added
module, and the ”Position” column represents the module’s embedding position. In
the ”Position” column, ”P6” indicates that the module was added to the 6th layer of
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the baseline model, and other values follow this rule. The initial purpose of adding
the PotentNet module was to capture deep feature information in multi-scale defect
features, so the PotentNet module was added to the higher layers of the backbone
network. To avoid introducing a deeper network module, only one PotentNet module
layer was introduced into the backbone network. According to the information in Table
12, when the PotentNet module is added to other positions in the backbone network,
performance did not change significantly. However, embedding it in the 9th layer
network resulted in the best mAP@0.5 performance, reaching 77.3%. The motivation
for modifying the C2f was to enhance the model’s ability to fuse features of small object
defects in multi-scale defects under complex backgrounds. Therefore, when setting the
position of the C2f ParallelPolarized module, the focus was on the position used for
detecting small objects in the detection head, resulting in two possible C2f modification
positions: the 13th and 16th layers. According to Table 12, the experimental group
with C2f ParallelPolarized in both the 13th and 16th layers performed better, with
the highest mAP@0.5, the lowest parameters, and the highest FPS, demonstrating
good detection performance.

The research also compared adding SE, CBAM, CA, and ECA attention mecha-
nisms to the C2f module in the neck network against the C2f ParallelPolarized used in
this study. As shown in Table 13, adding other self-attention mechanisms to the C2f did
not improve network performance and instead resulted in varying degrees of decline.
The experimental group with the C2f ParallelPolarized module showed the best per-
formance compared to the other control groups, achieving the highest mAP@0.5 of
77.3%, the fewest parameters, and an FPS comparable to the other models, thus
demonstrating both lightweight and high-precision advantages.

Table 13 Detection performance of C2f embedded with various attention modules on
NEU-DET dataset.

Baseline Structure mAP@0.5% GFLOPs Parameters FPS

YOLOv8

C2f 76.7 8.1 3.60 M 169.2
C2f+SE 75.2 8.1 3.62 M 184.9

C2f+CBAM 73.3 8.1 3.60 M 171.6
C2f+CA 73.8 8.1 3.71 M 173.3
C2f+ECA 75.2 8.1 3.61 M 197.3

C2f ParallelPolarized 77.3 8.1 3.01 M 170.0

5 Conclusion

This article aims to address prominent issues in industrial defect detection tasks,
exploring small object defect detection algorithms for multi-scale defects to ensure
high accuracy and reasonable inference speeds. For this purpose, we propose the
PCP-YOLO network based on YOLOv8. Drawing inspiration from the anchor-free
framework of YOLOv8, we eliminate the influence of related hyperparameters such as
anchor boxes, which have been a concern in previous studies. Firstly, we design and
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introduce a lightweight, non-deep feature extraction module, PotentNet, in the back-
bone network to enhance the capability of extracting fine-grained information about
defects in images. Secondly, in the neck network, we design a feature fusion mod-
ule with polarized self-attention, C2f ParallelPolarized, which strengthens the model’s
ability to fuse features of small-sized defects in images from the perspective of polarized
filtering and enhancing the dynamic range of attention. Then, we replace the original
up-sampling module of the neck network with CARAFE to enhance the model’s capa-
bility to utilize semantic information around points near features in images. Lastly,
we apply these improvements to YOLOv8, enhancing the detection ability of small
objects within multi-scale defects under complex backgrounds. Experimental results
show that PCP-YOLO achieves mAP values of 79.4%, 77.6%, and 96.1% on the NEU-
DET, GC10-DET, and PCB-DET datasets, respectively, which are 2.7%, 2.7%, and
2.4% higher than YOLOv8 and significantly surpass other tested models, especially in
detecting small-sized defects under complex backgrounds. In terms of inference speed,
our model ranks second among all tested models. The results indicate that this model
meets the requirements of real-time industrial defect detection tasks and is beneficial
for practical industrial applications.

In the future, we will delve deeper into issues encountered by the model in practical
applications, such as irregular defects and training with small sample data. Addi-
tionally, effectively utilizing the prior knowledge associated with text and images to
improve model performance is an important aspect to consider. We will also explore
the use of technologies from other fields to enhance model performance, such as large
language models and diffusion models.
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