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Abstract

Virtualization has recently become a fundamental paradigm in the implementation
of 5G Networks, specifically in the context of Radio Access Networks (RANs). RAN
virtualization enables baseband processing on general-purpose computing platforms,
thus overcoming the coupling of RAN functions with dedicated hardware of traditional
hardwired RANs. This approach allows RAN operators to disrupt traditional hardware
vendor lock-ins and enable sharing and multiplexing of the available computing resources,
as the RAN Base Station (BS) is disaggregated into minimal Radio Unit (RU) hardware
connected to cloud-oriented computing platforms that run in software virtual signal
processing tasks of the Distributed Unit (DU) and Centralized Unit (CU).

However, the execution of such tasks in a timely manner at high probabilities (reliably)
is challenging due to their computationally intensive nature, especially at DU level. For
this purpose, carrier-grade virtualized RANs (vRANs) today rely on general-purpose
computing platforms equipped with Hardware Accelerators (HAs), which are generally
energy-hungry and monetarily expensive but can guarantee DU processing reliability.
Traditional HAs include Application-Specific Integrated Circuits (ASICs) and Field
Programmable Gate Arrays (FPGAs). Recently, Graphics Processing Units (GPUs) have
also been considered as HAs, hinging on their unique capability to be easily programmable
in software and to efficiently process Machine Learning (ML) workloads, whose algorithms
can be used to automate and optimize DU operations.

HAs also significantly increase the energy and monetary costs of vRANs, which puts at
stake the environmental and economic sustainability of next-generation mobile networks.
Therefore, deploying reliable hardware accelerated vRANs with the lowest possible energy
toll while reducing deployment costs has become a challenging problem for operators.
Indeed, current industrial solutions fail to provide energy and cost efficiency in vRAN, as
respectively (i) more energy-efficient processors are shunned for DU tasks processing and
(ii) dedicated HAs are assigned to individual DUs following an overprovisioned approach.

This thesis investigates the deployment of energy- and cost-effective yet reliable
vRANs in order to close the gap with respect to the aforementioned standard solutions.
The vision set forth by this thesis is twofold: (i) increasing the energy-efficiency of
traditional hardware accelerated vRANs by opportunistically complementing HAs with
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less energy-hungry computing processors like Central Processing Units (CPUs) to process
DU tasks; (ii) improving the cost-efficiency by means of DU centralization, that allows
to amortize the cost of each expensive HA by sharing the same HA across multiple DUs.

In line with this vision, the first solution proposed in this thesis is ECORAN, an
efficient multi-agent contextual bandit ML algorithm operating in the O-RAN Near-
Real-Time RAN Intelligent Controller (Near-RT-RIC). ECORAN configures policies to
opportunistically offload DU workloads to either a GPU-based HA or CPUs in the O-
Cloud to save energy while preserving the reliability of the vRAN. To address cost-
efficiency, instead, ECORAN applies concepts from mean field theory to be fully scalable
and thus deal with an arbitrarily large and dynamic number of DUs, that are centralized
in the same shared and HA-powered computing platform. Using traffic traces from a
production mobile network, ECORAN can provide up to 40% energy savings and roughly
up to 60x cost gains with respect to the standard approach used today by the industry.

As with many other studies on RAN control in the literature, the offloading policy
used in ECORAN is determined by an ML model that requires GPU resources for efficient
training and execution in production. However, dedicating a GPU to each ML model that
automates a specific RAN control function and reserving a GPU-based HA solely for DU
processing is not a cost-efficient approach. Conversely, indiscriminately co-locating DU
workloads and multiple ML services can compromise the processing reliability of the
former and the throughput performance of the latter. Under this perspective, this thesis
explores reliable multiplexing opportunities of the resources of a single GPU to further
squeeze cost-efficiency in vRANs. To this end, this thesis proposes YinYangRAN, an
innovative system operating in the Non-Real-Time-RIC that supervises the multiplexing
of the computing resources of a GPU-based HA as to ensure reliability in processing
DU tasks while maximizing the throughput of a concurrent ML service running in the
same GPU. Experiments performed with workloads collected in real RANs show that
YinYangRAN can potentially reduce the deployment cost by a factor of N compared
to the solution using N dedicated GPUs per process, and improve vRAN reliability by
over 50% compared to hardware-accelerated vRANs using conventional GPU multiplexing
methods, with minimal impact on co-located ML workloads.

Based on insights from tracking workload dynamics in real-world cells, it is observed
that traffic exhibits burstiness at the Transmission Time Interval (TTI) level, i.e. with a
timescale of 1 ms. However, YinYangRAN operates in Non-Real-Time (timescale≥ 1 s),
and ECORAN operates in Near-Real-Time (timescale ∼ 10 − 100 ms). Consequently,
to ensure reliability in the vRAN, both solutions adopt a conservative approach by
configuring resources for the highest expected peak over the entire decision period,
that is significantly longer than 1 ms. This approach leads to wasting resources for
most of the decision period due to overprovisioning. Thus, additional gains in energy
and cost efficiency can potentially be achieved by exploiting a heterogeneous O-Cloud
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infrastructure with both HAs and CPUs through a real-time controller capable of
responding to TTI-level traffic fluctuations. To address this, this thesis introduces
CloudRIC, a real-time brokering system powered by lightweight data-driven models that
jointly coordinates a centralized access for multiple DUs to a heterogeneous pool of
computing processors, including HAs and CPUs, and assists DUs with compute-aware
radio policies while meeting vRAN-specific reliability targets. Extensive experimental
evaluations on GPU-accelerated vRANs demonstrate that CloudRIC can achieve,
respectively, 3x and 15x average gains in energy and cost efficiency under real and even
dense RAN workloads compared to the industry-standard solution that assigns dedicated
HAs to individual DUs, while maintaining the same 99.999% target reliability.

At the time of writing this thesis, the proposed solutions are, to the best of our
knowledge, the only approaches aimed at reliably deploying energy- and cost-efficient
hardware-accelerated vRANs through both DU centralization and the combined use of
HAs and CPUs for DU processing.
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1 Introduction

The recent adoption of technical enablers like Software Defined Networking (SDN) and
Network Function Virtualization (NFV) in 5G networks is making possible the shift from
hardware-based to software-based network architectures, as network functions that were
previously running in specific-purpose hardware are now being implemented as Virtual
Network Functions (VNF) in software and running on general-purpose Cloud platforms.

Among the concepts building on those enablers, in recent years virtualized
Radio Access Network (vRAN) has garnered considerable interest from the mobile
telecommunications industry thanks to its many advantages over the traditional hardwired
Radio Access Network (RAN). In particular, the capability of vRAN of processing Base
Station (BS) functions on Commercial Off-The-Shelf (COTS) computing platforms in the
edge cloud brings unprecedented flexibility in the RAN ecosystem, potentially disrupts
the traditional hardware vendor lock-ins that have historically restrained innovation and
competition, and breeds a new market with unique business prospects [6]. Indeed, under
the lead of the O-RAN Alliance [7], all the major industry players are investing in 5G
vRANs development [8, 9], and analysts forecast that vRAN market will outgrow the
conventional RAN market and generate up to $29 billion in revenue by 2028 [10].

In 5G vRANs, the BS is no longer a monolithic proprietary hardware entity and is
disaggregated into a minimal Radio Unit (RU) hardware, responsible for basic Radio
Frequency (RF) operations, the Distributed Unit (DU), which performs Physical layer
(PHY) and Medium Access Control (MAC) layer tasks, and the Centralized Unit (CU), in
charge of the highest BS layers. The RU hardware is connected to general-purpose servers
that host virtualized computing platforms, typically containers, implementing most of
the DU and CU signal processing tasks (see Figure 1.1). Among these tasks, PHY tasks
running at the DU are the most compute-intensive, such as Forward Error Correction
(FEC): indeed, they must meet very stringent computing latency constraints as they
contribute to a signal processing pipeline with hard deadlines in the 1-3 ms range [11–13],
that must be met with 99.999% (5-nines) probability to guarantee reliability [12] and
avoid that users drop connectivity after losing synchronization [13].

1
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Figure 1.1: Comparison between traditional RAN and 5G vRAN.

1.1. Motivation

The traditional virtualization paradigm based on executing DU tasks as software
functions running in general-purpose Central Processing Units (CPU) is alone not
sufficient to meet the latency constraints with the target reliability in industry-grade
scenarios, since these processors are generally too slow for the purpose.

To obtain the required latency gains over CPUs, the current approach in industry
consists of offloading these tasks to dedicated Hardware Accelerators (HA) [12], such
as Peripheral Component Interconnect Express (PCIe) integrating Application-Specific
Integrated Circuits (ASIC) [14] or Field Programmable Gate Arrays (FPGA) [15].

Recently, also Graphics Processing Units (GPU) have proven to be a viable alternative
as HAs, with commercial solutions developed by important market players like NVIDIA
[16, 17]. Indeed, GPUs can provide latency guarantees to DU tasks by leveraging
their massive computational parallelism offered by arrays of Streaming Multiprocessors
(SM) [18], with the advantage of potentially co-locate GPU-based Machine Learning (ML)
workloads that can perform automated fast decision-making to improve DU operations:
examples include traffic load forecasting at RU level [19], ML-based network resource
orchestration [20], policing of radio resource schedulers [21], policing of compute-aware
radio schedulers [13, 22]. This unique capability of the GPU of potentially multiplexing
its resources to both BS signal processing tasks and ML workloads is the major selling
point by those operators that push for the wide adoption of this HA.

Figure 1.2 shows an example of a Cloud-based vRAN system: the hardware of the RU
is connected to a COTS server in the edge cloud that uses either CPUs, GPUs, FPGAs
or ASICs to execute in software the VNFs of the DU and CU.
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Figure 1.2: Cloud-based vRAN system.

However, deploying vRANs only with DU-dedicated HAs is casting doubts in the
industry due to the economic and energetic costs of the HAs, as implied by top figures of
Nokia [23], Ericsson [24] or Mavenir [25]. Indeed, when compared to CPU cores, GPUs are
more expensive in terms of unit cost and ASICs show consistently higher Non-Recurrent-
Engineering (NRE) costs and Time-To-Market (TTM) months [26], with the disadvantage
of not being programmable. Table 1.1 reports these economic figures considering an Intel
Xeon 6240R CPU, an NVIDIA V100 GPU, an Intel PAC N3000 FPGA and an Intel
ACC100 ASIC.

CPU Core GPU FPGA ASIC
Programmable Software Software Yes No
TTM (months) <2 <2 2 30

NRE ($) 0 0 0 350K-1000K
Unit cost ($) 110 8000 4000 3000

Table 1.1: Comparison of processors for vRANs.

Additionally, HAs are also energy-hungry processors, as for instance an Intel ACC100
ASIC and an NVIDIA V100 GPU can consume up to 52W and 250W respectively [14,27],
which is 20-82% of the overall consumption of a commodity server [28]. In contrast, CPUs
are generally more energy-efficient than HAs, but alone they are not capable of meeting the
latency requirements of the DU tasks with the target 5-nines probability of industry-grade
vRANs [29], despite Single Instruction Multiple Data (SIMD) programming and other
optimizations [30, 31]. The trade-off between latency and energy consumption involving
CPUs and HAs is better shown in Figure 1.3, illustrating the mean and max-min range
performance of state-of-the-art libraries for DU’s FEC Low-Density Parity-Check (LDPC)
decoding function to process an LDPC-encoded Transport Block (TB): a CPU core is
capable of processing reliably, i.e. within a typical deadline of 1-ms, only TBs below 100
Kb, while consuming less energy than a HA (GPU) within this range.
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Figure 1.3: Performance of FEC LDPC decoding in CPU and HA (GPU).

1.2. Research challenges

As discussed in Section 1.1, the current industrial approach for deploying vRANs
relies on DU-dedicated HAs, as only these processors are capable of ensuring the 5-nines
processing latency probability, though at significant economic and energetic costs.

This thesis focuses on the deployment of hardware-accelerated vRANs at lower energy
toll and deployment costs with respect to the standard industrial approach. However, this
efficient deployment conveys several issues that need to be considered at the time of design,
taking also into account the strict reliability requirements of industry-grade vRANs.

More details about the research challenges of this effective design are described next.

1.2.1. Energy efficiency in hardware-accelerated vRANs

To address the problem of energy efficiency in hardware-accelerated vRANs, this thesis
demonstrates that CPUs are capable of handling some of DU workloads without the
assistance of HAs by exploiting SIMD programming and other optimizations [30, 31].
Yet, CPUs alone cannot ensure 5-nines reliability for all workloads and, consequently,
they are usually shunned for this job in industry-grade RANs [29]. Nevertheless, CPUs
are a valuable complement to HAs in those tasks and balancing DU workloads between
CPUs and HAs substantially improves the energy-efficiency of vRANs. The rationale
is that minimizing processing latency brings no benefit as long as deadlines are met,
hence CPUs may be occasionally exploited to alleviate the HAs’ energy toll. Indeed,
as illustrated in Figure 1.3 considering the FEC LDPC decoding task, a CPU core can
decode within 1 ms TBs below 100 Kb consuming ∼5.7× less energy than a GPU-based
HA. Although the O-RAN standard provides convenient abstractions for heterogeneous
processors in vRANs including HAs and CPUs, it falls short to support DU with strategies
at any timescale to attain such reliable and energy-efficient opportunistic HA offloading.
Thus, the first research challenge of this thesis is to develop control strategies that assist
DU processing with reliability and energy efficiency by leveraging CPUs along with HAs.
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1.2.2. Cost efficiency in hardware-accelerated vRANs

To tackle the challenge of cost efficiency, instead, this thesis shows that the
industrial approach of assigning individual DUs with dedicated individual HAs is an over-
dimensioned solution, as the HAs suffer from low usage under real workloads. Therefore,
maximizing the utilization of these expensive processors by reusing their available spare
resources is key to amortizing their economic cost, illustrated in Table 1.1. In line with
this vision, sharing individual HAs among multiple DUs by means of DU centralization
or co-locating with DU processing other HA-based workloads would provide a more cost-
effective vRAN deployment with respect to the HA-dedicated standard approach.

While the concept of DU centralization is not new, as 71% of operators in the United
States intend to realize DU centralization solutions by 2025 [32], and some already
implement it [33], the traditional RAN centralization approaches only exploit long-term
traffic variations, such as day-night ones [34, 35], which is insufficient for cost-efficient
RAN virtualization. Indeed, designing a solution that is efficiently and reliably pooling
computing resources is technically challenging as it would require anticipatory operation
that effectively copes with fluctuations and peaks in the future user demand without
compromising the target reliability. Thus, the second research challenge of this thesis is
to provide reliable coordination among multiple DUs that share the same HA.

To further amortize the cost of hardware-accelerated vRANs, the utilization of the
HAs can be maximized by multiplexing their resources between DU workloads and other
services that specifically need the HA to be processed efficiently. However, typical HAs
in the industry, such as ASICs and FPGAs, are not programmable in software, which
limits their ability to be easily multiplexed. For this reason, recently GPUs have been
adopted as HAs thanks to their unique capability of multiplexing their resources between
DU tasks and ML models. However, multiplexing GPU resources between inelastic DU
workloads and elastic ML algorithms by ensuring processing latency targets of the former
while maximizing the throughput of the latter requires unconventional resource control
mechanisms that are not currently provided by state-of-the-art O-RAN specifications.

1.3. Contributions

In response to the questions raised in Section 1.2 regarding the deployment of energy-
and cost-efficient yet reliable vRANs, this thesis has made several contributions resulting
in peer-reviewed publications and open-source code. One publication has appeared in
the proceedings of the ACM MOBICOM 2024, and other two have appeared in the
proceedings of IEEE INFOCOM 2024. Both conferences are A* as ranked by the
CORE20231 database. Other publications include one demo at ACM MOBICOM 2024.

1https://portal.core.edu.au/conf-ranks/2074/

https://portal.core.edu.au/conf-ranks/2074/
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The contributions of the thesis are as follows.

Contribution 1. Characterization of CPU- and GPU-based DU PHY processors
With the first contribution, CPU- and GPU-based processors for DU PHY tasks are
characterized in terms of latency and power consumption using real-world mobile traffic
data over an implementation of the standard-defined O-RAN Acceleration Abstraction
Layer (AAL), making the dataset publicly available. GPUs are chosen over other HAs as
they represent a new and still little understood 5G HA, with features like AI-on-5G and
programmability [36] that are attractive for mobile operators [17]. To our knowledge, this
is the first in-depth analysis of this emerging resource for 5G DU PHY processing.

The main findings of this analysis are: (i) SIMD-capable CPUs can handle 5G DU
PHY workloads reliably in a wide range of contexts, which motivates our opportunistic HA
offloading model for energy-efficient vRAN deployments; (ii) dedicating HAs to individual
DUs results in dramatic under-utilization of these expensive resources with real-world
workloads, which supports the strategy of DU centralization to achieve cost efficiency.

Contribution 2. Energy- and cost-efficient vRANs with Near-Real-Time control
Leveraging the findings of Contribution 1, the second contribution of this thesis is
ECORAN [3], an energy-aware learning strategy that opportunistically offloads DUs
compute-intensive workloads to HAs or CPUs to reduce the energy footprint of vRANs.
This solution includes two elements: (i) a simple and fast threshold-based offloading rule
(ECORAN-R) to operate in real-time (< 1 ms); (ii) a multi-agent contextual bandit
algorithm (ECORAN-P) to optimally configure the offloading rule for each DU (agent)
in Near-Real-Time (Near-RT) (∼ 100 ms). To reduce the economic impact of the usage
of HAs in the vRAN, ECORAN applies concepts from mean field theory to deal with an
arbitrarily large number of DUs, that are centralized in the same shared and HA-powered
computing platform. Using traces collected from a real operational RAN, ECORAN
provides significant energy savings and cost gains with respect to the industry standard
approach of using dedicated HAs for each DU.

Jose A. Ayala-Romero, Leonardo Lo Schiavo, Andres Garcia-Saavedra, and
Xavier Costa-Perez, “Mean-Field Multi-Agent Contextual Bandit for Energy-Efficient
Resource Allocation in vRANs”. In: Proceedings of the IEEE Conference on Computer
Communications (IEEE INFOCOM 2024), May 20–23, 2024, Vancouver, BC, Canada,
pp. 911-920, doi: https://doi.org/10.1109/INFOCOM52122.2024.10621197.

Contribution 3. Cost-efficient GPU-accelerated vRANs
To further enhance the overall efficiency of costly GPU-accelerated vRANs, this thesis
devises YinYangRAN [2], a resource control mechanism designed to be integrated into
the O-RAN’s Service & Management Orchestrator (SMO) to dynamically allocate the
minimum necessary GPU resources to 5G DUs to ensure maximal reliability, which

https://doi.org/10.1109/INFOCOM52122.2024.10621197
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enables reusing spare resources for other co-located ML services. The solution is rooted
in a two-stage approach derived from an approximate dynamic programming technique
known as Certainty Equivalent Control (CEC). Using an experimental prototype and data
from operational RANs, we demonstrate that YinYangRAN achieves lower deployment
costs than the standard approach using dedicated HAs and consistently higher processing
reliability than conventional GPU multiplexing models with minimal impact on co-located
ML workloads. This is the first work that identifies and addresses the complex problem
of HA management for cost efficiency in emerging GPU-acccelerated vRANs.

Leonardo Lo Schiavo, Jose A. Ayala-Romero, Andres Garcia-Saavedra, Marco
Fiore, and Xavier Costa-Perez, “YinYangRAN: Resource Multiplexing in GPU-
Accelerated Virtualized RANs”. In: Proceedings of the IEEE Conference on Computer
Communications (IEEE INFOCOM 2024), May 20–23, 2024, Vancouver, BC, Canada,
pp. 721-730, doi: https://doi.org/10.1109/INFOCOM52122.2024.10621380.

Contribution 4. Energy- and cost-efficient vRANs with Real-Time control
To provide additional gains in energy and cost efficiency with respect to Contribution 2
based on Near-RT control, this thesis proposes CloudRIC [1], a solution that implements
a Real-Time (RT) controller capable of promptly responding to sub-millisecond traffic
fluctuations of real world RAN workloads. CloudRIC leverages a brokering system
that jointly controls centralized access to shared resources of heterogeneous processors
and optimizes radio scheduling policies across multiple DUs in RT. It seamlessly
integrates into the O-RAN standard, and comprises two key elements: (i) an AAL
Broker that maximizes energy efficiency by exploiting CPUs and performing HA
offloading opportunistically in RT; (ii) a RT RAN Intelligent Controller (RIC) that
provides compute-aware radio policies to ensure reliability in cost-efficient computing
platforms shared among multiple DUs. A prototype of CloudRIC based on Data Plane
Development Kit (DPDK)’s Environment Abstraction Layer (EAL) and Open Neural
Network Exchange (ONNX) is comprehensively evaluated with realistic RAN mobile
traffic demands. Experimental results demonstrate that CloudRIC achieves consistent
average gains in energy and cost efficiency over the industry standard approach for
vRANs, while incurring low implementation overheads and meeting the targeted 99.999%
processing reliability even in severely congested scenarios.

Leonardo Lo Schiavo, Gines Garcia-Aviles, Andres Garcia-Saavedra, Marco
Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-Perez, “CloudRIC: Open
Radio Access Network (O-RAN) Virtualization with Shared Heterogeneous Computing”.
In: Proceedings of the 30th Annual International Conference on Mobile Computing and
Networking (ACM MobiCom 2024), November 18–22, 2024, Washington D.C., DC, USA.,
pp. 558–572, doi: https://doi.org/10.1145/3636534.3649381.

https://doi.org/10.1109/INFOCOM52122.2024.10621380
https://doi.org/10.1145/3636534.3649381
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The publications above are accompanied by publicly available material uploaded on
Zenodo and GitHub. The list of the released material is presented in Table 1.2.

Material URL Paper
5G DU PHY CPU/GPU dataset zenodo.org/records/10691661 [1]
CloudRIC AAL-B models weights zenodo.org/records/10705309 [1]

ECORAN source code github.com/jaayala/ECORAN [3]

Table 1.2: Publicly available thesis material.

1.4. Outline of the thesis

The rest of the thesis is organized into different chapters that contextualize and
describe in detail the solutions proposed in this thesis. The chapters are described next.

Chapter 2 establishes the groundwork of the thesis by introducing the background.
At the beginning, a primer on 5G New Radio (NR) is presented, followed by a brief
description of state-of-the-art hardware accelerator models. The chapter goes further to
provide a background on modern techniques to perform resource multiplexing in GPU-
based HAs and on RAN virtualization by describing the standard O-RAN architecture and
Control Plane (CP). The final part of the chapter focuses on the description of existing
works on O-RAN control and virtualization, energy efficiency in mobile networks, multi-
agent learning for mobile networks, task scheduling, and HA resource multiplexing by
exposing their limitations to cope with the proposed research challenges of this thesis.

Chapter 3 provides an experimental analysis to justify the main design choices
proposed in this thesis to achieve energy and cost efficiency. In particular, the analysis
on the reliability of CPUs and HAs when processing 5G DU PHY FEC decoding tasks
to justify the complementarity of these two processors and the possibility of performing
opportunistic HA offloading as a way to mitigate HAs energy toll. Then, the chapter
analyses current utilization figures of GPU-based HAs to validate the opportunity of
sharing individual HAs among multiple DUs or reusing spare HA resources with other
co-located services with the aim of enhancing vRAN cost efficiency.

Chapter 4 draws on the findings of Chapter 3 to introduce ECORAN, a solution
integrated into a real and standard-compliant O-RAN platform. ECORAN utilizes the
Near-RT RIC to implement energy-efficient offloading rules, allowing multiple centrally-
controlled DUs to opportunistically use HAs or CPUs for processing PHY workloads.

Chapter 5 focuses on the specific case of GPU-accelerated vRANs to further improve
cost efficiency through GPU resource multiplexing. After assessing practical trade-offs
and overheads of this mechanism, the chapter presents YinYangRAN, an innovative O-
RAN-compliant solution that multiplexes GPU computing resources as to ensure 5G DU

https://zenodo.org/records/10691661
https://zenodo.org/records/10705309
https://github.com/jaayala/ECORAN
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PHY processing reliability while maximizing the throughput of co-located ML services.
Chapter 6 expands the analysis of Chapter 3, showing that real-world RAN traffic

demands fluctuate at sub-millisecond timescale and that standard O-RAN policies are
not viable to ensure reliability under this scenario. Leveraging this expanded analysis,
the chapter presents CloudRIC, a system that is capable of meeting specific reliability
targets in a cost- and energy-effective manner using lightweight data-driven models. To
reach this goal, CloudRIC coordinates the access of multiple DUs to a heterogeneous set of
computing processors and assists DUs with RT compute-aware radio scheduling policies.

Chapter 7 draws the most important findings and conclusions of the thesis by laying
out possible directions of this research under short-term and long-term perspectives.





2 Background

The following chapter presents the building blocks of this thesis, based on the hardware
acceleration of 5G New Radio (NR) data processing pipeline under the standardized and
open O-RAN architecture for virtualized Radio Access Network (vRAN). Current state-
of-the-art hardware acceleration models are described, followed by the introduction of
modern techniques to multiplex the resources of one of the most common Hardware
Accelerators (HA), the Graphics Processing Units (GPU)-based HA.

Then, existing works on vRAN resource optimization and orchestration, energy
efficiency and multi-agent learning in mobile networks, task scheduling and HA resource
multiplexing are examined, highlighting their limitations in addressing the research
challenges introduced in Section 1.2.

2.1. 5G New Radio

5G base stations comprise a Radio Unit (RU), which performs basic radio operations
such as signal sampling; a Centralized Unit (CU), which processes the highest layers;
and a Distributed Unit (DU), which processes the Physical layer (PHY), Medium Access
Control (MAC), and radio link control layers [37].

NR is 5G’s PHY/MAC interface. Our focus is on sub-6GHz bands, which allow up to
100 MHz per carrier and have flexible numerology µ = {0,1,2} [38]. The basic spectrum
unit is the Resource Block (RB), which encompasses 12 subcarriers with 15 · 2µ-KHz
spacing. Time is divided into 1-ms subframes, each carrying 2µ slots with, usually, 14
Orthogonal Frequency-Division Multiplexing (OFDM) symbols lasting 66.7·2−µ µs. Every
Transmission Time Interval (TTI), often one slot, the DU’s MAC schedules one Transport
Block (TB) for/from every active User Equipment (UE), which are signalled to UEs by
grants. The TB size depends on the numerology, the amount of buffered data, the DU’s
RB scheduling policy, and the Modulation and Coding Scheme (MCS), selected based on
the Signal-to-Noise Ratio (SNR). Uplink TBs must be sent within K2 slots of receiving
the grant [39]. Figure 2.1 shows the pipeline of DU operations required to process a TB.

11
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Figure 2.1: O-RAN DU data processing pipeline.

At the transmitter side, TBs are divided into Code Blocks (CB) with individual Cyclic
Redundancy Check (CRC) fields. Filler bits adapt the CB size to the requirements of the
Low-Density Parity-Check (LDPC) encoder used for Forward Error Correction (FEC),
which produces a codeword with parity bits. Finally, the codeword is aligned to the
capacity of the allocated RBs (which depends on their MCS) via rate matching, by
applying puncturing or repetition. At the receiver side, a soft-output detector computes
the reliability of the data as Log-Likelihood Ratios (LLR) called soft bits. Then, an LDPC
decoder maps soft bits into hard bits through an iterative belief propagation algorithm.
The algorithm terminates after a maximum number of iterations (usually 10), or earlier if
CRC validates the codeword. The TB is reconstructed once all of its CBs are successfully
decoded. More details can be found in [40].

To adhere to Third Generation Partnership Project (3GPP) and O-RAN
requirements [11,37], processing the heavier LDPC tasks has a deadline D={1, . . . , 3} ms,
depending on the base station, which must be met with 99.999% probability to reach the
industry’s 5-nines reliability target [12]. This is achieved today with DU-dedicated HAs.

2.2. Hardware acceleration

There are two hardware acceleration models, typically implemented with Application-
Specific Integrated Circuits (ASIC), Field Programmable Gate Arrays (FPGA) or
GPUs [29]: in-line, in which the HA directly processes the pipeline of Figure 2.1 as the
radio wireless symbols arrive from the Network Interface Card (NIC), without software
intervention; and look-aside, in which the HA operates on data managed by a software
controller to perform only selected tasks, like for example LDPC decoding.

Traditionally, in-line HAs offer lower latency than look-aside HAs because the former
does not require any software mediation. However, in-line HAs tie the complete pipeline
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of Figure 2.1 to the choice of a HA, thus limiting the advantages of virtualization in terms
of resource sharing. Moreover, the performance gap between the two models is quickly
closing [41], suggesting that look-aside HAs may become predominant.

2.3. GPU-based HA resource multiplexing

As stated in Chapter 1, GPU-based HAs are gaining the attention of mobile operators
thanks to their capability of reusing computing resources for Artificial Intelligence (AI)
and Machine Learning (ML) workloads [18]. For instance, lately NTT Docomo has rolled
out GPU-accelerated 5G trials, and SoftBank has explored a proof-of-concept about
multiplexing the resources of a GPU between 5G DU workloads and ML-based edge
computing applications [17]. Motivated by the impact that AI can have to transform the
Radio Access Network (RAN) ecosystem for 5G and 6G, important market players have
recently founded the AI-RAN Alliance [42]. Also, NVIDIA, Ericsson, Nokia and TMobile
have just created a partnership to study GPU-accelerated vRANs [43].

There are essentially three methods to multiplex GPU resources. One is application-
level sharing, which leverages conventional single-process concurrency methods, such as
Compute Unified Device Architecture (CUDA) streams and multi-threading. While
remarkably simple, time-sliced context switching can create significant and non-
controllable overhead, ruling out per-process performance guarantees that are critical
in PHY-layer processing pipelines discussed in Section 2.1.

Process-level multiplexing can be achieved with Multi-Process Sharing (MPS), first
introduced on NVIDIA’s Kepler architectures and further enhanced on Volta. MPS
assigns subsets of GPU compute units, known as Streaming Multiprocessors (SM),
to individual partitions for specific processes. Although MPS offers SM isolation to
circumvent context switching overheads, cache and memory resources are still shared
between processes without any isolation, as illustrated in Figure 2.2. This can potentially
lead to large overheads when memory-intensive processes compete for GPU resources.

Finally, hardware-level multiplexing can be achieved with Multi-Instance GPU (MIG),
a feature appeared with Ampere GPUs (e.g., NVIDIA A100). As shown in Figure 2.2,
MIG facilitates true hardware isolation, guaranteeing Quality of Service (QoS) and
resource allocation. Specifically, MIG enables the division of a GPU into fully isolated
sub-GPUs, which in practice only share the Peripheral Component Interconnect (PCI)
interface bandwidth towards the Central Processing Units (CPU). While it ensures full
isolation, MIG presents two notable drawbacks compared to MPS. First, MIG offers
only a limited set of partition options — for example, the smallest partition in a 40GB
NVIDIA A100 provides 1/7th of SMs and 5GB of memory. Conversely, MPS allows for
more granular SM splitting. Second, MIG incurs substantial overhead, on the order of
several seconds, as opposed to a few hundred milliseconds with MPS (see Chapter 5).
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Figure 2.2: MPS versus MIG.

2.4. O-RAN

The O-RAN Alliance is a major carrier-led effort to define an open RAN
architecture [7], depicted in Figure 2.3. Founded by AT&T, Orange, DT, Docomo, and
China Mobile, over 300 industry players contribute to O-RAN today, including most
major operators and vendors. The Control Plane (CP) of this architecture includes two
components, the Non-Real-Time (Non-RT) RAN Intelligent Controller (RIC) (Non-RT
RIC) and the Near-Real-Time (Near-RT) RIC, that use A1 and E2 interfaces to manage
Network Functions (NF) such as DUs at, respectively, >1 s and >100 ms timescales.
The User Plane (UP) has the O-Cloud, which provides computing resources, including
CPUs and HAs, to NFs through an Acceleration Abstraction Layer (AAL) [44]. The
AAL abstracts O-Cloud resources as Logical Processing Units (LPU).
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Figure 2.3: O-RAN architecture.

As shown in Figure 2.4, each LPU is dedicated to one NF via individual First In First
Out (FIFO) queues. Consequently, though a physical processor (CPU or HA) can be
shared among NFs, the state of each LPU (e.g., its queue occupancy) is not shared and
thus only visible to the associated NF.

The O-Cloud is governed by the Service & Management Orchestrator (SMO) through
the O2 interface, but operates on several-second timescales. Moreover, the Near-RT RIC
lacks O-Cloud visibility, hindering compute-aware radio policies and DU coordination
mechanisms at fast timescales — both crucial for achieving efficiency gains reliably.
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2.5. Related work

In this section, existing works on O-RAN control and virtualization, energy
efficiency and multi-agent learning in mobile networks, task scheduling and HA resource
multiplexing are examined, highlighting the reasons why these works are not suitable for
answering the main research challenge of this thesis: the deployment of energy- and cost-
efficient yet reliable hardware-accelerated vRANs (see Section 1.2).

2.5.1. O-RAN control and virtualization

The advent of O-RAN has recently motivated substantial research on radio control,
management and orchestration. OrchestRAN [45] is a orchestration framework that
determines the optimal set of data-driven models running in the O-RAN Near-RT RIC to
offer intent-based control operations for sets of Base Station (BS) for mobile operators.
Such an orchestration tool executes in the Non-Real-Time RIC and has been successfully
validated through ColO-RAN [46], a comprehensive large-scale testbed equipped with
software-defined radios-in-the-loop that evaluates the data-driven algorithms running in
Near-RT. However, these orchestration solutions operate at second- or -minute-timescales
and are not capable of cope with real-world workloads that fluctuate at smaller timescales,
complicating the attainment of industrial hard reliability constraints.

The authors of [21] present an O-RAN control algorithm that employs Bayesian
Learning theory to derive energy-efficient radio policies in vRANs while trying to
maximize network performance. This work was subsequently extended in [47] to account
also for co-located edge services. However, the system is controlled over long timescales
and the computing resources are statically pre-assigned to both vRAN BSs and the edge
services, hindering respectively strict reliability constraints and cost-effective deployment.

In Nuberu [13], a novel 5G DU is designed and engineered to ensure reliability on
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non-deterministic and shared virtualized computing platforms by balancing reliability
with network delay. While the use of reliable DUs is key in industry-grade vRANs,
Nuberu neither coordinates multiple concurrent DUs nor relies on efficient mechanisms
to optimally share the available computing resources, failing in providing an affordable
cost per DU and thus a cost-efficient vRAN deployment.

In [22], the authors present a ML solution based on Deep Reinforcement Learning
(DRL) and Deep Deterministic Policy Gradient (DDPG) that orchestrates CPU resources
across multiple vRAN BS through control decisions taken depending on specific network
contexts. Although this works faces the problem of sharing computing processors among
many BSs to amortize costs and exploits compute-aware control decisions, the vRAN
system is optimized only in long timescales and does not rely on any HA, which makes
difficult meeting hard reliability constraints imposed by industry standards [48,49].

Agora [30] is a 5G data channel processor built on top of FlexRAN’s publicly available
libraries for many-core general purpose CPU platforms that provides deterministic
computing latency for massive Multiple-Input Multiple-Output (MIMO) baseband
processing. The systems does not require the usage of HAs like ASICs, FPGAs or GPUs
to deal with the baseband processing, and rather relies on the parallelism offered by
dedicated CPU cores to meet the latency requirements of 5G NR. However, this solution
is based on assigning dedicated resources and thus is not suitable for sharing available
computing platforms to amortize deployment costs.

Similar to [30], Hydra [31] leverages Single Instruction Multiple Data (SIMD)
programming capability of CPUs to scalably process in software massive MIMO workloads
distributed across a pool of different servers. The system succeeds in supporting larger
MIMO configurations than state-of-the-art approaches by yielding zero overhead when
splitting the Fronthaul Network (FH) traffic from the RUs and reducing both inter-server
and inter-core communication and coordination overheads. However, this work employs
a distributed solution with multiple servers and does not apply DU centralization, thus
hindering the cost-efficient deployment of vRANs.

In the context of resource multiplexing in vRANs, Concordia [12] employs a CPU
scheduler based on a quantile decision tree to perform CPU resource multiplexing
between co-located and co-executed 5G processing tasks of a single base station and
other latency-elastic third-party applications. While Concordia meets the 5-nines
reliability requirements on emulated 5G traces, it does not provide support to share
heterogeneous pools of industry-standard HAs and CPUs among multiple DUs, thus
presenting limitations in terms of cost-efficient vRAN deployment.

In [50], the authors present Atlas, a solution that minimizes connectivity disruption in
commercial-grade 5G vRANs by sharing in Real-Time (RT) a common RU between two
different DUs. With this system, the DUs implemented in software are made upgradeable
and fault-tolerant, thus ensuring service continuity and resilience. While this work
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represents a concrete step towards the support of resilient vRANs, it does not pool the
available computing resources across multiple DUs to save deployment costs.

The authors of [51] propose EdgeRIC, an RT-RIC that provides DU control at sub-
millisecond timescale through AI-based algorithms. Although EdgeRIC shows that RT
solutions can achieve better system throughput than Near-RT solutions, it only considers
scenarios with a single DU. Therefore, the RT control of multiple DUs and their access to
a shared pool of computing resources including HAs, which are fundamental to reliably
achieve higher efficiency gains and amortize installation costs, are not addressed.

ORANUS [52] is an O-RAN compliant system that dynamically assigns radio resources
in both Near-RT and RT to ensure performance guarantees for multiple Ultra-Reliable
Low-Latency Communication (URLLC) services. These services are mapped to multiple
DUs deployed in the same cell and are assigned with RBs through a RT transmission-
queue-aware radio allocation policy. However, this work focuses only on a single-cell
scenario and does not consider dense industry-grade scenarios with several cells, in which
HAs are needed to guarantee typical reliability targets for processing vRAN functions.

In OREO [53], authors propose a control framework that operates in Near-RT to
efficiently assign CPU resources to services running in the vRAN. To guarantee target
requirements for these services, the solution takes into account complex trade-offs in the
dimension of latency, quality of service and resource demands. However, this framework
operates at coarse time granularity and thus is not suited to handle dynamic real-world
workloads, making it challenging to meet the strict reliability targets set by industry.

2.5.2. Energy efficiency in mobile networks

Energy efficiency in mobile networks has been traditionally researched with the
primary focus on the energy consumed by the BSs for amplifying wireless signals (a.k.a.
transmission power). Numerous studies and literature address this issue, delving into
analytical models and deployment planning tools derived from these models, as in [54–56].

The current trend in network densification involves deploying a higher number of small
base stations with lower transmission power and higher data rates [57]. Due to network
virtualization, the computing capacity needed to process high-bitrate signals is now a
significant factor in the RAN energy consumption, as observed in [58,59].

A few studies focus on vRANs energy consumption: for instance, the works [22]
and [47], already presented in Subsection 2.5.1, respectively use CPU resources and
energy-efficient radio policies to reduce the energy footprint of the vRAN. However,
none of these consider hardware acceleration, crucial for industry-grade systems [48,49].
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2.5.3. Multi-agent learning in mobile networks

Previous Multi-Agent Reinforcement Learning (MARL) methods often handle only a
small number of agents due to the exponential increase in complexity with the number
of agents, known as the curse of dimensionality [60]. A few works tackle the scalability
issue by using concepts from Mean Field Theory [61, 62]. In these studies, interactions
within the agent population are approximated by those between a single agent and the
population’s average effect. While these techniques were applied in fields like the control of
Unmanned Aerial Vehicles (UAV) [63] and the management of ride-sharing platforms [62,
64], they were never applied to mobile networks to the best of our knowledge.

In mobile networking, single-agent Reinforcement Learning (RL) finds extensive use
in spectrum management [65], network diagnostics [66], software-defined networking [67],
among others. In mobile network problems, the Markov Decision Process (MDP) is often
particularized with a contextual bandit due to several reasons. First, these problems
typically have an infinite horizon, with the goal of optimizing long-term performance,
leading to a zero discount factor. Second, state transitions are often independent of the
selected action. Finally, the reward observation is usually not delayed. Thus, numerous
works express mobile network challenges through contextual bandits [22,47,59,68–70].

Despite the potential benefits, the implementation of an arbitrarily large number
of agents (DUs) collaboratively solving a contextual bandit problem has not yet been
explored in the context of mobile networks. This gap in research hinders the development
of an economically effective strategy that relies on cost amortization for hardware-
accelerated DUs through the pooling of HAs across multiple centralized DUs.

2.5.4. Task scheduling

Considering task scheduling frameworks, [71] propose a Mixed-Criticality Federated
Scheduling (MCFS) algorithm to assign computational resources to safety-critical and
non-safety critical tasks that are sharing a common computational platform in order to
meet different processing deadlines. The solution responds to increasing computational
demands of inelastic tasks by providing internal parallelism via assignation of cores and
virtual deadlines. In [72], authors present ZYGOS, a solution to efficiently schedule
networking tasks on multi-core computing platforms with the objective of reaching high
throughput, expressed as number of tasks timely processed, while guaranteeing µs-
level tail latency. Arachne [73] is a core-aware system that assigns applications of few
microseconds duration to dedicated cores for processing, with the number of cores assigned
depending on the specific load of the application. Arachne goal is to reduce tail latency
and provide high throughput in terms of timely processed applications. However, these
works [71–73] operate at coarse scheduling time granularity, which is not suitable for
vRAN workloads that are fluctuating at sub-millisecond timescales.
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Shinjuku [74] improves [72] by implementing a centralized scheduler that uses
hardware-supported virtualization to perform tasks preemption at few microseconds
timescale. This solution effectively copes with real-world tasks processing times showing
distributions with both light and heavy tail, providing consistent gains in terms of
throughput and tail latency. Shenango [75] focuses on achieving microsecond-scale
latencies for datacenter workloads with an efficient usage of the available CPU resources
that limits overprovisioning. This is obtained by reallocating CPU unused cores at a
granularity of 5µs from latency-sensitive tasks, for which an overprovisioned amount of
cores has been allocated to deal with the peak expected load, to batch processing tasks.
Snap [76] is a userspace system for the implementation and the execution of several
network functions that are assigned with dynamically scaled CPU resources through a
scheduler operating in real-time. While [74–76] can provide µs-level scheduling and re-
allocation strategies, they are generic approaches alien to the specifics of radio scheduling
operations, hence are not suitable for sharing heterogeneous computing platforms while
providing many-9s reliability in dense vRAN scenarios.

2.5.5. GPU resource multiplexing

The objective of this subsection is to shed light on existing works focusing on the
multiplexing of GPU computing resources. Indeed, this approach can help reducing
deployment costs compared to more expensive solutions in which individual GPU-based
workloads are assigned with dedicated GPUs.

Motivated by the fact that SM cores of entire GPUs are often underutilized, [77]
provides an exhaustive characterization in terms of performance and energy consumption
of an A100 GPU in different MIG mode operations with various state-of-the-art Deep
Learning (DL) models. This work demonstrates that MIG sub-portions of the GPU
can support these DL workloads, thus avoiding hardware resource wastage resulting from
using the entire GPU. However, as demonstrated next in this thesis (see Chapter 5), MIG
struggles with the dynamic multiplexing of GPU resources due to high reconfiguration
overheads, which cast doubts about the usage of this mechanisms when dealing with GPU
resource reconfiguration for dynamically changing DU and ML co-located workloads.

MISO [78] is a technique that uses MPS-based resource multiplexing to predict and
subsequently dynamically allocate the most effective MIG partitions for diverse tasks
running on GPU, thereby mitigating the challenge and the overhead of exploring different
partition configurations with MIG alone. Yet, MISO fails to address the issue of re-
configuring slices of the GPU for dynamically changing workloads, such as RAN traffic.

Ligthweight GPU multiplexing is offered by Salus [79] and TGS [80]. Salus enables two
GPU multiplexing primitives at low overhead: quick job switching and memory sharing,
fostering fine-grained GPU multiplexing many different GPU-based applications by means
of iteration scheduling and resolution of memory management issues. TGS provides
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transparent GPU multiplexing among DL training workloads in container clouds by
operating at the Operating System (OS) layer rather than the application-layer. Through
adaptive rate control and transparent unified memory, TGS ensures high GPU utilization
and performance isolation, i.e. opportunistic tasks do not affect co-located production
tasks. Nevertheless, these solutions do not adequately handle the two fundamentally
disparate workloads generated by DUs (inelastic) and by ML tasks (elastic), thus are
not applicable in the context of cost-efficient deployment of GPU-accelerated vRANs
leveraging ML algorithms to improve DUs operation.



3 Experimental analysis of vRAN
acceleration for FEC decoding

As discussed in Chapter 1, the sustainable deployment of hardware-accelerated
virtualized Radio Access Network (vRAN) that meets strict reliability constraints while
reducing deployment costs and energy consumption has become an important and
challenging problem to solve for network operators. Indeed, current industry-grade
vRANs rely on expensive and energy-hungry Distributed Unit (DU)-dedicated Hardware
Accelerators (HA) to ensure the 5-nines processing latency probability and tend to shun
other slower yet more energy-efficient processors like Central Processing Units (CPU).

This thesis demonstrates that it is possible to deploy energy- and cost-efficient yet
reliable vRANs respectively by (i) opportunistically complementing HAs with less energy-
hungry computing processors like CPUs to process DU tasks, and (ii) sharing the same
HA across multiple centralized DUs as to amortize the cost of the expensive HAs.

This chapter presents a set of experimental results that form the foundation for and
justify the aforementioned design choices needed to deploy energy- and cost-effective yet
reliable vRANs. In Section 3.1, typical real-world DU workloads used throughout this
thesis are presented to prove that the proposed solutions are validated with real Radio
Access Network (RAN) traces. In line with the discussion in Section 1.1 exemplified in
Figure 1.3, Section 3.2 provides insight about the reasons why HAs are preferred over
CPUs in industrial vRANs for 5G Forward Error Correction (FEC) decoding under real-
world traffic. Section 3.3 shows that CPUs can be valuably complemented with HAs
in vRANs to provide advantages in terms of capital and operating costs, thus justifying
the opportunistic HA offloading model. In Section 3.4, typical utilization figures of HA
dedicated to individual DUs deliver practical support for cost-efficient exploitation of HA
resources by means of sharing single HA among multiple centralized DUs. Equivalently,
these results validate the opportunity of multiplexing spare resources of the HA with other
co-located services: in Chapter 5, we will show a realistic demonstration of this approach,
considering the specific example of Graphics Processing Units (GPU)-based HAs.
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3.1. Real-world DU workloads

Using Falcon [81] and 5GSniffer [82], we tracked the workload dynamics experienced
by several (sub)urban cells in Madrid, Spain (Vodafone, April 2021, ESP), in Frankfurt,
Germany (Deutsche Telekom, December 2022, DE), and in Boston, US (T-Mobile, May
2023). The goal is to use this data to emulate the behavior of real User Equipment (UE).

Consistent with previous studies [12,83], we observe that the individual loads and the
number of concurrently active UEs are low at the Transmission Time Interval (TTI) scale.
The “x1” curves in Figure 3.1, which characterize each UE’s buffer (left), inter-arrival time
(middle), and Signal-to-Noise Ratio (SNR) (right) at the TTI level, show a median and
99th percentile UE buffer of 2 Kb and 78 Kb, respectively. Moreover, Figure 3.2 indicates
that the median and 99th percentile of active UEs in one TTI is only 1 and 6, respectively.
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Figure 3.1: UE demand profiles used for evaluation.
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Figure 3.2: UEs concurrently active at TTI timescales.

To emulate higher network demands, we generated additional profiles by amplifying
our traces by factors of 4, 8, and so forth, denoted as "x4", "x8", etc. in Figure 3.1.
With the mobile traffic Compound Annual Growth Rate (CAGR) pegged between 25-
30% [84], these multipliers enable us to project expected workloads up to 2030, all the
while preserving the genuine dynamics of real users. The additional "Max" profile, where
the UE is consistently backlogged, let us analyze worst-case scenarios too.
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3.2. Reliability of legacy CPUs and HAs

The industry today favors in-line or look-aside HAs such as Application-Specific
Integrated Circuits (ASIC), Field Programmable Gate Arrays (FPGA), or GPUs for
5G FEC workloads due to concerns about CPU reliability [85]. Indeed, there exist
fundamental limitations to parallelizing individual decoding request across CPU cores [86],
hence state-of-the-art Low-Density Parity-Check (LDPC) libraries such as FlexRAN [87]
and others [88,89] just exploit data parallelization using Single Instruction Multiple Data
(SIMD) programming and task parallelization over concurrent decoding tasks [30, 31].
Yet, those strategies cannot bound the latency of individual tasks, which prevents CPUs
from guaranteeing reliability for all workloads alone and limits the applicability of these
processors in industry-grade vRAN scenarios.

To precisely quantify the reliability that CPU- and HA-based processors may achieve,
we measure in Figure. 3.3 the ratio of Transport Block (TB) processed within a deadline D

(reliability) for two solutions. The first one uses FlexRAN, a de-facto standard library [12,
30, 31], with the above optimizations on a pool of Intel Xeon Gold 6240R CPU cores.
The second one uses a commercial NVIDIA V100 GPU decoder, which represents a new
and still little understood HA with compelling features like Compute Unified Device
Architecture (CUDA), CPU-like time-to-market, and AI-on-5G [36].
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Figure 3.3: Reliability performance as a function of the DU load for a CPU-only processor
and a HA-only processor.

We evaluate both processors for different loads by varying the profile of the active UEs
as explained in Section 3.1 (“x1”, “x2”, “x4” and so on). Every TTI, a number of UEs
become active following the distribution shown in Figure 3.2, each receiving a fair amount
of the radio resources from a 100-MHz DU. Then, these UEs generate TBs following the
corresponding profile and radio allocation by executing the downlink pipeline of Figure 2.1.
To emulate the wireless channel, we add Additive White Gaussian Noise (AWGN) noise
with zero mean and the appropriate variance to obtain the target SNR across all the
Orthogonal Frequency-Division Multiplexing (OFDM) symbols received by the DU.
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To ground our tests on realistic settings, we implemented O-RAN’s Acceleration
Abstraction Layer (AAL) using Data Plane Development Kit (DPDK)’s Wireless
Baseband Device Library (BBDev) [90], which provides abstractions for wireless
processing tasks that can be used to implement the Logical Processing Units (LPU)
for both processors [91] (∼1K lines of C code). The signals demodulated by the DU are
encoded as soft bits, as shown in the uplink pipeline of Figure 2.1, stored in a memory
pool (mempool), and then allocated to the corresponding LPU.

As shown in Figure 3.3, the GPU (dotted black line), just like any look-aside or
inline HA, can sustain 100% reliability regardless the load. Conversely, the CPU-only
approach can only meet the 99.999% reliability target for small loads. This is naturally
worse for smaller CPU pools as queuing effects cause additional delays but reliability
drops regardless the pool size because higher loads carry larger TBs—which can exceed
deadlines on CPUs—with higher probability.

These results illustrate the underlying reasons why CPUs are ignored by the industry
for 5G FEC. In contrast, we show next that CPUs can be a valuable complement to HAs.

3.3. Complementarity of CPUs and HAs

We next experimentally investigate the performance of both categories of 5G FEC
processors, unveiling their complementarities. For the CPU solution, we set the pool to
16 cores which our earlier results proved to be sufficient (see Figure 3.3). For each test, we
select a Modulation and Coding Scheme (MCS) m ∈ M := {0, 1, . . . , 27} (see [92, Table
5.1.3.1-2]), an SNR s ∈ S := {1, 2, . . . , 30} dB, and a bandwidth b ∈ B := {1, 2, . . . , 250}
Resource Block (RB) to generate 10 random TBs, adding up to a total of ∼2M samples.
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Figure 3.4: Median latency in decoding TBs of different sizes (i.e., combinations of RBs
and MCS) under varied SNR conditions with CPU and HA processors. Log-scale z-axis.
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3.3.1. Latency

Using a colored gradient, Figure 3.4 shows the median latency of the CPU running
FlexRAN (top) and of the GPU-based HA (bottom) for all combinations from S and
M and for subset of b∈{50, 100, 150, 200}⊂B. The blank cells indicate contexts that
cannot be decoded within 10 iterations. The HA provides roughly an order of magnitude
improvement in latency, as expected. More interestingly, Figure 3.4 unveils for the first
time key properties of the latency achieved by a GPU-based 5G HA, such as its invariance
to the TB size or complex relationship with MCS and SNR combinations.

The latency performance of a 5G FEC processor depends not only on the type
of processor but also on the decoding algorithm and library-specific implementations.
Figure 3.5 compares FlexRAN and two open-source libraries, “OS1” [89] and “OS2” [88],
depicting substantial differences across them. First, both FlexRAN and OS2 provide, on
average, 4.3 times lower latency than OS1. This is explained because our OS1 library
under test does not exploit SIMD acceleration. Second, OS2 is unable to decode some
high-MCS, high-SNR TBs (see blank cells in the plot). The reason lies in the 8-bit
quantization used in this specific library to encode soft bits. We repeated the experiments
with 16-bit resolution and the processor could decode those TBs as expected but with a
much larger latency toll (right plot). Finally, there are mild—yet relevant—differences in
performance when comparing decodable TBs with FlexRAN and OS2. More specifically,
FlexRAN outperforms OS2 by around 10% in average, but by over 30% when considering
TBs that require more than one iteration to decode, even though they both exploit SIMD.
The reason is that the three libraries each implement a different flavor of LDPC decoding,
which renders a different number of decoding iterations under the same noise.
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Figure 3.5: Median latency in decoding TBs of different size, with 200 RBs and
varied SNR conditions, using different CPU libraries including FlexRAN, srsLTE and
OpenAirInterface. Log-scale z-axis.

These results prove that also CPU solutions can decode TBs within common 1-3 ms
deadlines [12,13] in a wide range of contexts (those below the grey line in the Figure 3.4).
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In fact, 100% of the TBs observed in the “x1” UE profile fall within this range. Moreover,
the results show that there exists a complex relationship between TB context (MCS, SNR,
number of RBs), the type of the processor, the decoder implementation, the amount of
computing resources assigned, and performance, which suggests data-driven models and
challenges the formulation of tractable mathematical models.

3.3.2. Energy consumption

Figure 3.6 shows the energy consumed by the CPU and the GPU processors,
considering respectively the FlexRAN implementation and 100% of allocated Streaming
Multiprocessors (SM)s. For the less demanding bandwidth setting, the HA consumes
more than 28× the energy required by the CPU. Yet, for the most exacting bandwidth
configuration, the HA consumes only around 71% more than the CPU. The latency
provided by CPUs precludes their use in specific contexts; however, the remarkable
advantages in terms of capital (see Table 1.1) and operating (i.e., energy) costs still make
CPUs appealing to process less-stringent TBs, which are rather frequent as discussed
before.
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Figure 3.6: Median energy to decode TBs of different size (i.e., combinations of RBs and
MCS) under varied SNR conditions with CPU and HA processors. Log-scale z-axis.

3.4. HA sharing and multiplexing opportunities

Let us now explore HA sharing and multiplexing opportunities as a means to improve
cost-efficiency. Figure 3.7 depicts the relative busy time of the GPU-based HA (y-axis)
to process the workload of a varying number of concurrently active UEs (x-axis) with
different profiles (colors) in a single 100-MHz 5G DU. For “x1”-generated workloads, the
HA utilization is below 12% even with 10 concurrently active UEs.
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In fact, 10 “Max” UEs concurrently active every TTI—or 85 “x4” UEs, though not
shown in the figure—would be required to saturate the HA. In conclusion, modern HAs
are largely underutilized by individual DUs when handling real-world workloads, which
creates clear opportunities for sharing and multiplexing, even in a relatively far future.
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Figure 3.7: GPU HA mean usage for different 5G workloads.

A legitimate ensuing question is whether HA sharing among multiple DUs can be
sustained by the Fronthaul Network (FH) [93] that connects them to their corresponding
Radio Unit (RU) as shown in Figure 2.3. O-RAN uses a 7-2x DU-RU split with an
open FH interface based on Evolved Common Public Radio Interface (eCPRI) that has
a latency tolerance of 100 µs [94]. Assuming a 5-µs/Km propagation delay and a 2D
Manhattan tessellation model, the area of RUs that can be connected to a single location
is up to 400 Km2 [37]. Moreover, assuming Peripheral Component Interconnect Express
(PCIe) v3.0+ bus and 100-GbE FH interfaces, we could aggregate up to 3.8 GHz of radio
spectrum per server [95]. Hence, it is technically feasible to aggregate the workload of
multiple DUs and share the resources of high-performing HAs in centralized edge clouds.

The underutilization of DU-dedicated HA with real-world workloads also opens to the
unique opportunity of re-using spare HA resources to handle tasks external to the DU
Physical layer (PHY) processing to build more cost-effective vRAN systems. As already
discussed in Section 1.1, GPUs have been proposed as a realistic candidate for HA thanks
to their unique capability of handling GPU-based Machine Learning (ML) models that
can be used to improve DU operations. Yet, multiplexing the available resources of the
GPU poses novel challenges and trade-offs, that will be analyzed in the Chapter 5.





4 Energy and cost efficiency in
vRANs with Near-RT control

The analysis performed in Chapter 3 sets a roadmap for more energy- and cost-efficient
virtualized Radio Access Network (vRAN) deployments. In particular, the results in
Section 3.3 have shown that Central Processing Units (CPU) can complement energy-
hungry Hardware Accelerators (HA) like Graphics Processing Units (GPU) to process
some of the compute-intensive tasks running at the Distributed Unit (DU) of virtual Base
Station (BS), trading off energy savings with processing latency gains. The findings of
Section 3.4, instead, have demonstrated that HA can be shared among multiple centralized
BSs as to improve cost efficiency by amortizing the acceleration cost of individual BSs.

This chapter presents the first solution of the thesis that aims at deploying energy- and
cost-effective vRANs by leveraging the aforementioned two design approaches. According
to the analysis of Section 3.3, there exists complex relationships among the network
context, the type of processor and the latency and energy performance. For this reason,
the proposed solution harnesses data-driven policies to control the offloading strategies of
multiple BSs that are centralized in the same shared computing platform.

4.1. Offloading scenario in vRAN

The novel O-RAN architecture defines a computing platform known as O-Cloud to
offload signal processing workloads from virtualized BS. Among these workloads, we
focus on the Forward Error Correction (FEC), which is the most compute-intensive [13].
An O-Cloud provides signal processors comprised of general-purpose CPUs and HAs
such as FPGAs, GPUs, or ASICs. Each processor queues FEC processing requests in
FIFO queues and, once processed, the resulting Transport Block (TB) data is sent back
to the associated BS (see Figure 4.1). In O-RAN, BSs are controlled by a Near-Real-
Time (Near-RT) RAN Intelligent Controller (RIC) using apps, known as xApps, which
operate in the timescale of ∼ 10 − 100 ms (i.e., 10x or 100x longer than a Transmission
Time Interval (TTI)). In this chapter, we focus on a data-driven policy in a Near-RT-RIC
to control the offloading strategy of BSs deployed over a prototype O-Cloud platform.

29



30 Energy and cost efficiency in vRANs with Near-RT control
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Figure 4.1: O-Cloud offloading scenario in vRAN.

4.2. Problem formulation

In this section, we formulate an opportunistic HA offloading problem for 5G signal
processing workload as a discrete-time decision-making problem where each time step k

corresponds to a TTI. We let Bk denote the set of Bk BSs that share the same O-Cloud
platform at time step k. Note that the number of active BSs may change over time.
Every time step k, each BS b ∈ Bk receives from its users a set of encoded TBs T b

k that
must be FEC-decoded by the O-Cloud platform. Every TB di ∈ T b

k is characterized by
its Signal-to-Noise Ratio (SNR) (ci), Modulation and Coding Scheme (MCS) (mi), and
the amount of data bits it carries (li). BSs must assign each encoded TB to one type
of processor: a software processor (no offloading) or a hardware accelerator (offloading).
We let Ab

k denote the set of assignment actions taken by the BS b ∈ Bk at time k.
Each individual action αi ∈ Ab

k is associated with a TB di ∈ T b
k . Therefore, both sets

have the same cardinality (|Ab
k| = |T b

k |), which may change over time steps k, i.e., the
number of TBs generated by a BS can change for different TTIs. Evidently, the individual
action αi ∈ Ab

k takes binary values. When αi = 0, di ∈ T b
k is assigned to a CPU queue

(software processing), and when αi = 1, the TB is assigned to the HA queue (for hardware
acceleration). We also let Ak denote the joint set of actions, i.e., Ak := {Ab

k | b ∈ Bk}.
We now let γ(αi, di) and q(αi, di) denote the processing and waiting/queuing time

of di, respectively. Note that γ(·) and q(·) not only depend on the selected resource for
processing (software or HA) as we show in Figure 1.3, but also on the features associated
with the TB , i.e., ci, mi, and li. In line with the industry standards, we assume that all
the CPU cores are identical as well as all the HAs in the O-Cloud.



4.2 Problem formulation 31

According to the specifications, every TB in the system older than a time deadline
τ is discarded, incurring data loss. A TB can be discarded while waiting in a queue
(q(αi, di) > τ) or after being processed (γ(αi, di) + q(αi, di) > τ), whatever happens first.
We assume a long enough queue in the HA pool to avoid TB losses due to queue overflow.

Note that, although γ(·) and q(·) are continue-valued, i.e., a processing task can finish
between two consecutive time steps, the decision intervals (every TTI) are discrete, and
hence the problem can be formulated in discrete time. However, as processing a task
can take more than one time step, the actions taken in k may affect the system state in
future time steps. We now let Ek :=

∑
b∈Bk

∑
di∈T b

k
e(αi, di) denote the energy consumed

by the O-Cloud due to the transport blocks generated at time step k, where e(αi, di)
corresponds to the energy consumed by the processor selected by action αi to process TB
di. Similarly, we define the ratio of TBs successfully processed in the O-Cloud within the
deadline during the time step k as ζk ∈ [0, 1].

We then formulate our opportunistic HA offloading problem as follows:

Problem 1.

min
{Ak}K

k=1

lim
K→∞

1
K

K∑
k=1

Ek

s.t. lim
K→∞

1
K

K∑
k=1

ζk ≥ 1− ϵ.

where ϵ sets the target reliability (e.g., ϵ = 10−5 in [12]).
Problem 1 assumes that the O-Cloud system is dimensioned with sufficient computing

resources (HAs and CPUs) to operate always within the problem’s feasibility region,
but this may not necessarily hold always. If that is the case, the goal is to maximize
throughput regardless of energy consumption:

Problem 2.

max
{Ak}K

k=1

lim
K→∞

1
K

T∑
k=1

ζk

Solving these problems is highly intricate. Firstly, O-Cloud energy consumption relies
on computing resource utilization (CPU and HAs), influenced by the number of generated
TBs from the BSs, the selected actions Ak, and TB characteristics (ci, mi, and li) at
time step k and previous steps. Notably, a TB lost at time k might have been assigned
in a prior time step (TTI < τ), and queued TBs add up waiting time to TBs in the
near future. Secondly, TB processing time and energy consumption involve a random
component, as observed in our experiments in Section 3.3. This randomness pertains
to how bits are ordered within a TB and how an FEC decoder extracts information
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(see [40]). Thirdly, both TB energy consumption and processing time depend on O-
Cloud hardware specifics and software processing implementation, which can vary across
platforms or evolve over time due to hardware/software upgrades. Figure 4.2 illustrates
processing time variations for different software and HA decoder implementations and
configurations. Lastly, determining which problem to solve (Problem 1 or 2) is inherently
challenging as it depends on unknown system dynamics.
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Figure 4.2: Processing time of a TB as a function of its size for different SNR values and
MCS index 15. We evaluate a HA, two different implementations of the software decoder
(SW 1 and 2), and two configurations of the second software decoder (SW 2a and 2b).

Therefore, our main problem cannot be solved analytically. One typical approach
is to model it as a Markov Decision Process (MDP) and employ Deep Reinforcement
Learning (DRL). However, this is not feasible due to time constraints. xApps make
decisions every 100 ms, while computing resource allocations need to be made every
TTI ≤ 1ms. Even with relaxed time constraints, the problem remains challenging due
to a vast action space, involving 2|Ak| possible actions, where |Ak| can be arbitrarily
large. Additionally, the action space dynamically changes over time, contrasting with the
typical Reinforcement Learning (RL) assumption of a fixed action space. Furthermore,
our primary goal is to minimize the system’s energy cost. Using large models to solve
our problems may induce a noticeable energy burden on the system. To avoid this, we
must design a lightweight, practical, and scalable solution capable of real-time operation
at BSs with negligible energy and economic impact.
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4.3. An efficient offloading strategy

We propose a practical and efficient energy-aware offloading strategy for vRANs. We
rely on the insights from our experimental campaign and we exploit the problem described
in Section 4.2 to devise an efficient solution in terms of energy and cost.

Minimizing the use of HAs can bring important energy savings. However, an excessive
use of CPUs may induce throughput loss as they are a magnitude slower than energy-
consuming HAs (see Figure 1.3). To get additional insights, we implemented an O-RAN-
compliant O-Cloud platform comprised of an NVIDIA GPU V100 as HA and up to 16
Intel CPU cores for signal processing; Figure 4.2 shows the processing time γ(αi, di) of a
TB di with different TB sizes and SNR values, for 3GPP MCS index 15 [92]. The “SW”
plots show the latency incurred by different implementations of a software processor on
the same CPU (αi = 0), and the “HA” plot that by the GPU-based HA (αi = 1).

We observe a key structural difference between CPU and HA processing. The
processing time of a CPU is highly dependent on li (TB size), while such dependency
practically vanishes in the case of the HA. This structure holds even across different
software implementations. Similar behavior can be observed for energy consumption
as it is proportional to relative processor busy time. Based on these observations, we
propose an intuitive strategy by which small TBs are processed in CPU, to avoid an early
saturation of this kind of processor. Conversely, as the processing time of the HA is not
sensible to the bit size of the TB, large TBs are offloaded. To this end, we define lth as the
TB size threshold or bit threshold that delimits two operational regions. When li < lth,
di is processed in CPU, otherwise the HA is used.

In order to evaluate the impact of lth on the performance of the network, we set up a
scenario with up to 10 BSs sharing our O-Cloud experimental platform with 4 Intel CPU
cores dedicated to software processing and the NVIDIA GPU V100 as HA. We assume
(for now) that the workload generated by all the BSs is independent and identically
distributed (i.i.d), which implies that the lth is common to all the BSs and simplifies
analysis. We will relax these assumptions later. In this way, each BS handles the traffic
of 3 homogeneous users, which generate data following a Poisson process with mean 70
Mb/s, and we simulate a Rayleigh wireless channel model with a random mobility pattern
with 20 Km/h velocity [96]. We assess two scenarios: a high-load scenario with 10 BSs,
and a low-load scenario with 2 BSs. It is worth noting that these scenarios are cost-
efficient since the BSs share the same O-Cloud platform and achieve respectively 10x and
2x cost gains with respect to scenarios in which individual platforms are dedicated to
individual BSs. For each scenario, we evaluate 30 different values of lth during 0.5s and
for 10 independent runs. Figure 4.3 depicts the mean and the 10th and 90th percentiles of
the system reliability ζ (left) and the power consumption (right) for both low-load (top)
and high-load (bottom).
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We observe in the top part of Figure 4.3 that, when lth < 75·103, the ratio of processed
TBs (ζ) is maximum. This means that only the TBs with a smaller size than the selected
lth are processed using CPUs and the rest of them are offloaded into the HA. For higher
values of the bit threshold lth > 75 · 103 the CPU gets saturated and some TBs are
dropped (ζ < 1). On the other hand, the more we use the CPU (higher values of lth), the
higher the energy savings. In that case, as the system is not saturated, we are solving
Problem 1 and the optimal point (energy saving maximization without data losses) is
around lth = 75 · 103. In the bottom part of Figure. 4.3 we can observe that the higher
traffic saturates the O-Cloud, i.e., ζ < 1∀lth. In this case, we need to solve Problem 2,
and find the configuration that maximizes ζ. In that case, the optimal configuration is
around lth = 25 · 103. Note that due to the higher performance of this configuration, the
energy consumption is also maximized.
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Figure 4.3: Ratio of successfully processed TBs (left) and power consumption (right) for
low (top) and high (bottom) traffic loads.

From these experiments, we can extract an important conclusion. The optimal value
of lth depends on the traffic conditions. In consequence, we need to devise a strategy
to find the optimal bit threshold of each BS depending on the system state in terms of
traffic conditions. This strategy needs to be learned for each specific deployment, as it
also depends on the hardware in the O-Cloud and the software implementation of the
decoders (see Figure 4.2). Thus, the learned strategy can be deployed at the Near-RT-
RIC, providing different configurations according to traffic variations.

Nevertheless, this problem is still very challenging to solve in a centralized way for
several reasons. The O-Cloud workload is not only defined by the load of TBs (number of
TBs per second), but also by the parameters c, m, and l of each TB, which have an impact
on the processing time. Second, as the O-Cloud is common for all the BSs considered in
the problem, we face a collaborative problem in which the decisions of each agent (BS
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offloading configuration) affect all the others. For example, a poor action by one BS
may saturate the CPU, increasing energy consumption or even causing throughput loss
in some other BS sharing the O-Cloud. Third, the number of BSs can be arbitrarily high,
especially in highly populated areas. Moreover, we consider the case where the BSs can
be switched off and on dynamically, which is a popular feature in 5G [97]. This defines
state and action spaces with changing dimensionality over time. For these reasons, we
next formulate the problem as a Multi-Agent Contextual Bandit, and propose a practical
algorithm using ideas from mean field theory.

4.4. Multi-agent formulation

4.4.1. Background: Markov games

A Markov game is defined by the tuple Γ = ⟨N ,S,A,R,P⟩, where N is the set of
players or agents, S is the state space, A is the action space, R is the set of reward
functions, and P is the set of transition probability functions.

Let Nt ⊆ N denote the set of Nt agents active by decision period t. Thus, the state
observation of each agent n is given by on

t ∈ Sn, and the system state by st = (o1
t . . . oNt

t ) ∈
S. The joint action of all agents is denoted by at = (a1

t . . . aNt
t ) ∈ A. At decision

period t, each agent selects the actions based on a deterministic policy πn : Sn 7→ An.
We let π = (π1 . . . πNt) define the joint policy. In our particular case, the transition
probabilities do not depend on the selected actions, i.e., Pn

t (st, at) = Pn
t (st) as we consider

a contextual bandit formulation. Thus, the state transition is given by on
t+1 ∼ Pn

t (st),
where Pn

t ∈ P : S × S 7→ [0, 1].
Then, at the end of each decision period t, the agents receive a reward rn

t (st, at) ∼
Rn

t (st, at), where Rn
t ∈ R : S × A 7→ R. We can then write the performance objective of

agent n with policy πn as an expectation:

Jn(πn | π−n) =
∫

S
ρ(s) rn(s, π(s)) ds = Es∼ρ[rn(s, π(s))], (4.1)

where ρ(s) is the stationary state distribution and π−n is the set of all policies except the
one of agent n.

4.4.2. Multi-agent contextual bandit

Let us now particularize the above Markov game formulation for our case. As detailed
in Section 4.3, the bit threshold rule operates at each TTI granularity. However, the
configuration of this threshold does not need to be done at each TTI. In fact, in the
standard O-RAN architecture, the xApps in the Near-RT-RIC make decisions every
100 ms. To be standard compliant, we adopt this time granularity to configure the
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bit threshold as a function of traffic load variations. Thus, we make decisions at each
decision period t, which comprises a set of TTIs Kt. We associate each BS b ∈ B with one
learning agent n ∈ N . Hence, we denote T n

t = {T b
k | k ∈ Kt} as the set of TBs generated

by the BS b corresponding the learning agent n during the decision period t.
The state observation on

t ∈ Sn for agent n aims to characterize the traffic conditions
of the TBs generated by its associated BS. Hence, we define the state on

t = Φ(T n
t , D)

as the 3-dimensional histogram of the TB’s features, i.e., MCS, SNR, and size, where D

is the number of bins of this histogram in each dimension. Finally, the action selected
by agent n determines the bit threshold of its associated BS, i.e., an

t ∈ An = [lmin, lmax]
∀n ∈ Nt, where lmin and lmax are the minimum and maximum TB size values.

We now let Et(st, at) denote the energy consumed by the O-Cloud platform
(considering both the CPU resources and the hardware accelerator) during period t.

We also (re-)define the ratio of successfully processed TBs of the O-Cloud as ζt(st, at).
Note that both Et and ζt depend on the global state and the joint actions taken, indicating
that both the input traffic and the offloading strategy of all the BSs have a joint impact
on the performance metrics of the system. Now, using the definition of expectation in
equation (4.1), we can define the following constrained decision-making problem:

min
π

Es∼ρ [E(s, π(s))] (4.2)

s.t. Es∼ρ [ζ(s, π(s))] ≥ 1− ϵ.

We approximate this constrained problem with an unconstrained one by defining the
following reward function:

rt(st, at) = − (Et(st, at) + λ (1− ζt(st, at))) , (4.3)

where λ is a constant that weights the penalty incurred when failing the constraint and
the minus sign converts a cost into a reward to be maximized. Using this reward function
in equation (4.1), we define the optimal policy for agent n as

πn
∗ = argmin

πn
Jn(πn | π−n). (4.4)

At this point, we would like to remark two practical considerations.
First, the decision periods defined in this section are several orders of magnitude

higher than the TTI. Thus, the effect of at−1 on rt(st, at) is negligible and therefore each
decision period is independent of each other. For that reason, instead of formulating the
problem as a multi-agent reinforcement learning (where actions affect future states and
rewards), we do it as a multi-agent contextual bandit. This formulation simplifies the
problem, allowing us to design a lighter and more effective solution.

Second, the action an
t = πn(on

t ) used by the agent n during the decision period
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t is computed based on the distribution of the incoming traffic characterized by the
observation on

t . Due to the nature of the system, the distribution of the incoming traffic
during the decision period t is unknown at the beginning of this decision period. For that
reason, we use the observation of the previous decision period t−1 to make decisions at t,
assuming that traffic distribution changes slower than the time granularity of the decision
periods.

4.4.3. Mean field multi-agent solution

A common approach in multi-agent learning is to use the centralize training with
decentralized execution framework [60, 98] to let actor-critic policy gradient methods
include information about other agents. The critic of agent n approximates its reward
function and is denoted by Rn(s, a | θn

R), where θn
R are the weights of its function

approximator. The loss of the critic is given by:

L(θn
R) = Est∼ρ,at∼π′,rt

[
(Rn(st, at | θn

R)− rt(st, at))2
]

(4.5)

where the expectation considers that the states st follow ρ, the actions are selected with
policy π′ that can deviate from π (off-policy learning), and the reward samples are noisy.

We denote the actor of agent n as πn(on | θn
π), where θn

π are the parameters of the
policy. The actors are updated by applying the chain rule to the performance objective
defined in equation (4.1) with respect to the actor parameters [99]:

∇θn
π
Jn(πn | π−n) ≈ (4.6)

Est∼ρ

[
∇anRn(st, at | θn

R) |an=πn(on
t |θn

π ) ∇θn
π
πn(on

t | θn
π)

]
.

Note that the critic needs information about all the agents as st and that at includes
the observations and actions of the Nt active agents at decision period t. This limits
the scalability of this approach as the critic’s complexity increases exponentially with the
number of learning agents. Hence, this approach is typically limited to a small number
of agents. In our case, we face an additional challenge as the number of active agents
changes over time. This limits the applicability of standard function approximators such
as feed-forward neural networks that have a fixed input dimensionality.

In order to tackle these challenges, we adopt ideas from Mean Field Theory [61,100].
To this end, we assume that the interactions within the population of active agents are
approximated by the interaction between a single agent and the average effect of the overall
population. Hence, the interactions between each agent and a virtual agent approximating
the rest of the agents are mutually reinforced. In this way, the optimal policy of an agent
is updated based on the behavior of the overall population, while the population of agents
is updated based on the individual policies.
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Algorithm 1: ECORAN-P
Input: Batch size Z, Do, Da

Initialize: Reply buffer Dn = ∅, θn
R, and θn

π ∀n ∈ N
for t = 1 . . . T do

Observe the system state st = (o1
t . . . oNt

t )
Compute mean field approx. ō−n

t = Φ(T −n
t , Do)

Compute the actions an
t = π̄n(on

t , ō−n
t | θn

π) ∀n ∈ Nt

Use at during t and observe the reward rt

Compute mean field approx. ā−n
t = Φ(a−n

t , Da) ∀n ∈ Nt

Store ⟨on
t , ō−n

t , an
t , ā−n

t , st, rt⟩ in Dn ∀n ∈ Nt

for n = 1 . . . Nt do
Sample Z experiences ⟨on, ō−n, an, ā−n, st, r⟩ from Dn

Update θn
R by minimizing the critic loss

L(θn
R) = 1

Z

∑
i

(
R̄n(on

i , an
i , ō−n

i , ā−n
i | θn

R)− ri

)2

Update θn
π by applying the sampled policy gradient

∇θn
π
J(πn) ≈ 1

Z

∑
i∇θn

π
π̄n(on

i , ō−n
i | θn

π)·
∇anR̄n(on

i , an, ō−n
i , ā−n | θn

R), where
an = π̄n(on

i , ō−n
i | θn

π) and
ā−n = Φ({π̄n′(on′

i , ō−n′

i | θn′
π ) | n′ ̸= n}, Da)

To this end, we define the mean field critic as R̄n(on
t , an

t , ō−n
t , ā−n

t | θn
R), where ō−n

t

is the mean field approximation of the observations of all the agents except n; and,
similarly, ā−n

t is the mean field approximation of the actions of all the agents except
n. Specifically, we define ō−n

t = Φ(T −n
t , Do), where T −n

t =
⋃

n′ ̸=n∈Nt
T n′

t ; and ā−n
t =

Φ(a−n
t , Da), where a−n

t = (a1
t . . . an−1

t , an+1
t . . . aNt

t ). Moreover, we expand the input of
the actor to include the mean field approximation of the observation of the rest of the
agents, i.e., π̄n(on

t , ō−n
t | θn

π), which show better empirical performance. Note that the
dimensionality of the input of the mean field critic does not depend on the number of
agents, which improves scalability and allows a variable number of learning agents over
time. Now, we can redefine equation (4.5) as:

L(θn
R) = (4.7)

Est∼ρ,at∼π′,rt

[(
R̄n(on

t , an
t , ō−n

t , ā−n
t | θn

R)− rt(st, at)
)2

]
and (4.6) as:

∇θn
π
Jn(πn | π−n) ≈ (4.8)

Est∼ρ

[
∇anR̄n(on

t , an
t , ō−n

t , ā−n
t | θn

R)∇θn
π
π̄n(on

t , ō−n
t | θn

π)
]

,
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where

an = π̄n(on
t , ō−n

t | θn
π), (4.9)

ā−n
t = Φ({π̄n′(on′

t , ō−n′
t | θn′

π ) | n′ ̸= n ∈ Nt}, Da). (4.10)

The pseudo-code of our solution is shown in Algorithm 1.

4.5. Experimental evaluation

Our experimental platform consists of a general-purpose server with an Intel Xeon
Gold 6240R CPU with 16 cores dedicated to signal processing tasks and an NVIDIA
GPU V100. The O-Cloud’s Acceleration Abstraction Layer (AAL) [44] is implemented
using Intel Data Plane Development Kit (DPDK) Baseband Device Library (BBdev).
To process 5G signals, we use a publicly available software library from Intel (Intel
FlexRAN [87]) and a proprietary driver for the GPU. The Near-RT-RIC comprises an
Intel i7-8750H CPU @ 2.20GHz and 8 Gb of Random Access Memory (RAM).

We have integrated ECORAN in a real O-RAN platform. In particular, ECORAN-P
is hosted in the Near-RT-RIC as a xApp and computes the bit threshold for each BS. On
the other hand, ECORAN-P is implemented into each BS and enforces this bit threshold
offloading policy at the TB level. Figure 4.4 shows a scheme of our experimental platform.
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Figure 4.4: Scheme of our experimental platform. Each BS has connected a set of mobile
users that generate traffic load. All the BS exchange information with the near-RT RIC.
Every t, the BSs send their observations on

t and receive their respective action an
t . For

each TB, the BSs decided whether to use software processing or the HA.

To emulate real 5G processing workloads, we collected traces from real base stations
in Madrid, Spain, during April 2022 using an open-source tool called Falcon [81]. Based
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on these traces, we emulate the workload generated by two types of BS, as shown in
Figure 4.5. The left plot depicts the empirical distribution of the size of each TB
generated; the center plot illustrates the dynamics of the rate of TBs; and the right
plot depicts the SNR distribution of both BSs. In this way, we emulate two distinct BSs,
a BS with a single-yet-demanding user (Type 1) and a BS with 10 lightly-loaded users
(Type 2), with realistic network demand and mobility patterns.
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Figure 4.5: Characterization of the incoming traffic to each of the BS types considered.

In the rest of this section, we combine these two types of BSs to generate heterogeneous
traffic loads for our experiments. In particular, in the settings with 6, 12, 36, 48, 60 active
BS, there are 5, 10, 30, 40, 50 BSs of Type 1, respectively, and the rest of Type 2. Although
we assess two types of BS, the instantaneous load of individual BSs is very bursty due
to the trace-based mobility patterns and demands we emulate. Consequently, each BS
requires individual offloading strategies.

For the implementation of ECORAN, both actor and critic have a similar neural
network architecture with two 3D-convolutional layers with 8 and 1 cells, respectively,
and a kernel of size 3. These convolutional layers are connected to 2 fully-connected layers
of 256 units per layer. The output of the actor and critic are activated with sigmoid and
linear functions, respectively. Figure 4.6 shows the architecture of one learning agent.

MF Approx.
MF Approx.

Fully connected Layers3D Convolutional Layers

_

¯− ¯−

_

_

( 1 −1 +1 )( 1 −1 +1 )

Figure 4.6: Scheme of the architecture of learning agent n.
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Note that only the data represented with 3-dimensional matrices is fed into the
3D convolutional layers, while the rest of the data (vector representation) is fed into
the critic’s fully connected layers. The noise used for exploration follows an Ornstein-
Ulhenbeck process with parameters θnoise = 0.15 and σnoise = 0.15, generating temporally
correlated values around 0 [101]. Since all the learning agents share the same goal, we
consider the particular case in which the reward signal is common and the weights of the
neural networks are shared across all the agents, which is a common practice in similar
settings [61, 102–104]. We configure the algorithm with a batch size of 64 samples and
D = Da = Do = 5. We empirically found that λ = 2 is large enough to avoid solutions
that violate the reliability constraint. The minimum and maximum values of the TB size
(lmin = 32 bits, lmax = 286976 bits) are given by the 3GPP standard organization [92].

4.5.1. Convergence evaluation

To evaluate the convergence of ECORAN, we consider a scenario with 36, 48, and
60 BSs (i.e., learning agents). This is in line with current large-scale deployments
implemented by mobile operators [33]. Figure 4.7 shows the evolution of the reward during
the training phase. While the complexity of typical multi-agent methods (e.g., [60, 105])
grows exponentially with the number of agents, we show in Figure 4.7 that our solution
does not show such a dependency. The reason is twofold. First, we share neural network
weights across agents, and therefore the weight updates of each agent benefit all others.
Second, for every t, we generate as many experience tuples (see line 11 of Algorithm 1)
as the number of learning agents. A larger amount of data benefits the learning rate
(off-policy learning). These two aspects compensate for the increase in complexity to
coordinate a larger number of agents, that is in line with the cost-effective design goal of
centralizing multiple BS (agents) in the same shared computing platform.
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Figure 4.7: Reward of the system during training for 36, 48, and 60 learning agents. The
mean and 10th, and 90th percentiles (colored shade) of 10 independent runs are shown.
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4.5.2. Comparison with other methods

We now compare ECORAN with a number of benchmarks:
Dedicated HAs. This is the industry standard approach: each BS offloads every

TB to a dedicated HA to guarantee reliability. We emulate as many HAs as BSs.
Always Offload. BSs offload all their TBs to a shared HA.

All the remaining benchmarks rely on an O-Cloud with two shared processing
resources: a HA and a CPU pool.

Minimum Waiting Time (MWT). For each TB, the BS selects the computing
resource that minimizes the total waiting time, i.e., ai = argmina γ(a, di) + q(a, di).
This is a common approach in queuing theory aimed at minimizing latency. Note that,
to evaluate this strategy, the processing times given by γ(·) should be known in advance,
which is not possible in a real system. Hence, we use a dataset with processing times
for all possible cases and then we simulate the system based on these pre-known times.

ECORAN-MF. This approach uses ECORAN without the mean field
approximation, i.e., ō−n

t and ā−n
t are not available. Thus, each agent becomes an

independent learner that only uses its own observations and actions for learning.
ECORANCLDE. This is ECORAN with a Centralized Learning Decentralized

Execution (CLDE) approach [60, 105] instead of the mean field approximation. This
approach does not support a changing number of agents during learning or execution.
We circumvent this challenge heuristically by overdimensioning the algorithm to the
maximum number of agents in our training and evaluation, and filling with zeros the
observations and actions of the agents that are not active.

We train ECORAN (and its variants) for a general scenario with a changing number
of BSs (up to 60). Note that due to the integration of the mean field approximation in
our solution, the number of learning agents can vary during both training and execution.
After training, we evaluate the same instance of our algorithm in several scenarios with a
different number of active BSs. In this way, we also assess the ability of our approach to
adapt to any trivial deployment. Figure 4.8 shows the energy cost (left), the percentage
of bits that are timely decoded (center), and the share of TBs that are offloaded to a
HA (right). Moreover, Table 4.1 details the energy savings of each approach compared to
using dedicated HAs (the industry standard), and the target reliability gap.

“Always Offload” is one of the strategies with the highest energy consumption.
However, because the HA is shared across all the BSs and the CPU resources are not
exploited, this strategy is not able to meet the reliability target during high-load scenarios,
which is a hard requirement in our system. In the case of “MWT”, the computing resource
with the lowest total waiting time is selected. During low-load scenarios (i.e., 6 and 12
BSs) this strategy frequently selects the HA (86% and 90%, respectively, on average),
which consumes substantial energy. Moreover, such a strategy leads to saturating the HA
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ECORAN ECORANCLDE ECORAN-MF MWT Always Offload Dedicated HAs

0.00

0.01

0.02

0.03

0.04

6 12 36 60

Number of BSs

E
ne

rg
y 

co
ns

um
pt

io
n

(J
ou

le
s 

pe
r 

M
b)

0

25

50

75

100

6 12 36 60

Number of BSs

B
it 

re
lia

bi
lit

y 
(%

)

0

25

50

75

100

6 12 36 60

Number of BSs

H
A

 o
ffl

oa
di

ng
 (

%
)

Figure 4.8: Energy consumption in Joules per Mb (left), bit reliability or percentage of
correctly decoded bits (center), and HA offloading or percentage of TBs processed into
the HA (right). Each bar shows the median, 10th, and 90th percentiles.

Energy Savings (%) Reliability gap (%)

Approach
# BSs 6 12 36 60 6 12 36 60

ECORAN 41.23 40.51 30.96 31.00 0 0 0 0
ECORANCLDE 40.03 39.69 38.75 -38.94 0 0 2.01 62.02
ECORAN-MF 31.03 31.48 31.02 30.92 0 0 0 0
MWT 6.97 5.91 12.75 17.74 0 0 0.08 12.96
Always Offload 0 0 1.95 10.99 0 0 5.23 28.72

Table 4.1: Performance comparison. Energy savings per bit computed w.r.t dedicated HA
(industry standard). The reliability gap shows the percentage of extra reliability needed
to meet industry-grade reliability, i.e., 99.999%.

resource, which is fatal for high-load scenarios as the CPU is often forced to process large
TBs, which renders poor reliability, up to 12% below the target value. Conversely, we
can observe that, like when using dedicated HAs, only ECORAN and ECORAN-MF meet
the target reliability in all of the scenarios. However, compared to using dedicated HAs,
ECORAN achieves so with up to 41% energy savings.

Let us discuss why ECORANCLDE and ECORAN-MF obtain suboptimal solutions.
The former minimizes energy consumption but violates the reliability target in high-
load scenarios, and the latter meets the constraint but consumes more energy with lower
traffic loads. In ECORAN-MF, both actor and critic ignore the information about other
agents because the mean field approximations are not available. Thus, the agents cannot
distinguish whether the number of active BSs is low or high (small or large workloads).
Thus, they are unable to learn the relationship between the reward signal (common to all
agents) and the actual system state. Conversely, the critic in ECORANCLDE has a global
view of the system at the cost of extra complexity. Although it can potentially learn
the relationship between the global state and the reward during centralized learning, the
actor only sees local observations, limiting adaptability during decentralized execution.
In contrast, the mean field strategy adopted in ECORAN allows the algorithm to have a
global view of the system without compromising complexity and scalability as both the
global state and the global action are characterized by vectors of fixed dimensionality
independent of the number of active agents. With 60 agents (BS) being the maximum
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tested in our evaluation, ECORAN achieves up to 60x cost gains compared to the industry
standard approach, which deploys as many HAs as BSs. Notably, ECORAN operates with
only one HA assisting all the BSs, which further highlights its cost-effectiveness.

4.5.3. System validation

We now evaluate the practicality of our solution. We have two requirements for the
xApp hosting ECORAN-P in the Near-RT-RIC: (i) the execution time needs to be faster
than the time granularity of 100 ms of the system update; and (ii) produce a negligible
energy footprint. Note that a heavy model can be either too slow to operate in real-time
or can offset the energy savings if deployed in energy-hungry hardware.

Table 4.2 (left) shows the time and energy burden of ECORAN-P executed in the
Near-RT-RIC. We consider the worst-case scenario with 60 agents for execution and a
model update (actor and critic) for training. We observe an execution time shorter than
1 ms with a negligible energy burden. Conversely, although the training task is more
demanding in terms of time and energy, it is only performed temporarily and can even
be executed in the background on another machine if needed (off-policy training).

Table 4.2 (right) shows the percentage of energy consumed by ECORAN-P over the
total energy consumed by the Near-RT-RIC and the O-Cloud together. For that, we
consider a worst-case scenario in which, apart from the action computation, ECORAN-
P is trained during 30 s (convergence time in Figure 4.7) every hour. Moreover, we
consider low (6 BSs) and high (60 BSs) traffic loads, as the energy consumption of the
O-Cloud is highly dependent on the load. We measure an energy footprint of 3.2% in the
worst case and below 1% when the O-Cloud has a medium or high load. This validates
the practicality of our solution, which operates in a real O-RAN system meeting its time
constraints and providing real energy and cost savings compared to the industry standard.

Time (ms) Energy (J) Traffic Load % of Energy
Execution 0.572 0.008 Low 3.203 %

Training 46.267 2.312 High 0.390 %

Table 4.2: Average time and energy burden of ECORAN-P executed in the near-RT RIC
with an Intel i7-8750H CPU. The percentage of energy consumed by ECORAN-P over
the total energy (O-Cloud plus near-RT RIC) for different traffic settings in the O-Cloud.



5 Multiplexing GPU resources in
GPU-accelerated vRANs

In line with the analysis carried out in Section 3.4, reusing spare resources of under-
utilized Hardware Accelerators (HA) to handle workloads that are unrelated to the
Distributed Unit (DU) processing is a promising direction for building more cost-effective
virtualized Radio Access Network (vRAN) systems compared to solutions that dedicate
individual HAs to individual HA-based tasks. As already discussed in Section 1.1,
Graphics Processing Units (GPU) have been proposed as a realistic candidate for HA
thanks to their unique capability of handling GPU-based Machine Learning (ML) models
that can be used to improve and automate DU operations.

However, this chapter shows that multiplexing the available resources of under-
utilized GPUs by blindly co-locating DU workloads and ML services can compromise
the processing reliability of the former and the throughput performance of the latter.
More in general, GPU multiplexing comes with many challenges that need to be properly
considered at the time of designing effective solutions. Under this perspective, this chapter
presents YinYangRAN, an innovative system operating in the Non-Real-Time (Non-RT)
RAN Intelligent Controller (RIC) that supervises the multiplexing of the computing
resources of a single GPU-based HA as to ensure reliability in processing DU tasks while
maximizing the throughput of a concurrent ML service running in the same GPU.

5.1. Typical challenges in GPU multiplexing

Online multiplexing of spare resources in GPU-based HAs between virtualized DUs
and third-party applications running ML models can enhance the cost-efficiency of
vRANs. This strategy effectively amortizes the high costs of these expensive processors
and eliminates the need to dedicate individual HAs to individual HA-based tasks. While
this approach has the potential to yield significant cost savings, GPU multiplexing
between DU processing and ML also comes with its own set of challenges, which will
be discussed in the next subsections.

45
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5.1.1. Reliability in traditional GPU multiplexing schemes

State-of-the-art multiplexing mechanisms do not provide viable brokering solutions to
guarantee industrial target reliability values in the vRAN. In fact, Figure 5.1 (dashed red
curve) shows that co-locating a realistic ML inference task with the DU workloads in an
A100 GPU using the conventional software concurrency scheme presented in Section 2.3
results in a substantial disruption of the 5G pipeline. Indeed, the DU processing latency
becomes highly erratic, with a low 50% probability of meeting latency targets, that is an
unacceptable industry-grade performance.
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Figure 5.1: Empirical CDF of 5G DU processing latency.

In light of these results, it does become evident that GPU-based vRAN acceleration
introduces new resource control challenges that are alien to traditional radio systems,
or to conventional vRANs based on Application-Specific Integrated Circuits (ASIC) and
Field Programmable Gate Arrays (FPGA) HAs. Specifically, to maximize cost gains, it is
crucial to devise robust mechanisms that aptly allocate GPU resources between inelastic
Physical layer (PHY)-layer processing at DUs and elastic ML workloads.

5.1.2. Dependency of DU processing with GPU resources

Considering the case of GPU-based HA, the amount of computing resources (i.e.
Streaming Multiprocessors (SM)) assigned to the processor remarkably impact DU
processing latency performance. To shed light on the GPU resource requirements by
focusing on 5G Forward Error Correction (FEC) decoding, Figure 5.2 presents latency
results for three different GPU configurations where 15%, 50% and 100% of the available
SMs are reserved to the decoding function. As already observed in previous figures of
Subsection 3.3.1, a higher Modulation and Coding Scheme (MCS) typically results in
increased latency because it encodes more bits into the Transport Block (TB), thereby
requiring a longer decoding time. For a given MCS, a lower Signal-to-Noise Ratio (SNR)
can further inflate latency, as the decoder may necessitate more iterations over the data
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to decode it. Moreover, reducing the allocation of SM computational resources naturally
increases the processing latency too. These results show that it is not trivial to assign
computing resources (SMs) to the DU to guarantee with certain probability that its
processing latency stays below typical targets imposed by industry.
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Figure 5.2: Latency performance to process a single 100-MHz TB on an NVIDIA A100
GPU with different combinations of MCS, SNR, and allocation of GPU SM resources.

5.1.3. Overheads in GPU resource re-configuration

Adapting dynamically to real-world DU workloads requires fast enough GPU resource
re-configurations. For this reason, it is important to characterize the overheads incurred
by state-of-the art GPU resource re-configuration mechanisms, as they are an important
factor when taking decisions on updating the share of computing resources of the HA
allocated to the DU and to other co-located workloads.

In Section 2.3, we introduced two methods for sharing GPU resources: Multi-Instance
GPU (MIG) and Multi-Process Sharing (MPS). As mentioned therein, MIG provides full
resource isolation among tasks, while MPS only partitions SMs by keeping memory and
caches as shared resources. The two approaches induce very different latency overheads
when re-configuring a GPU slice, as reported in Figure 5.3. The plot summarizes 200
random re-configurations on an NVIDIA A100 GPU with both MIG (red) and MPS
(blue): each re-configuration changing the partitioning of SMs across tasks, which implies
tearing down the existing SM configuration and creating a new one. It is worth noting
that during the re-configuration process the GPU cannot run any task.

As shown in the figure, the median latency is fairly constant for each strategy. More
precisely, re-configuring a MIG partition in the target GPU takes 6.9 seconds, against the
0.266 seconds of re-allocating SM resources using MPS. During such re-configuration
intervals, we let the higher-priority DU fall back to software processing, e.g., using
available CPU cores in the cloud, which can process reliably the workload in very frequent
scenarios (see Subsection 3.3.1). As continued and substantial performance drops during
several seconds are hardly acceptable in production-grade systems, MIG does not seem a
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viable option for GPU-based HA multiplexing. On the other hand, the delays introduced
by MPS appear bearable for Non-Real Time O-RAN operations that occur at the order
of seconds and for a faster adaptation to dynamic DU workloads.
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Figure 5.3: Latency overhead when creating, destroying, and re-configuring
(creating+destroying) a GPU slice using MIG vs MPS technology. Logarithmic x-axis.

We recall that MPS does not provide memory or cache isolation, which could
potentially cause resource contention and lower raw performance than MIG. Yet, unlike
MIG that is constrained to a small set of possible partition configurations, MPS provides
full flexibility when allocating SM resources, which can compensate for the shared memory
with a better adaptation to DU workload dynamics.

In conclusion, based on this experimental analysis, we advocate for a dynamic MPS-
based GPU resource allocation method, and adopt this strategy in the rest of the chapter.

5.1.4. Trade-offs in DU/ML GPU multiplexing

The industry imposes PHY processing latency targets that range from 0.5 to 3 ms,
which the DU must satisfy with a certain probability to attain a certain reliability goal.
In order to optimize vRAN cost-efficiency, it is critical to allocate to DUs just the right
amount of GPU resources needed to meet their target, so as to free as much computing
capacity as possible to maximize ML performance and GPU utilization. The conflicting
goals create a trade-off of fulfilling 5G processing latency targets and maximizing the ML
throughput. We experimentally characterize this trade-off by analyzing a commercial
solution for GPU-accelerated 5G processing on a NVIDIA A100 GPU with 40 GB
of Random Access Memory (RAM). Motivated by real-world RAN workloads (see
Section 3.1), we consider a wide range of workload contexts, i.e., combinations of MCS,
Resource Block (RB), SNR, and concurrent users in a 5G 100-MHz DU. We also run ML
tasks on the same GPU and measure the related throughput as the number of inferences
per second. More specifically, we deploy the TES-RNN model [5], a state-of-the-art
predictor in mobile traffic forecasting that blends statistical modeling and deep neural
networks. All this is done with the control of the GPU computing resources (SMs) via
MPS by assigning a given amount of resources to the DU and its complementary value
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to the ML workload. The result of these experiments is illustrated in Figure 5.4. The
plot depicts in blue the FEC processing latency of the DU under diverse GPU resource
allocations, along the abscissa. Specifically, the dark blue lines show the highest and lowest
latency performance recorded across all possible contexts; the light blue area in between
illustrates the possible operating region of the DU for any intermediate context, with
thin lines therein showing the latency profiles of some sample contexts. For illustration
purposes, the dashed horizontal line highlights one of the most conventional PHY-layer
processing latency targets, i.e., 1 ms, which the DU must meet.
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Figure 5.4: DU performance (in blue) vs ML performance (in red) for different SM
allocations and DU contexts. The x-axis indicates the allocation for DU workloads. The
allocation for ML workload is the complementary of the x-axis ((100-x)%). The light blue
area depicts the operating region for DU FEC workloads across a wide range of contexts.

We observe that the latency curves span very diverse values, both above and below
the 1-ms target. Most relevantly, the minimum fraction of GPU SMs required to fulfil
the target ranges all the way from 1% to 80% depending on the DU context. In other
words, our experiments demonstrate for the very first time that sub-6GHz 5G PHY-layer
processing only needs a (potentially very small) portion of the full capacity of a modern
GPU, hence there exists a substantial space for multiplexing DU requests with other ML
workloads. To prove this point, as explained above, we also run a trained ML model on
the SMs of the same GPU not allocated to the DU processing. The red curve in Figure 5.4
shows that the throughput of the ML model, in terms of inferences per second, is strongly
dependent on the amount of spare SMs it is allowed to use. Thus, operating DUs only
with the limited GPU resources they really necessitate opens the way to significant gains
in terms of ML performance for co-located edge and O-RAN services.

5.2. GPU-accelerated vRAN scenario

We consider an O-Cloud platform comprising one GPU that runs two services at the
same time: 5G PHY operations offloaded from a virtualized DU, and a Deep Learning
(DL) model offloaded from a ML service, as shown in Figure 5.5.
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Figure 5.5: GPU-accelerated vRAN scenario.

We use MPS to allocate GPU resources (SM) to each of the services. At each
Transmission Time Interval (TTI), a set of TB arrives at the DU to be decoded. Each
TB is characterized by its SNR, MCS, and TB size (number of bits). Note that the
computational capacity needed by the DU to decode these TBs depends on the number
of received TBs that changes at every TTI and the SNR, MCS, and TB size of each
TB (see Figure 5.2). Smaller SM allocations for the DU may imply that some TBs are
not decoded in time and therefore are discarded. However, once the DU has enough SM
resources to decode all the TBs in time, there is no further benefit in assigning more
SM resources to this end, which describes an inelastic service. Conversely, co-located
ML services, which are competing for the same GPU resources, can improve throughput
performance if more SM resources were allocated, which describes an elastic service.

5.3. Problem formulation

Following the standard O-RAN architecture (see Figure 5.5), we operate in the Service
& Management Orchestrator (SMO) with a time granularity δ = 1 second or higher, where
t = 0, 1, 2 . . . denotes the decision periods. The normalized SM allocation for the DU at t

is denoted by at ∈ A ⊆ [0, 1], where A is a discrete set with all possible allocations; and
the set of TBs received by the DU during period t is denoted by Tt.

Now, we let ϕt = Φ(Tt−1, D) be a 2-dimensional histogram of the DU contexts (TBs
per TTI: SNR and size) that characterize the observed traffic, where D is the number
of histogram bins in each dimension. Consequently, we define the system state as st =
(ϕt, at−1) ∈ S, where S is the state space.
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At each decision period t, an SM allocation at is selected. Our goal is to minimize
the allocation of SM resources to DU workloads to maximize the performance of the
co-located ML service. If configuration at differs from the one selected in the previous
decision period, i.e., if at ̸= at−1, the GPU needs to be re-configured, which, as mentioned
above, causes ML service disruption during a re-configuration period of duration r.

We model this re-configuration cost as:

∆(st, at) =


r
δ · (1− at) if at ̸= at−1

0 otherwise.
(5.1)

where δ corresponds to the duration of a decision period t.
Note that the cost acts as a proxy for the throughput of the ML application, following

an inverse correlation with it. Therefore, we model the overall system cost at period t as

C(st, at) = at + ∆(st, at), (5.2)

We now denote the ratio of TBs timely processed before their latency target at t by
ζ(st, at), also referred to as reliability. Then, we formulate our problem as a finite horizon
Markov Decision Process (MDP) with constraints.

min
a0,...,aT −1

J(s0; a0, . . . , aT −1) (5.3)

s.t. γτ [ζt(st, at)] > 1− ϵ, for t = 1, . . . T

where

J(s0; a0,. . . ,aT −1) :=E
{

CT (sT , aT ) +
T −1∑
t=0

Ct(st, at)
}

(5.4)

is the cost of a sequence of actions {a0, . . . , aT −1} and an initial state s0. In addition,
CT (sT , aT ) is the termination cost, aT is the termination action, γτ [Z] provides the τ -
quantile of a distribution Z, and ϵ sets the reliability target. Note that the reliability of
the system denoted by ζ(·) is random due to the intrinsic stochasticity of the radio access
network. By adjusting the value of τ , we can balance the trade-off between constraint
satisfaction probability and cost. In this way, with this formulation, we capture all the
important aspects of our problem: (i) the cost of the different SM allocations for the ML
application; (ii) the critical reliability constraint of the DU; and (iii) the impact of the
re-configurations on the long-term performance of the system.

To obtain the minimum cost and consequently the optimal sequence of actions, we
rely on the principle of optimality [106], which states that the optimal sequence of actions
for a truncated tail sub-problem (e.g., from t′ to T ) is also optimal for the full problem.
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Therefore, the optimal cost J∗(st) for a given state st can be obtained recursively as
follows:

J∗
t (st) := min

a∈A
E

{
Ct(st, a) + J∗

t+1(st+1)
}

(5.5)

s.t. γτ [ζt(st, at)] > 1− ϵ for t = 1, . . . T.

where J∗
T (sT ) := CT (sT , aT ).

Note that the optimal cost cannot be computed in practice as defined above because
future traffic conditions ϕt′ for t′ > t are unknown in advance. In the next section, we
present a control strategy to overcome this limitation.

5.4. Algorithm design

We present two algorithms in this section. YinYangRAN-Full, an approximate
solution to (5.3) rooted in certainty equivalent control principle (Subsection 5.4.1); and
YinYangRAN-Lite, a simplified version of YinYangRAN-Full suitable when r/δ → 0
(Subsection 5.4.2). Finally, in Subsection 5.4.3, we present a solution to ensure that the
lowest quantiles of the DU reliability performance are above the required target.

5.4.1. YinYangRAN-Full (YYR-Full)

To solve the problem defined in equation (5.3), we propose an approximate control
strategy, named YinYangRAN-Full (YYR-Full), that relies on Certainty Equivalent
Control (CEC) [107]. Our solution comprises two phases. In an offline phase, we replace
the uncertain metrics (in our case, future traffic demands) with their estimated values.
Thus, based on the CEC principle, the problem in equation (5.3) becomes deterministic
and we can compute an estimation of the optimal cost. Second, during online operation,
YinYangRAN-Full sequentially selects an action based on system observations m and the
estimation of the optimal cost computed in the offline phase.

5.4.1.1. Offline phase

We define ϕ̃ = {ϕ̃0 . . . ϕ̃T −1} as the sequence of expected traffic demands. Using ϕ̃ in
equation (5.5), we compute an estimation of the optimal cost as follows:

J̃t(s̃t) := min
at∈A

E
{

C(s̃t, at) + J̃t+1(s̃t+1)
}

(5.6)

s.t. ζ̃t(s̃t, at, τ) > 1− ϵ for t = 1, . . . T

where J̃T (s̃T ) := ∆(s̃T , aT ), s̃t := (ϕ̃t, at−1), and ζ̃t(s̃t, at, τ) is an approximation of the τ

quantile of the reliability for the pair (s̃t, at). The latter can be obtained, for instance,
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by training a neural network with a quantile loss as we detail in Subsection 5.4.3. The
termination cost is defined as the re-configuration cost of a predefined termination action
aT . To accomplish this phase, we use equation (5.6) to compute the estimation of the
optimal cost for all possible values of s̃, i.e., (T + 1) × |A| values in total, which are
subsequently stored in memory. More formally, the approximation of the optimal cost
detailed in equation (5.6) has a complexity of O(T × |A|2). Note that, even when we
consider a large T , this phase is computed offline and hence its execution time is not a
limitation. Nevertheless, if the offline execution time is a limitation for large T values,
we propose in Subsection 5.4.2 a lighter version, which ignores the re-configuration costs
and is suitable when the re-configuration costs are negligible, i.e., when r/δ → 0.

5.4.1.2. Online phase

During online operation, YYR-Full selects each at solving a one-step look-ahead
problem:

min
at∈A

C(st, at) + J̃t+1(ϕ̃t+1, at) (5.7)

s.t. ζ̂(st, at, τ) ≥ 1− ϵ.

Note that the online phase of YYR-Full uses st, which includes actual DU traffic load
observations ϕt. Thus, the current cost is computed accurately according to system
observations, and using J̃t+1(·) we estimate the impact of current actions in the future
cost. These two terms provide a computationally efficient farsighted decision-making
mechanism. We make two remarks. First, the CEC strategy obtains optimal results
when the future states match their estimations. However, when the observed traffic
conditions differ from their expectation, this strategy still provides good empirical results
as we show later in this thesis. Second, equation (5.7) can be solved with low complexity
as it only requires searching over the action space and therefore its complexity is O(|A|).
This makes YYR-Full suitable for online operation in real systems.

5.4.2. YinYangRAN-Lite (YYR-Lite)

Due to the re-configuration cost of our problem, it is very important for our control
strategy to be farsighted. An over-adaption to the changes in the traffic load can lead
to a large number of re-configurations, whose cost should be taken into account in the
design of an efficient control scheme. However, in some cases, the re-configuration cost
can be considered negligible. For example, if the duration of each decision period δ is in
the order of minutes; or when the re-configuration time of the GPU r is very small. In
these cases, the impact of the future cost on the decision-making tends to zero and we
can rely on a simpler version of YYR-Full.
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In such a case, at every decision period t, the objective is to select greedily the
minimum SM allocation for the DU at that satisfies the reliability constraint, that is,

min
at∈A

at (5.8)

s.t. ζ̂(st, at, τ) ≥ 1− ϵ.

Note that with this approach, which we name YinYangRAN-Lite (YYR-Lite), the
offline phase used by YYR-Full can be omitted as we rely on a greedy version of the
online phase.

5.4.3. Reliability satisfaction scheme

A critical aspect of our problem is reliability satisfaction because the computing
workloads of the DU are inelastic. The challenges of reliability satisfaction are deeply
analyzed in Section 5.1.4. In addition, as we operate in time scales of one second or
longer, the observed values of reliability for a given traffic load and MPS configuration
are stochastic, due to the intrinsic randomness of the Radio Access Network (RAN) (due
to, e.g., mobility of the users, app-dependent traffic generation, and so on). Taking this
into consideration, the goal is to minimize the probability of missing DU latency targets by
learning the quantiles of the reliability function. Thus, we can formulate an SM allocation
problem that ensures that the lowest quantiles of the distribution are above the required
reliability target.

To this end, we define FZ(z) as the Cumulative Distribution Function (CDF) of Z. For
a given quantile τ ∈ [0, 1], the value of the quantile function is defined as qτ = F −1

Z (τ). The
quantile regression loss is an asymmetric convex function that penalizes overestimation
error with weight τ and underestimation error with weight 1− τ :

Lτ (q̂τ ) := Ez∼Z [ρτ (z − q̂τ )] , where (5.9)

ρτ (u) := u · (τ − Γ{u<0}) ∀u ∈ R (5.10)

where q̂τ is the quantile function estimation, and Γ{x} takes value 1 when the condition
x is met and 0 otherwise. We let the reliability estimator ζ̂(·) have N outputs, which
approximates the set {qτ1 , . . . , qτN }. Thus, we train ζ̂(·) using stochastic gradient descent
to minimize the following joint objective:

N∑
i=1
Lτi(q̂τi). (5.11)

It is worth mentioning that the quantile regression loss presents a discontinuity at zero,
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which limits its practical performance when using function approximators such as Neural
Networks (NN). To overcome this limitation, we consider the quantile Huber loss [108].
This loss function has an asymmetric squared shape in an interval [−κ, κ], and reverts to
the standard quantile loss outside of this interval:

Lκ(u) :=


1
2u2 if |u| ≤ κ

κ(|u| − 1
2κ) otherwise.

(5.12)

Thus, the asymmetric variation of the Huber loss is

ρκ
τ (u) := |τ − δ{u<0}|

Lκ(u)
κ

. (5.13)

Finally, the quantile Huber loss can be derived by introducing ρκ
τ (u) in eq (5.9). Note

that when κ tends to zero the quantile Huber loss reverts to the quantile regression loss.

5.5. System implementation

We implemented an O-RAN system as depicted in Figure 5.6. The O-Cloud server
is an High Performance (HP) server with an Intel Xeon Gold 6240R Central Processing
Units (CPU) at 2.4GHz with 16 cores and an NVIDIA A100 GPU. O-RAN specifies an
Acceleration Abstraction Layer (AAL) in between HAs and network functions such as
DUs [44]. The AAL abstracts the O-Cloud resources as Logical Processing Units (LPU).
We implemented O-RAN’s AAL using Intel Data Plane Development Kit (DPDK)’s
Baseband Device Library (BBdev)1. Like DPDK’s solutions for Ethernet, BBdev provides
an abstraction for DU tasks through devices that can be used as O-RAN LPUs [91]. We
implemented two LPUs to execute (i) the GPU DU processor, and (ii) instances of Intel
FlexRAN [87] on a CPU pool for fallback DU operation, which is triggered by an LPU
broker on top of the LPUs. YinYangRAN controls the O-Cloud by enforcing actions at

using O-RAN O2 interface, and receives DU load data ϕt through O1 interface, as shown
in Figure 5.6. According to O-RAN, the O-Cloud infrastructure is locally managed by
an Infrastructure Management Service (IMS). To this end, we implement an interface
between the GPU driver and the IMS, to control the allocation of SM resources, and
another interface between the LPU Broker and the IMS, to fall back to DU software
processing during the GPU re-configuration period. RUs and UEs are simulated following
real-world wireless load patterns like those presented in Section 3.1. To this end, we
encode and modulate the corresponding user data according to the 5G specification and
add noise to match the observed patterns. We also let the same ML model we introduced
in Subsection 5.1.4 to concurrently use the spare GPU resources of the O-Cloud.

1https://doc.dpdk.org/guides/prog_guide/bbdev.html

https://doc.dpdk.org/guides/prog_guide/bbdev.html
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Figure 5.6: YYR system implementation.

Note that by running concurrently the ML model with the DU in the same GPU, the
system ensures 2x cost gains with respect to the approach based on dedicating individual
GPUs of the O-Cloud to individual services.

We implemented YinYangRAN using Python and PyTorch. For the reliability
estimator ζ̂(·), we use a neural network with two convolutional layers of 8 and 4 filters
of dimension 3x3, respectively, and two fully connected layers of 256 units each. The
convolutional layers receive as input the traffic characterization ϕ and the fully connected
layers receive the output of the convolutional layers plus the selected action at. We set
the size of the traffic characterization histogram to D = 5 and we learn N = 10 quantiles.
In our evaluations, we consider the lowest quantile τ1 = 0.005 to be higher than the
reliability target, i.e., q̂τ1 > 1 − ϵ. We train ζ̂(·) offline considering diverse traffic loads
and SNR patterns obtained from real-world traces introduced in Section 3.1.

5.6. Experimental evaluation

We compare both of our solutions, YYR-Full and YYR-Lite, with a baseline approach
that deploys both DU and ML workloads on the same GPU using conventional software
concurrency methods, i.e., with no SM isolation between them (see Subsection 2.5.5).
Unless otherwise stated, we set ϵ = 0.1, the decision period duration δ = 1 s, we
conservatively set r = 0.5 s, and present mean performance values with standard errors
as error bars.
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5.6.1. Impact of the reliability target

We first assess the system performance for different reliability targets. To this end,
Fig. 5.7 shows the relative DU reliability and the ML throughput for different targets ϵ as
shown in the x-axis. We observe both YYR-Full and YYR-Lite adapt to ϵ, trading off ML
throughput as ϵ gets smaller (more stringent target). In contrast, a DU-agnostic baseline
solution achieves poor reliability performance as it relies on the default GPU scheduler,
which aims to be fair between workloads, which penalizes the inelastic DU demands.
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Figure 5.7: DU reliability (left) and ML throughput (right) vs reliability target ϵ.
Comparison between YYR-Full, YYR-Lite, and a baseline.

Note that YYR-Full achieves higher ML throughput than YYR-Lite. This is because,
though the re-configuration overhead is substantial (r/δ = 0.5), YYR-Full takes into
account the joint impact of re-configuring on the instantaneous cost and on the future
cost (farsighted decision-making). In contrast, YYR-Lite selects the best action every
decision period ignoring the impact of the re-configuration overhead in both the short
and long terms (myopic decision-making).

e = 0.01 e = 0.05 e = 0.1 e = 0.15 e = 0.2 e = 0.25

0 5 1015 0 5 1015 0 5 1015 0 5 1015 0 5 1015 0 5 1015

10

20

30

40

Decision period (t)

D
U

 S
M

 a
llo

c.
 (

%
)

YYR-Lite YYR-Full

Figure 5.8: Evolution of the DU SM allocation for a subtrace of 20 decision periods.

We can confirm this in Figure 5.8, which shows the temporal evolution of the DU SM
allocations made by our solutions during 20 decision periods of the above experiments.
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Both YYR-Full and YYR-Lite adapt the allocation of SM resources to the time-varying
load, which explains the ML throughput variance shown in Figure 5.7 (right), to guarantee
meeting the reliability target. However, the myopic nature of YYR-Lite enforces a
substantially higher number of re-configurations than YYR-Full, which explains YYR-
Lite’s throughput loss.

5.6.2. Impact of the traffic estimation error

Although the farsighted decision-making of YYR-Full shows better performance than
YYR-Lite, it relies on traffic predictions ϕ̃ that can deviate from the actual traffic observed
in the network. To evaluate this, Figure 5.9 depicts the ratio of the cost of YYR-Full
over YYR-Lite when we artificially induce different traffic estimation errors. To this end,
we add a zero-mean Gaussian error with variance σ2 to the output of our estimator. The
figure shows values of σ relative to the mean load observed. When the traffic estimations
are very accurate (σ → 0), we observe around 20% cost savings when using YYR-Full
with respect to using YYR-Lite. Evidently, these savings reduce as σ increases. However,
even when σ is equal to the mean load estimated (σ = 100%), YYR-Full achieves around
10% cost savings in average over YYR-Lite.
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Figure 5.9: Ratio of the cost (eq. (5.2)) of YYR-Full over YYR-Lite as a function of the
prediction error. The shaded area cover the 10th and 90th quantiles of the measurements.

5.6.3. Decision period

In the experiments shown before, YYR-Full shows better performance than YYR-Lite
because the latter is a myopic approach that does not consider the cost of frequently
re-configuring the GPU. As we discussed in Section 5.4, this cost depends on the ratio
between re-configuration time r and the duration of each decision period δ. To assess
this, we show in Figure 5.10 the cost and the ratio of re-configuration (percentage of
time periods that the algorithms re-configures the GPU) for two decision lengths δ: one
second (as in the previous experiments), which sets r/δ = 1/2 and one minute, which sets
r/δ = 1/120. When we δ = 1 min, YYR-Lite provides the same performance as YYR-Full
because the impact of greedily re-configuring the GPU every decision period is negligible.
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Figure 5.10: Decision period impact on cost and re-configurations for both YYR versions.

5.6.4. GPU Capacity

Finally, we evaluate the impact of the GPU capacity (in terms of the number of
available SMs) on the system performance for all the solutions. Figure 5.11 depicts the
DU reliability and the ML throughput as a function of the available number of SMs.
YYR-Full and YYR-Lite attains the reliability target (ϵ = 0.01) in all cases at the cost
of ML throughput losses. The baseline solution also sacrifices ML throughput when the
GPU capacity shrinks, but it sacrifices DU reliability as well without any prioritization.
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Figure 5.11: Impact of the GPU capacity on DU reliability and ML throughput.





6 Energy and cost efficiency in
vRANs with Real-Time control

The solutions presented in Chapter 4 and Chapter 5 rely on control algorithms that
respectively operate in the Near-RT-RIC (timescale of ∼10−100 ms) and in the Non-Real-
Time-RIC (timescale of ≥ 1 s). In particular, ECORAN depends on the assumption that
traffic distribution changes slower than the time granularity of the Near-RT-RIC decision
period, and YinYangRAN on the assumption that traffic is predictable throughout the
duration of the Non-Real-Time-RIC decision interval. Therefore, to ensure reliability
in the virtualized Radio Access Network (vRAN), both solutions adopt a conservative
approach by configuring resources for the highest expected peak over their entire decisional
timeframe, that leads to wasting resources due to overprovisioning.

However, based on insights from tracking workload dynamics in real-world cells, this
chapter demonstrates that Distributed Unit (DU) traffic presents significant burstiness
at Transmission Time Interval (TTI) level (timescale of 1 ms). Thus, additional gains
in energy and cost efficiency can potentially be achieved by exploiting a heterogeneous
O-Cloud infrastructure with both Hardware Accelerators (HA) and Central Processing
Units (CPU) through a real-time controller capable of responding to TTI-level traffic
fluctuations. To address this, the current chapter introduces CloudRIC, a real-time
brokering system powered by lightweight data-driven models that jointly coordinates
a centralized access for multiple DUs to a shared heterogeneous pool of computing
processors, including HAs and CPUs, and assists centralized DUs with compute-aware
radio policies while meeting vRAN-specific reliability targets.

6.1. Real-world traffic fluctuations

The traces introduced in Section 3.1 present remarkable burstiness at TTI level:
Figure 6.1 shows a 10-second cell traffic snapshot that reveals wide fluctuations within
milliseconds. This observation suggests that, to harness pooling opportunities in real-
world cells while meeting the 5-nines reliability target, it is crucial to develop real-time
control schemes that can react appropiately upon quick yet infrequent load peaks.
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Figure 6.1: Instantaneous load fluctuations in a cell.

6.2. O-RAN AAL policies

The insights of the previous section combined with the analysis of Chapter 3 promote
a real-time sharing of both high-performance HAs and low-consuming CPUs across
multiple DUs. To inform a solution design for a cost-effective yet reliable vRAN, we next
explore the space of possible policies balancing DU workloads among shared heterogeneous
processors at sub-ms timescales.

The experiments involve a varying number of 100-MHz 5G DUs, with 5 active “x4”
User Equipment (UE) each, that aggregate workloads between 85 Mb/s and 5 Gb/s. We
also set the latency deadline D = 3 ms (for the moment), discard overdue Transport Block
(TB)s and consider CPU and Graphics Processing Units (GPU)-based HA as processors.
In this case, each DU locally subscribes to two Logical Processing Units (LPU)s, each
handling one shared processor. As explained in Section 2.4, each DU maintains exclusive
local access (with its own queues, as depicted in Figure 2.4). Then, for every TB, the
corresponding DU selects an LPU following a policy.

With this setup, we study conceptual policies of increasing complexity, several of which
are not viable in practice as they assume perfect knowledge of the future or functions not
supported by the current O-RAN standard architecture. Yet, our goal now is studying
potential gains; we will present a practical solution from Section 6.3.

6.2.1. Coordination

The first policy, “O-Greedy”, follows a simple heuristic: given a TB, the DU selects
the faster HA, as long as its local LPU queue is not full; otherwise, it falls back to CPU.
Figure 6.2 (left) shows the system reliability (i.e., the fraction of TBs processed within
D) as a function of the aggregated network demand. Reliability quickly drops when the
demand exceeds 200 Mb/s as the local LPU queues, specific to each DU, grow too much
with respect to the capability of the HA to handle the demand of all DUs, which results
in TBs frequently missing the deadline D. When all the LPU queues saturate, all TBs
miss D and reliability drops to 0%.
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Inspired by [109], in “O-MWT” (O-RAN Minimum Waiting Time (MWT)) DUs
compute the completion time at each LPU by looking at the occupancy of its LPU
queues for every TB, and then select the fastest one. We model the performance of
both LPUs using the dataset in Section 3.3, and let DUs have perfect knowledge of the
exact processing latency of each new TB a priori to make optimal LPU choices. Though
not realistic in practice, this policy illustrates the potential gains from exploiting queuing
information, which in Figure 6.2 amount to 18% higher reliability and 10% lower energy-
per-bit cost on average. Yet, given sufficiently high workloads, “O-MWT” also drops to
0% reliability at loads of 2 Gb/s or higher.

Under “C-MWT” (Coordinated MWT), the DUs consider each other’s LPU queues
to calculate the actual completion time of new TBs based on the system-wide load. This
approach further increases reliability by 15% and reduces the energy cost by 19% on
average over O-MWT; yet, it requires shared knowledge of LPU states across DUs, which
is currently not supported by O-RAN. Moreover, it still cannot avoid reliability loss.
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Figure 6.2: Performance of a heterogeneous O-Cloud with a varying number of DUs
hosting “x4” UEs. Deadline D = 3 ms.

6.2.2. Deadline awareness

Minimizing processing latency, as done by C-MWT, tends to overuse the HA, which
incurs an energy toll, and neglect CPUs; moreover, when TBs are eventually allocated to
the CPUs, it is done ignoring whether they can process those TBs within their deadline,
which causes unreliability. Hence, we test a policy “C-DA” (Coordinated Deadline-Aware)
that prioritizes CPUs. Under C-DA, given a TB, the DU calculates whether the TB can be
processed within D by the CPU pool, and only offloads the TB to the HA otherwise. Thus,
in addition to coordination, the policy requires deadline awareness. Figure 6.2 shows that
C-DA boosts reliability and enables opportunistic offloading to high-performance HAs that
save up to 80% of the energy cost for low-loaded scenarios.
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6.2.3. Joint radio and computing control

All previous policies fall short of achieving the 5-nines reliability target, even under
mild average workloads. This is due to the burstiness inherent to real workloads, discussed
in Section 3.1, which occasionally introduces peaks that exceed the computing capacity.

The problem cannot be solved via LPU queue dimensioning: as the decoding latency of
a single TB does not depend solely on its size but also on the associated Signal-to-Noise
Ratio (SNR) and Modulation and Coding Scheme (MCS) (see Section 3.3), bounding
the amount of bits allowed in a queue cannot deterministically bound the processing
time and, hence, does not yield guarantees to meet deadlines. Instead, we argue that a
better approach is to adapt the workload to the processing capacity proactively, through
compute-aware radio policies that guarantee reliability.

We thus experiment with “C-R-DA” (Coordinated Radio-controlling Deadline-Aware),
a policy that extends C-DA by throttling down radio grants when required to ensure that
every TB can be processed in time afterwards. Note that, to explore the maximum gain of
such a compute-aware radio scheduling strategy, C-R-DA has access to perfect knowledge
of the future requests, which is clearly not possible in practice. However, C-R-DA shows
how to efficiently trade off radio resources—wasted by the other policies anyway—for
reliability when the O-Cloud gets congested and how it addresses the CPU reliability
concern of Section 3.2. Indeed, Figure 6.2 shows that C-R-DA consistently meets the
5-nines reliability target with a 18% lower energy cost than C-DA on average.

6.3. System design

CloudRIC is an O-RAN compliant model that implements in practice the “C-R-DA”
policy presented in the previous section with a three-fold goal, ordered by priority: (i)
processing the DU workload within a predefined deadline D with 99.999% probability; (ii)
maximizing network throughput; and (iii) minimizing energy consumption. A high-level
view of a CloudRIC-powered O-Cloud is depicted in Figure 6.3. Our solutions integrates
seamlessly into the standard O-RAN architecture, to which it adds two key enhancements,
highlighted in red and in blue in Figure 6.3:

A “Real-Time (RT) RAN Intelligent Controller (RIC) (RT-RIC)”, which audits
radio grants issued by DUs so as to guarantee that all the scheduled TB can be
processed by the O-Cloud on time. Different from the existing O-RAN RICs, our
RT-RIC assists DUs with compute-aware radio policies in real time.

An “Acceleration Abstraction Layer (AAL) Broker (AAL-B)”, which presents
DUs with a single abstraction of the O-Cloud, and enables a centralized coordination
of its processors, via two sub-components:

• “AAL-B User Plane (UP)” (AAL-B-UP) acts as a proxy between O-RAN
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Network Functions (NF) (DUs, in our case) and O-RAN AAL. From the NFs’
viewpoint, the AAL-B-UP behaves as a virtual LPU that abstracts all the resources
in the O-Cloud. From the perspective of the AAL, the AAL-B-UP appears as a
virtual DU that is associated with the actual LPUs. Its job is routing arriving TBs
from UEs to an LPU that is assigned by the AAL-B-CP.

• “AAL-B Control Plane (CP)” (AAL-B-CP) schedules granted TBs to LPUs in
a way to guarantee that processing deadlines are met at minimum energy cost.
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Figure 6.3: CloudRIC powered O-Cloud high-level architecture.

Given the real-time nature of the system, we expect DUs, RT-RIC and AAL-B to
be deployed in the same physical infrastructure (e.g., an edge data center), and to be
connected via a new E3 real-time interface that may be implemented using shared memory
or low-latency tools such as Zenoh [110]. Our approach achieves three key results:
1. By centralizing the allocation of computing resources with AAL-B, we can

efficiently police the load from multiple DUs across heterogeneous processors, as per
Subsection 6.2.1;

2. By controlling the DUs grants, the RT-RIC can throttle radio resources when LPU
queues are congested and ensure that deadlines are met, as per Subsection 6.2.2 and
Subsection 6.2.3;

3. By decoupling AAL-B-CP and AAL-B-UP, we can minimize user plane overhead as it
will be shown later (see Section 6.3.1 and Section 6.4.1).

6.3.1. Detailed design and workflow

Figure 6.4 details the design of CloudRIC for uplink operation, the most challenging
in vRANs. The workflow follows steps 1⃝– 6⃝, whose time budget is shown in Table 6.1.
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Component Operations Time budget (µs) Validation
RT RIC 1⃝ - 4⃝ TTI ∈ {250, 500, 1000} §6.4.2

AAL-B-CP 5⃝ ∼200 §6.4.2
AAL-B-UP 6⃝ D (1000 - 3000, see §2.1) §6.4.1, §6.5

Table 6.1: Time budget for CloudRIC operations.
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Figure 6.4: Detailed architecture of CloudRIC.

1⃝ Temporary grants. Each radio grant ḡ(i), i ∈ {1, 2, . . . } generated by the DUs
becomes a temporary grant. Prior to being allocated, it is sent to the RT-RIC, as a tuple
containing the bandwidth b̄(i) (number of Resource Block (RB)), selected MCS m(i), UE’s
SNR s(i), and corresponding TB size (bits) t̄(i), i.e.,

ḡ(i) := [s(i), m(i), b̄(i), t̄(i)].

We use the top bar ·̄ to indicate that element · is temporary.
2⃝ Latency estimation. The RT-RIC gets from AAL-B-CP estimates of the waiting

time ŵ(i) := [ŵ(i)
1 , . . . , ŵ

(i)
M ] at each LPU queue Q

(i)
n , for all LPUs n ∈ L := {L1, . . . , LM}

exposed by O-RAN AAL. The top hat ·̂ indicates that · is a prediction. Queue time
estimators in AAL-B-CP produce ŵ

(i)
n by keeping track of the time foreseen to serve all

grants already queued in each Q
(i)
n , ∀n ∈ L. These estimators perform simple calculations

that rely on the (expected) LPU processing time d̂
(k)
n of each grant g(k) in Q

(i)
n , and on

(real) time elapsed since the head-of-line grant started to be served. Step 5⃝ explains how
we derive d̂

(i)
n , ∀i, n.
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3⃝ Radio policy. The RT-RIC state processor consolidates all the above information
into a single feature vector x(i),

x(i) := [s(i), m(i), t̄(i), ŵ(i)].

Given x(i), a radio policy agent ρ computes a radio allocation policy that is expressed as
r(i) := ρ(x(i)) ∈ R0≤r(i)≤1, where b(i) := r(i) · b̄(i) is the bandwidth (RB count) allowed for
the final grant (b(i) ≤ b̄(i)). The design of ρ is in Section 6.3.2.

4⃝ Final grant. Policy r(i) determines a final grant

g(i) := [s(i), m(i), b(i), t(i)]

for the UE, where its TB size t(i) is computed as per Third Generation Partnership Project
(3GPP) specs [92]. Importantly, the grant must be compiled within the granularity of a
TTI, as shown in Section 2.1 and in Table 6.1 for the time budget of operations 1⃝– 4⃝.
Then, as shown in Figure 6.4, g(i) is communicated to both the corresponding DU and
the AAL-B-CP through interface E3. The DU can now notify g(i) to the UE as specified
by 3GPP.

5⃝ LPU allocation. The AAL-B-CP also receives g(i), which is used to allocate the
computing resources necessary to process the grant. To this end, LPU models {νn, µn} of
each LPU n ∈ L are used to estimate the latency νn(g(i)) := d̂

(i)
n , without queuing, and

energy µn(g(i)) := ê
(i)
n required by LPU n to process the TB associated with grant g(i).

As they are stateless models, {νn, µn} can be built with neural networks trained offline
for each LPU. We present their design in Section 6.3.3.

Informed by the output of all LPU models (d̂(i)
n , ê

(i)
n ) and queue time estimators (ŵ(i)

n

from 2⃝), the LPU allocation function uses the greedy Algorithm 2 to pre-assign one LPU
to TB g(i). Algorithm 2 first prunes those LPUs that do not have queuing room, which
yields L1 ⊆ L. Then, using the waiting ŵ

(i)
n and processing time estimates d̂

(i)
n , it removes

from L1 all LPUs for which ŵ
(i)
n + d̂

(i)
n falls outside a guard period δ of the deadline D,

which yields L2 ⊆ L1. Finally, the LPU k ∈ L2 that can process the TB with the least
amount of expected energy ê

(i)
k is selected. The result is communicated to the AAL-B-UP

(to route the grant) and to the relevant queue time estimator (to update its estimate).
As explained in Section 2.1, UEs must send the granted TBs within K2 slots, which

sets a worst-case deadline of ∼200 µs for this step (numerology µ = 2 and K2 = 0).
While simple, Algorithm 2 proves both efficient and extremely fast.

6⃝ LPU processing. After K2 slots, the UE transmits the granted TB g(i). Once
received, the DU forwards the TB to the AAL-B-UP’s dispatcher, which routes the TB to
the pre-assigned LPU queue for processing. Once decoded, the TB data is sent to the DU
and the corresponding queue time estimator in the AAL-B-CP is updated. As explained
in Section 2.1, this step must be completed within D.
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Algorithm 2: Greedy LPU allocation
Input: D, t(i), ŵ

(i)
n , d̂

(i)
n , ê

(i)
n , ∀n ∈ L

L1 = L2 = ∅
for n ∈ L do

if Available Space in Qn > t(i) then
L1 ← L1 ∪ n

for n ∈ L1 do
if ŵ

(i)
n + d̂

(i)
n < D − δ then

L2 ← L2 ∪ n
if L2 ̸= ∅ then

L← arg mink∈L2 ê
(i)
k

else
L← arg mink∈L2

(
ŵ

(i)
k + d̂

(i)
k

)
Output: L

6.3.2. Radio policy agent

CloudRIC’s radio policy agent shall produce grants that are conscious of the current
pressure on the LPUs and of the added load brought by the new requests. In turn,
these properties depend on the specific hardware and software settings of the network
environment (e.g., the number, type, and detailed specifications of the LPUs, which
substantially affect the performance as we saw in Section 3.3), and are stateful (i.e., are
contingent on the utilization of LPUs at the moment of the radio scheduling decision).
Hence, they are hard to model in advance, and require a solution that automatically
adapts itself to the target O-RAN system upon deployment.

In light of this consideration, we resort to a data-driven model that can learn the
tangled relationships above at runtime. We implement the radio policy agent as a soft
actor-critic deep Reinforcement Learning (RL) algorithm, under a twofold rationale: (i)
the RL paradigm allows training the model online from system observations directly; and
(ii) inference is achieved with a simple neural network (the actor) that involves trivial
arithmetic operations to minimize inference latency, as later proven in Section 6.4. Among
many actor-critic instances, we opted for a soft version that maximizes the reward while
acting as randomly as possible to explore the solution space during training; this model
achieves state-of-the-art performance in tasks similar to the one we tackle [111].

The instantaneous reward function used by the critic is

R(i) =

t(i)/t̄(i) if w
(i)
n + d

(i)
n < D − δ

−β otherwise.
(6.1)

Two cases are possible. If TB g(i) is processed within a guard period δ to the deadline
D, the decision is assigned a positive reward proportional to the granted fraction of the
requested TB (t(i)/t̄(i)). Otherwise, penalty β is assigne (negative reward).



6.4 System implementation 69

6.3.3. LPU models

The purpose of the LPU models {νn, µn} is to estimate the processing latency, without
queuing delays, and the energy consumption of each processor in the pool, for a given grant
g(i). This is a stateless task, hence the LPU models can be easily built offline with data
collected in a pre-calibration phase. Indeed, we take this approach in our implementation
of CloudRIC, employing the measurement data presented in Section 3.3 to train LPU
models for the specific Low-Density Parity-Check (LDPC) drivers and GPU/CPU LPUs
considered there.

We realize the LPU models as simple feed-forward neural networks, which are accurate
and efficient universal function approximators. An important remark concerns the loss
function used to train the models. For the energy estimator µn, we use a legacy Mean
Absolute Error (MAE) loss to minimize the absolute error. However, the loss for the
processing latency estimator νn has a dedicated design that stems from the following
consideration. Underestimating d̂

(i)
n risks violating deadlines, which incurs significant

throughput loss and poor spectrum usage; conversely, overestimating d̂
(i)
n only implies

far less disruptive radio resource under-allocations. Therefore, it is critical that the LPU
model never underestimates latency, while still trying to minimize overestimation. Hence,
we train νn with an asymmetric loss function that we call Worst-Case Estimation Time
(WCET) loss. Let the latency prediction error for grant g(i) be ϵ

(i)
n := d̂

(i)
n − d

(i)
n , ∀n ∈ L;

the WCET loss is then expressed as

L(ϵ(i)
n ) =

−λ · ϵ(i)
n if ϵ

(i)
n ≤ 0

ϵ
(i)
n if ϵ

(i)
n > 0,

(6.2)

where λ > 1 allows avoiding optimistic predictions.

6.4. System implementation

Figure 6.5 illustrates CloudRIC implementation in a multi-DU server, on top of the
O-RAN AAL introduced in Section 2.4 with heterogeneous GPU and Single Instruction
Multiple Data (SIMD)-capable 16-core CPU processors. As mentioned in Section 3.4, a
server with a conventional Peripheral Component Interconnect Express (PCIe) v3.0+ bus
and a 100-GbE fronthaul interface can aggregate up to 3.8 GHz of spectrum, supporting
dense small-cell networks [95]. Radio Unit (RU) and UEs are simulated following
the bursty demand profiles presented in Section 3.1, which generate realistic workload
fluctuations with varied levels of stress on our O-Cloud platform. To this end, we encode,
modulate, add noise and demodulate signals locally.
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Figure 6.5: A CloudRIC-powered O-Cloud prototype.

6.4.1. User Plane: AAL Broker

The implementation of CloudRIC’s AAL-B-UP (∼2K lines of C++) follows Figure 6.4,
and builds on top of the O-RAN AAL we developed in Section 6.2. We use the Data
Plane Development Kit (DPDK) Environment Abstraction Layer (EAL) to abstract the
complexity of thread and memory management of four main threads.

The first thread runs the AAL-B-UP, as well as its interfaces with the AAL-B-CP and
the DUs using shared memory to reduce latency overhead. Upon each TB arrival, the
AAL-B-UP routes its data to an LPU queue pre-assigned by the AAL-B-CP, as shown in
Figure 6.4. The second and third threads execute the CPU and GPU LPUs, respectively:
they (i) gather bursts of TBs from the associated LPU queue; (ii) enqueue bursts in the
LPU; (iii) execute the corresponding driver or library; and (iv) enqueue the decoded bits
into an output queue. The last thread handles performance metrics.

Validation. To validate our implementation, we use all the profiles presented in
Section 3.1 with a random LPU allocation, and measure the latency overhead introduced
by our AAL-B-UP operations. Figure 6.6 (blue line) shows the distribution of the
overheads, with a median latency of 2 µs and a 99th percentile of 46 µs, which is negligible
compared to the 1-3 ms time budget available for the LPU processing of each TB according
to the summary in Table 6.1.

6.4.2. Control Plane: AAL-B-CP and RT-RIC

The AAL-B-CP and the RT-RIC are implemented in C++ (∼1.5K lines) using DPDK
for efficient inter-process communication, and Open Neural Network Exchange (ONNX)
Runtime (ORT) for neural network acceleration [112]. The AAL-B-CP uses four threads
implementing, respectively, the main pipeline of Section 6.3.1, the management of queue
state updates received from the AAL, the queue time estimator logic, and the LPU models.
The RT-RIC uses a single thread to implement the radio policy agent.
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Figure 6.6: Overheads of RT-RIC and AAL-B models.

The policy selects an action r(i) ∈ {0, 0.1, . . . , 0.9, 1.0} for every TB i. Both actor and
critic are neural networks with (5x140, 140x140, 140x11) and (16x140, 140x140, 140x11)
layers, respectively, that are jointly trained using equation (6.1) as reward, parameterized
with δ = 10% of the deadline D and β = 10, which experimentally proved to work well.
For the target soft Q-function of the critic [111], we set a discount factor equal to 0.99.

The LPU models’ neural networks are composed of three dense layers (3x128, 128x128,
128x1) and WCET loss in equation (6.2) is parametrized with λ = 10. To illustrate the
advantage of training the latency model νn with our WCET approach, we used the dataset
presented in Section 3.3 to show the distribution of the model’s relative errors ϵ

(i)
n with

solid lines in Figure 6.7. As a benchmark, we also plot with dashed lines the relative
error of an identical neural network trained to minimize the standard MAE. What is
relevant to CloudRIC operations is the fraction of overly optimistic estimates (ϵ(i)

n < 0)
that lead to overrating the O-Cloud capacity and to queuing TBs that will later violate
their deadline. Only 1.5% of the errors are optimistic for our method in contrast to the
53% of a MAE loss. Note that percent errors are higher for GPU than CPU, because the
GPU latencies d

(i)
n are considerably smaller, hence harder to estimate: the absolute error

in µs is however comparable for the two processors.
Validation. As explained in Section 6.3, the overhead of the RT-RIC, which runs

the the radio policy agent, and the AAL-B-CP, which runs the LPU models, have latency
constraints indicated in Table 6.1. To assess that timing requirements are fulfilled by our
implementation, we run CloudRIC for all the UE demand profiles presented in Section 3.1
and measure the overhead introduced by both modules. The distribution of the resulting
latencies is depicted in Figure 6.6. The RT-RIC’s radio agent (green line) has a median and
a 99th percentile latency of 5 µs and 9 µs, respectively. The LPU model neural networks
incur instead into a median and a 99th percentile latency of 42 µs and 62 µs, respectively
(red line). Both meet their budgets and validate CloudRIC’s real-time operation.
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Figure 6.7: Prediction error of LPU models in AAL-B.

6.5. Experimental evaluation

We next perform a thorough experimental campaign. First, we quantify the training
overhead of CloudRIC (Section 6.5.1). Next, we validate that CloudRIC meets the design
goals set in Section 6.3 in terms of reliability, throughput, and energy (Section 6.5.2).
Lastly, we juxtapose CloudRIC against several benchmarks, scrutinizing aspects of
reliability, energy- and cost-efficiency (Section 6.5.3).

6.5.1. Training time

CloudRIC hinges on data-driven approaches to realize the LPU models and radio
policy agent. As explained in Section 6.3.1, the LPU models are stateless and can be
pre-trained, e.g., using the dataset introduced in Section 3.3 in our case. Instead, the
radio agent is trained online upon deployment in the target system, and the training time
it requires to learn effective radio policing decisions is an important metric.

To analyze its training cost, we initialize RT-RIC’s radio agent with random weights
and study the evolution of its performance as it learns to schedule the traffic of 150
UEs distributed among thirty 100-MHz DUs. Figure 6.8 presents the mean normalized
reward achieved by CloudRIC after it has observed an increasing number of TBs across
three processing deadlines D = {1, 2, 3} ms commonly used in the literature [12, 13]. We
present results for “x4”, “x32”, and “Max” UEs, as introduced in Section 3.1, to assess low,
medium, and high workloads. CloudRIC reaches maximum reward almost instantaneously
for small workloads (“x4”): the radio agent readily learns that it does not need to constrain
the allocation of radio resources to guarantee deadlines in this case. With more demanding
“x32” and “Max” users, CloudRIC takes up to 50K TBs to converge, and achieves 90%
of that reward with 10 times less TBs. It shall be noted that 50K TBs correspond to less
than 4 s in real-time with “x32” users, which demonstrates that the radio agent can learn
good policies with minimal service degradation upon deployment.
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Figure 6.8: CloudRIC’s mean and max-min range reward for different training sets.

6.5.2. CloudRIC validation

As introduced at the beginning of Section 6.3, CloudRIC has three goals, prioritized
as: (i) achieving 5-nines reliability, (ii) maximizing throughput, and (iii) minimizing
energy use, which we evaluate next.

Reliability. Compliance with the processing deadline during the inference phase
directly controls the reliability of CloudRIC. We now better substantiate the dependability
of our solution for real-time operation after the (very quick, see Subsection 6.5.1) online
training phase. Figure 6.9 shows the empirical distribution of the processing latency for
all scenarios in Section 6.5.1. The shaded areas highlight deadline violations: by bounding
all distributions to the left of those regions, CloudRIC meets the reliability target in all
cases. More precisely, Table 6.2 depicts the latency’s 99.999th percentiles, showing that
CloudRIC consistently grants 5-nines reliability, which validates the first design goal. To
achieve this, with growing loads and (to a minor extent) with more stringent deadlines,
CloudRIC increases the average use of both CPU and HA as shown Figure 6.10 (top).

However, when LPUs are under pressure, CloudRIC must bound the allocation of
radio resources as depicted in Figure 6.10 (middle). That is, in response to workloads
that increasingly exceed the O-Cloud’s capacity, the radio policy agent throttles down a
progressively higher fraction of radio resources that otherwise would be wasted. Despite
this, CloudRIC attains on average 98.7% of the achievable throughput.
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Figure 6.9: Processing latency distribution for different deadlines D = {1, 2, 3} ms.
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Deadline (D) x1 x4 x8 x16 x32 x64 x128 Max
3 ms 0.79 2.84 2.99 2.81 2.82 2.84 2.99 2.79
2 ms 0.80 1.85 1.88 1.92 1.90 1.95 1.99 1.97
1 ms 0.73 0.99 0.96 0.99 0.96 0.97 0.97 0.98

Table 6.2: 99.999th latency percentile (ms) for different deadlines D and demand profiles.
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Figure 6.10: Mean resource utilization (top), radio allocation (middle), and workload
allocation (bottom) for different deadlines D = {1, 2, 3} ms and demand profiles.

It is worth noting that the results in Figure 6.10 above are averages, while the UE
traffic at the ms timescale is inherently bursty (as exemplified in Figure 6.1). Therefore,
CloudRIC must manage sudden upswings of requests (which saturate the LPUs and
force radio grant limiting) alternating to low-demand periods (where all grants can be
accommodated but resource utilization remains low). This explains why LPU usage
inflation is fairly linear in the face of exponentially surging demands of “x1” through
“Max” UEs, and why 100% radio allocations are not feasible even when the LPUs are not
fully used, with “x8” through “x128” UEs.

Throughput and energy. We now focus on the last design goals, i.e., exploiting
computing heterogeneity to maximize throughput and energy efficiency. To that end,
CloudRIC’s LPU allocation function, informed by the LPU models, prioritizes energy-
prudent processors as long as they meet deadlines but resorts to more powerful HAs
when strictly required to maximize throughput. This yields a flexible load balancing, as
shown in Figure 6.10 (bottom): for instance, 100% of the workload is assigned to the
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CPU pool to save energy in the case of “x1” UEs, but around 40% is allotted to the HA
to protect reliability in higher-loaded scenarios with “x32” through “Max” UEs.

To study this, we deploy CloudRIC on different AAL platforms: a CPU-only, a
HA-only, and a heterogeneous platform combining CPUs and HAs. To provide a fair
comparison across platforms, we sized each platform (number of CPU cores, HAs, etc.)
such that additional computing resources of any type could not improve performance
any further. We then emulate five DUs on each platform and vary the load as we did
in Section 3.2 for D = {1, 2, 3} ms. In contrast to Section 3.2’s results, Figure 6.11
proves that CloudRIC meets the 99.999% reliability target in all cases. More importantly,
the throughput (relative to the load) and energy performance figures illustrate the
advantages of a heterogeneous platform: there, CloudRIC matches the throughput of
an HA-only platform at a similar energy cost to that of a CPU-only system. In
contrast, CloudRIC must sacrifice 15-75% of throughput in a CPU-only platform to ensure
reliability, and consumes 3-14× more energy per bit in an HA-only system. Indeed, the
ability of CloudRIC to exploit CPUs opportunistically provides substantial gains in energy
consumption. We analyze this in more detail in Figure 6.12. The figure shows the energy
cost savings achieved by CloudRIC on a heterogeneous platform with respect to the cost of
exclusively relying upon a HA. The results refer to CPU pools of varied size, under all UE
profiles. Remarkably, CloudRIC provides over 50% energy cost savings with just a single
CPU core in presence of low-load “x1” UEs. Increasing the CPU pool size provides more
savings, but with diminishing returns as many cores remain unused. For higher workloads,
the energy cost savings are understandably lower as the LPU allocation function prioritizes
network throughput and reliability over energy consumption. For instance, a single-core
CPU pool provides practically no gain for the case of “Max” users but a 16-core pool
attains 37% savings for the same scenario.
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Figure 6.11: 99.999th latency percentile, throughput and energy consumption of CloudRIC
on three different platforms.
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Figure 6.12: Energy savings of CloudRIC when using a CPU pool opportunistically
relative to only using the HA.

6.5.3. Comparison with other approaches

CloudRIC improves reliability and sustainability of vRANs over both best practices
that the operators currently adopt in their deployments, as well as advanced benchmarks
that only partially implement our design guidelines.

Benchmarks. We show this by juxtaposing CloudRIC to the following baselines.
“Industry-std” uses a dedicated in-line HA co-located with every DU, which is the
approach in the industry today. To test this approach fairly, we simulate as many in-
line HAs as DUs, each with the same performance of an NVIDIA V100 GPU, using the
dataset of Section 3.3 and ignoring the look-aside overhead shown in blue in Figure 6.6.

The other benchmarks are the policies introduced in Section 6.2: “O-Greedy”, “O-
MWT”, “C-MWT”, and “C-DA”, which are not simulated anymore but implemented in
our shared and heterogeneous AAL platform, like CloudRIC. In Section 6.2, several of
these approaches relied on future knowledge, which is not feasible for real-time operation.
To enable real-time operation, we use LPU models trained with a MAE loss (as explained
in Subsection 6.3.3) to predict the information they require.

We run comparative experiments with a varying number of 100-MHz DUs aggregating
50 to 350 UEs in a single server. Specifically, we associate 5 UEs to each DU and
vary the number of DUs sharing the O-Cloud platform. Figure 6.13 depicts reliability
(top), expressed as the percentage of TBs processed within D, energy efficiency (middle),
calculated as the amount of data bits processed successfully per unit of energy), and
cost efficiency (bottom), measured as the mean network throughput achieved per unit
of capital investment. Note that, to calculate energy- and cost-efficiency, we ignore
the baseline energy and financial cost of the servers, and use the representative market
prices of Table 1.1, i.e., $110 per CPU core, and $3,000 per HA, making each HA-only
“Industry-std” server 37% cheaper than the shared heterogeneous server. Results are for
D = {1, 2, 3} ms and a variable number of “x4” (left) and “Max” (right) UEs, hence DUs.

The first key remark is that only CloudRIC and “Industry-std” provide high reliability
across all scenarios. Even “C-DA”, which proves high reliability in case of “x4” users,
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cannot meet 99.999% reliability given enough number of UEs and DUs (right-most side of
the plot). Precise figures on this critical aspect for industry-grade vRANs are presented in
Table 6.3: the 99.999th percentile of the processing latency confirms that “Industry-std”
is the only benchmark to achieve the same 5-nine reliability of CloudRIC.

However, “Industry-std” matches the dependability of CloudRIC by largely over-
dimensioning the computing capacity, which yields the worst cost-efficiency performance.
Figure 6.13 demonstrates how CloudRIC makes the best use of a much smaller, shared,
and heterogeneous O-Cloud to achieve 15x higher cost efficiency and 3x higher energy
efficiency, on average, than the legacy industry practice.

The capital cost of all the other benchmarks is the same as CloudRIC’s so its cost-
efficiency gains are solely due to network throughput gains. Because “C-DA” uses
CloudRIC’s AAL-B, it achieves similar performance to CloudRIC for small workloads;
however, the absence of the RT-RIC causes “C-DA” to waste radio and computing
resources on TBs that miss their deadlines during heavier workloads, which results in 34%
and 31% lower energy efficiency and throughput, respectively. “O-Greedy”, “O-MWT”,
and “C-MWT” all confirm the poor reliability observed in Section 6.2 on a real-world
platform, with throughput dropping to 0% for “Max” UEs.
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Figure 6.13: Reliability (top), energy-efficiency (middle), and cost-efficiency (bottom) for
different policies on different scenarios with with “x4” (left) and “Max” (right) users.
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UEs profile Deadline (D) CloudRIC Industry-std O-Greedy O-MWT C-MWT C-DA

“x4”
3 ms 2.94 0.20 28.5 10.9 6.73 6.59
2 ms 1.95 0.20 23.4 9.83 7.51 4.72
1 ms 0.99 0.29 13.9 9.26 9.06 2.92

“Max”
3 ms 2.95 0.29 35.4 35.5 35.4 6.15
2 ms 1.99 0.29 24.1 24.1 24.1 4.22
1 ms 0.99 0.29 12.9 12.9 13.0 2.40

Table 6.3: Comparison of the 99.999th latency percentile (ms) of different approaches for
the scenarios presented in Figure 6.13.

Different Hardware Accelerators. Finally, we analyze the impact of different HAs
on the performance gains of CloudRIC over “Industry-std”, i.e., the only two approaches
that meet the reliability target of 99.999% at all times. To this end, we scale the latency
and the power consumption measurements of the NVIDIA V100 GPU by factors 0.2≤
αlat≤1 and 0.2≤ αpwr≤ 1, respectively, to simulate diverse and future HAs with different
combinations of αlat and αpwr. For instance, based on publicly available information, we
roughly estimate that the look-aside Intel ACC100 HA may be modeled with 0.5≲αpwr≲

0.7, and the look-aside Intel ACC200 (integrated into the new Sapphire processors) or
the in-line Qualcomm X100 HA with 0.6 ≲αlat≲ 0.8.

To study different scenarios, we generate various workloads by emulating different
numbers of DUs, each with five “x4” or “Max” UEs. Like before, one heterogeneous
platform is shared among all the DUs in the case of CloudRIC, while we simulate a HA-
only server per DU for “Industry-std”. On the one hand, Figure 6.14 depicts the energy
efficiency of CloudRIC relative to that of “Industry-std”.
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Figure 6.14: CloudRIC’s energy-efficiency with respect to Industry-std’s for different HAs
characterized by scaling parameters αlat and αpwr for an NVIDIA GPU V100.

For small-medium workloads (aggregating <500 “x4” UEs), the heterogeneous
platform enables CloudRIC to achieve substantial energy efficiency gains—up to 6× the
efficiency of “Industry-std”—when the HA satisfies αpwr + αlat ≥ 1. As mentioned above,
cutting-edge HAs today are well within this range. When αpwr + αlat < 1, perhaps
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achievable by future HA technology, the HA’s latency and energy consumption is so low
compared to today’s CPUs that using the latter becomes inefficient. This occurs in a
larger (αpwr, αlat) area for very large workloads (>750 “x4” or >10 “Max” UEs), where
CloudRIC must throttle down radio resources to preserve reliability. Note that, in such
extreme cases, CloudRIC may share more HAs to boost energy efficiency.

On the other hand, Figure 6.15 presents the cost efficiency of CloudRIC relative to
that of “Industry-std”. Since CloudRIC aggregates all the workload into a single server,
its cost-efficiency gain over “Industry-std” grows linearly with the number of DUs. This
is depicted in Figure 6.15 for different workloads, generated in the same way as before,
and for different αlat values (note that cost-efficiency is independent of αpwr as it does
not impact on throughput). The growth rate degrades when the computing resources
available in CloudRIC’s server are maxed out and CloudRIC has to sacrifice throughput
to preserve reliability (e.g., >310 “x4” or >50 “Max” UEs). This is more severe for higher
αlat because reducing αlat essentially increases the HA’s computing capacity. Moreover,
since cost-efficiency also depends on the number of DUs per server, high-loaded DUs with
“Max” UEs incur lower gains as large workloads are generated with fewer DUs.
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Figure 6.15: CloudRIC’s cost-efficiency w.r.t. HA-dedicated approach with different αlat.





7 Conclusions and perspectives

The growing need for Hardware Accelerators (HA) to support individual Distributed
Unit (DU) of virtualized Radio Access Network (vRAN) has raised several concerns about
the possibility of obtaining cost- and energy-efficient vRAN deployments that are capable
of guaranteeing acceptable performance and reliability for the industry.

This thesis has demonstrated that it is possible to address these concerns by reducing
the energy toll and amortizing the economic cost of the energy-intensive and expensive
HAs while ensuring reliable operation of the vRAN. For this purpose, this thesis has
proposed the following approaches: (i) the opportunistic usage of HAs supported by
complementary energy-efficient software processors like Central Processing Units (CPU)
to decrease the energetic costs, and (ii) centralizing the access of multiple DUs to a shared
heterogeneous pool of computing processors including HAs to reduce deployment costs.

State-of-the-art approaches and prior works in literature have tried to address the
aforementioned concerns, showing however substantial limitations in terms of coarse
operational timescales (not able to react to the dynamics of real-world DU workloads)
and in terms of sharing and multiplexing efforts with the available computing resources
in the system, favoring rather dedicated and thus over-dimensioned approaches.

7.1. Conclusions

In this thesis, the shortcomings of previous works and state-of-the-art approaches have
been addressed and important steps have been made towards the deployment of energy-
and cost-effective vRANs, in which the latency of DUs processing stays below typical
target deadlines with target probability values (reliable operation).

In the first part of this thesis, we have provided experimental foundation and
justification for the design paradigms that are needed to deploy reliable vRANs while
reducing costs. For the first time in literature, we have showed the latency and energy
consumption performance of Graphics Processing Units (GPU)-based HA when executing
one of the most compute-intensive tasks of the DU processing, the Forward Error
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Correction (FEC) decoding task, and explained the reasons why also general-purpose
CPUs can represent a good complement to this HA for the purpose. Moreover, we
pioneered the characterization of the utilization of GPUs under real vRAN workloads as
a way to justify the sharing and multiplexing opportunities for its computing resources.

In Chapter 4, we have introduced ECORAN, a system that addresses the problems of
energy consumption and deployment costs present in new generation vRANs by means
of opportunistic offloading of HAs and DU centralization. The solution configures in
Near-Real-Time (Near-RT) offloading strategies for tasks of individual DUs sharing a
common O-Cloud with HAs and a CPU pool, and relies on a multi-agent contextual bandit
algorithm with ideas from mean field theory to improve its convergence and scalability for
cost-effective scenarios with several centralized BSs. Using a real O-Cloud platform and
traces from a production mobile network, ECORAN provides up to 40% energy savings
and up to 60x cost gains with respect to the standard approach used today by the industry.

To increase flexibility and cost-effectiveness of Radio Access Network (RAN)
virtualization techniques using Application-Specific Integrated Circuits (ASIC) or Field
Programmable Gate Arrays (FPGA) as HA, general-purpose GPU-accelerated computing
platforms are being proposed to process the Physical layer (PHY) layer workloads of 5G
DUs concurrently with Machine Learning (ML) operations. However, blindly multiplexing
available GPU resources using conventional methods can severely disrupt the reliability
of inelastic 5G DU workloads, especially when these are balanced with ML elastic tasks.
In response to this, in Chapter 5 we have developed YinYangRAN, an innovative O-RAN
compliant solution that manages GPU-based HAs, ensuring 5G processing reliability and
maximizing the throughput of co-located ML services. Tests with real RAN workloads
show that YinYangRAN can potentially reduce the deployment cost by a factor of
N compared to the solution using N dedicated GPUs per process, and significantly
outperforms traditional GPU multiplexing models by achieving over 50% higher reliability
with minimal impact on co-located ML tasks.

In Chapter 6, we have presented CloudRIC, a system that extends the current O-
RAN’s cloud architecture by implementing an Acceleration Abstraction Layer (AAL)
Broker and a Real-Time (RT) RAN Intelligent Controller (RIC) (RT-RIC). These
enhancements enable the real-time sharing of HAs across multiple DUs to further reduce
deployment costs and the opportunistic usage of CPUs to further reduce the energy
consumption without compromising the reliability of the vRAN. The system relies on
an implementation based on Data Plane Development Kit (DPDK)’s Baseband Device
Library (BBdev) framework and light data-driven models that guarantees low and O-RAN
compliant overheads. Thorough empirical evaluations under real-world and worst-case
scenarios, we show that CloudRIC delivers substantial advantages with respect to the
industry standard approach with 3x and 15x average gains in energy- and cost-efficiency,
while maintaining the same 99.999% target reliability.



7.2 Perspectives 83

7.2. Perspectives

The deployment of reliable and inexpensive vRANs with sustainable energetic costs
continues to draw significant attention in industry. Therefore, multiple directions for
future research are expected to emerge, both in the short term and the long term.

7.2.1. Short-term perspectives

This thesis has demonstrated the significant advantages of sharing and multiplexing
computing resources available in heterogeneous cloud platforms that support vRANs.
While the focus has primarily been on CPUs and GPUs, there is a clear opportunity for
future work to explore other advanced processors that are becoming increasingly prevalent
as HAs in industry-grade vRAN deployments, such as FPGAs and ASICs.

In the short term, research can investigate how these processors can be integrated
into the existing frameworks to enhance performance and efficiency further. For example,
examining the specific workloads that benefit from FPGA reconfigurability or ASIC
specialization could yield insights into optimizing resource allocation and reducing latency.
Additionally, conducting pilot implementations with industry partners will be essential to
validate these methodologies in real-world scenarios, ensuring that the proposed solutions
can be effectively deployed and adapted to the dynamic requirements of modern networks.

Moreover, establishing a feedback loop with practitioners can lead to iterative
improvements in the proposed approaches, ultimately fostering innovation in vRANs.
By actively engaging with stakeholders in the telecommunications industry, this research
can contribute to the development of best practices for deploying energy-efficient, cost-
effective vRAN solutions that leverage a broader range of computational resources.

7.2.2. Long-term perspectives

The design paradigms proposed in this thesis are not only relevant for current vRAN
applications but can also be smoothly adapted to support future traffic demands and
emerging HAs. The comprehensive experimental evaluation conducted in Chapter 6,
which considers projected vRAN workloads up to 2030 (as detailed in Section 3.1),
highlights the forward-thinking nature of this research. The results presented in
Figure 6.14 indicate that future HAs are likely to be significantly more performant and
energy-efficient than today’s CPUs. This insight emphasizes the potential inefficiency of
relying solely on traditional CPUs in shared computing platforms of the future.

In the long term, the methodologies and frameworks developed in this thesis can be
readily extended to incorporate these future HAs, ensuring that vRAN systems remain
agile and capable of meeting evolving demands with target reliability. The data-driven
nature of the underlying algorithms allows for seamless integration of new technologies
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as they emerge, making it possible to dynamically adapt to advancements in hardware.
Ultimately, this research establishes a robust foundation for developing reliable, cost-

effective, and energy-efficient vRANs that are well-equipped to meet the challenges and
opportunities of the future of mobile networks. As technologies continue to advance,
the frameworks proposed in this thesis can facilitate the exploration of innovative
architectures, which are essential for managing the increasing complexity of vRANs.

By maintaining a focus on adaptability and scalability, these frameworks can
seamlessly integrate new hardware accelerators as they emerge, ensuring that vRAN
systems remain at the forefront of performance and efficiency. Furthermore, fostering
ongoing collaboration between academia and industry will be critical in translating these
research findings into practical solutions that enhance mobile network capabilities and
sustainability. This collaborative approach not only promotes the continuous evolution
of vRAN technologies but also drives the development of best practices that can optimize
resource utilization and improve overall network performance. In doing so, we can pave
the way for a new era of mobile networks that is responsive to the demands of an ever-
changing telecommunications landscape.
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