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ABSTRACT

Hierarchical Inference (HI) has emerged as a promising approach

for efficient distributed inference between end devices deployed

with small pre-trained Deep Learning (DL) models and edge/cloud

servers running large DL models. Under HI, a device uses the lo-

cal DL model to perform inference on the data samples it collects,

and only the data samples on which this inference is likely to be

incorrect are offloaded to a remote DL model running on the server.

Thus, gauging the likelihood of incorrect local inference is key to

implementing HI. A natural approach is to compute a confidence

metric for the local DL inference and then use a threshold on this

confidence metric to determine whether to offload or not. Recently,

the HI online learning problem was studied to learn an optimal

threshold for the confidence metric over a sequence of data samples

collected over time. However, existing algorithms have computa-

tion complexity that grows with the number of rounds and do not

exhibit a sub-linear regret bound. In this work, we propose the

Hedge-HI algorithm and prove that it has 𝑂
(
𝑇

2
3 EZ [𝑁𝑇 ]

1
3

)
regret,

where 𝑇 is the number of rounds, and 𝑁𝑇 is the number of dis-

tinct confidence metric values observed till round𝑇 . Further, under
a mild assumption, we propose Hedge-HI-Restart, which has an

𝑂
(
𝑇

2
3 log(EZ [𝑁𝑇 ])

1
3

)
regret bound with high probability and has

a much lower computation complexity that grows sub-linearly in

the number of rounds. Using runtime measurements on Raspberry

Pi, we demonstrate that Hedge-HI-Restart has a runtime lower by

order of magnitude and achieves cumulative loss close to that of

the alternatives.
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1 INTRODUCTION

Deep Learning (DL) inference on data generated by end devices

such as IoT sensors, smartphones, and drones results in significant

optimizations and efficiency gains across industrial automation,

smart cities, remote healthcare, smart agriculture, and other sectors.

Given the compute and memory requirements of the DL models, DL

inference has been primarily cloud-centric [21]. However, process-

ing and analyzing data locally reduces response time and network

bandwidth usage, enhances privacy, and improves scalability. This

has initiated significant research efforts toward deploying DL mod-

els on end devices using model compression techniques such as

pruning, quantization, and model distillation [7, 9]. Therefore, per-

forming DL inference tasks at the edge, i.e., computing inference for

data samples on end devices and/or edge servers efficiently in terms

of execution time, energy, and accuracy, is gaining importance [33].

Existing techniques for DL inference at the edge can be broadly

classified into: (i) on-device inference [25], (ii) DNN-partitioning

[17], (iii) inference load balancing [12], and (iv) Hierarchical Infer-

ence (HI) [22]. On-device inference is doing inference locally with-

out further support from edge/cloud servers. There exists a plethora

of DL models, e.g., MobileNet [26], EfficientNet [28], Gemma 2B

large language model [8], that can be embedded onmoderately pow-

erful smartphones, and tinyML models [3] that can be embedded

on extremely resource-limited IoT devices such as micro-controller

units. However, due to their small size, these on-device or local

DL models have relatively poor inference accuracy, which limits

their generalization capability and robustness to noise. The DNN

partitioning technique performs inference execution of a large-size

DL model by partitioning the model’s layers between a device and a

remote server. However, the benefits of this technique were only re-

alized for computationally powerful devices (such as smartphones)

with mobile GPUs [10, 11]. The inference load balancing technique

divides the computational load between the device and a server to

minimize the time or energy consumption per inference [12, 23, 24].

Recently, HI has emerged as a promising distributed DL inference

technique [2, 4, 5, 22, 23]. Under HI, inference is performed first on

the local DL model for each data sample. A data sample is offloaded

for remote DL inference on an edge/cloud server only if the local
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inference is likely to be incorrect. In contrast to on-device inference,

HI considers inference offloading. Further, HI examines the local

inference before making an offloading decision, thus improving the

existing inference load-balancing algorithms. Unlike DNN parti-

tioning, HI is appealing for resource-constrained devices as one

may design customized local DL models for these devices and use

off-the-shelf high-accuracy DL models on the remote server.

Gauging the likelihood of an incorrect inference is key to im-

plementing HI. For classification applications, the local DL model

outputs a soft-max (confidence) value for each class. A data sample

is typically classified into the class with the maximum soft-max

value. Past works on HI used a threshold on the maximum soft-max

value to decide whether to accept the local inference or offload

the data sample for the remote inference. In [2, 4, 23], the authors

computed the threshold offline using the labeled training data and

fixed offloading costs. Since the data samples in the inference phase

differ from those in the training phase, in [22], the authors stud-

ied the HI Learning (HIL) problem to learn the best threshold to

make the offloading decisions. In the HIL problem [22], the data

samples arrive periodically, and the device uses the local DL model

to obtain the maximum soft-max values. In each period or round

𝑡 , if the device accepts the local inference and is correct, it does

not incur any loss. Otherwise, it incurs a loss of 1. If the device

rejects the inference and offloads, it incurs a fixed loss. An optimal

fixed threshold for the maximum soft-max value is the one that

minimizes the total loss in 𝑇 rounds. The problem was posed as

a variant of the classical Prediction with Expert Advice (PEA) [6].

The authors proposed an online algorithm with computation com-

plexity𝑂 (𝑡) in round 𝑡 , and proved𝑂 (
√
𝑇 log 1/𝜆min) regret bound,

where 𝜆min is the minimum difference between any two distinct

maximum soft-max values seen in the 𝑇 rounds. Note that 𝜆min is

dataset-dependent. Further, the runtime𝑂 (𝑡) for inference in round

𝑡 is prohibitive at larger values of 𝑡 since the HIL algorithm needs to

run on resource-constrained devices. The authors in [5] extended

the HIL problem setting to multiple devices and studied maximiz-

ing average accuracy subject to average offloading cost constraint

under the assumption that the offloading costs are i.i.d. They solve

the underlying HIL problem by discretizing the soft-max values

and assuming that the cumulative loss of the optimal threshold

and the minimum cumulative loss achieved from the discretized

soft-max values are bounded by a small constant. Thus, their algo-

rithm’s regret bound and computation complexity depend on the

resolution at which the soft-max values are discretized. This raises

the question if the HIL problem has a sub-linear regret algorithm.

Further, both works present regret-bound analysis, considering that

the remote DL has 100% accuracy.

The HIL problem we study is presented in Figure 1. In contrast

to [5, 22], we consider a more general setting where the remote

DL model is not 100% accurate. Further, unlike [5, 22], we consider

general loss (or cost) functions with values in [0, 1] and do not

assume that the offloading costs are i.i.d. Our key contributions are

summarized below:

– We show that a special case of the HIL problem is related

to the branching experts problem [14] and establish that

any online algorithm for HIL has a regret bound at least√
𝑇EZ [𝑁𝑇 ], where EZ [𝑁𝑇 ] ≤ 𝑇 is the expected number of

Figure 1: An edge intelligence system comprising an end de-

vice, embedded with a small-size DL model ℎ𝑙 , and an edge

server with a large-size DL model ℎ𝑟 . The HI learning algo-

rithm utilizes the local DL model’s confidence (𝑍𝑡 ) to accept

the local inference or offload the data sample. The functions

𝑓 and 𝑔 are defined in Section 3.

distinct soft-max values observed in 𝑇 rounds. Thus, for the

HIL problem, a sub-linear bound only exists if EZ [𝑁𝑇 ] is
sub-linear in 𝑇 .

– We propose a novel algorithm called Hedge-HI and show

that its regret is 𝑂
(
𝑇

2
3 EZ [𝑁𝑇 ]

1
3

)
.

– Noting that computation complexity of Hedge-HI, and also

the algorithm in [22], grows linearly in round 𝑡 , we propose

Hedge-HI-Restart, which has 𝑂
(
min

(
𝑡,
√
𝑇
))

computation

complexity. Further, under a mild assumption, we prove that,

with high probability, it has a 𝑂
(
𝑇

2
3 log(EZ [𝑁𝑇 ])

1
3

)
regret

bound. Unlike the regret bound for Hedge-HI, this regret

bound for Hedge-HI-Restart is sub-linear even if EZ [𝑁𝑇 ]
grows linearly with 𝑇 .

– Via simulations, we demonstrate that Hedge-HI-Restart has

a much lower runtime while achieving cumulative loss close

to that of Hedge-HI and the algorithm in [22].

2 RELATEDWORKS

In this section, we discuss the related works on DL inference at the

network edge, present the contrasting differences with [5, 22] in

detail, and present related works on PEA.

2.1 DL Inference at the Edge

Inference Load Balancing. Since the initial proposal of edge

computing in [27], significant attention has been devoted to the

computational offloading for generic compute-intensive applica-

tions [20]. Due to the growing importance of edge intelligence,

recent studies have examined computation offloading for applica-

tions using ML inference [12, 24, 31]. This line of research aims to

load-balance the inference task by partitioning the data samples be-

tween the device and the server, considering parameters such as job

execution times, communication times, energy consumption, and

average test accuracy of ML models. However, in [2], we demon-

strated that load-balancing data samples may lead to adversarial

scenarios where most data samples scheduled on the device receive

incorrect inferences. HI circumvents this issue by utilizing the local

DL output and offloading a data sample if its local inference is likely

incorrect.
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DNN Partitioning. DNN partitioning, proposed in [17], partitions

the layers of a large-size DL model and deploys the front layers on

the mobile device while the deep layers are deployed on an edge

server. It received considerable attention recently [16, 19]. However,

as demonstrated in [2], for DNN partitioning to be beneficial in

reducing the execution time per inference, the processing times

of the DL layers on the mobile device should be small relative

to the communication time of the data generated between layers.

Thus, this technique requires mobile GPUs making it infeasible for

resource-constrained end devices such as IoT devices.

On-Device Inference. As discussed in Section 1, considerable

effort has been dedicated to the design of compact DL models tai-

lored for deployment on end devices [7, 9, 25]. Further, techniques

such as early-exit [29] have been explored to reduce the execution

time of DL inference. As a result, state-of-the-art compact DL mod-

els can perform complex ML inference tasks on devices, ranging

from face recognition on mobile phones [18] to visual wake word

and keyword spotting on IoT devices [3]. However, these models

have fewer neurons, which results in lower inference accuracy

and limits their generalization capability and robustness to noise.

Additionally, it may be infeasible to perform post-deployment ac-

tive learning to improve the accuracy of the models on extremely

resource-constrained devices such as IoT sensors or MCUs. There-

fore, offloading data samples to edge servers or the cloud equipped

with high-accuracy DL models is essential for reliable inference.

Hierarchical Inference. Given the drawbacks of the previous

approaches, HI has received considerable attention in the recent

past [2, 4, 5, 22, 23]. In [23], the authors computed the HI offloading

decision by computing a threshold for the maximum soft-max value

based on the transmission energy constraint of the device. In [2], we

proposed a general definition for HI, presented multiple use cases,

and compared HI with existing distributed DL inference approaches

at the edge. Similar to [23], we computed a threshold based on the

trade-off between local misclassifications and offloading costs. In

[4], we showed that the HI offloading decision can be improved by

using linear regression on the first two highest soft-max values.

However, the above works compute the optimal threshold of-

fline using the training dataset and assume a constant offloading

cost. This approach fails if the data distribution during the deploy-

ment/inference phase differs from the training data distribution

or if the offloading cost varies over time. Modeling the latter as-

pect is important for offloading data using wireless communication,

as the channel conditions vary over time. Motivated by this, the

authors in [22] studied the HI learning problem (HIL) for dynam-

ically learning an optimal threshold for the maximum soft-max

value. They proposed an algorithm by extending the celebrated

Hedge algorithm [13] for continuous expert problems. However, for

the proposed algorithm, they provided a dataset-dependent regret

bound 𝑂 (
√
𝑇 log 1/𝜆min), where 𝜆min is the minimum difference

between any two distinct maximum soft-max values.

The authors in [5] extended the HI learning problem setting to

multiple devices and studied maximizing average accuracy subject

to average offloading cost constraint. To solve the HIL problem,

they discretized the soft-max values and assumed that the cumu-

lative loss of the optimal threshold and the minimum cumulative

loss achieved from the discretized soft-max values is bounded by

a small constant. The regret bound and computation complexity

of their algorithm depend on the resolution at which the soft-max

values are discretized. In contrast to [5, 22], we study a more general

setting where the remote DL model is not 100% accurate, and the

offloading costs need not be i.i.d. We propose two novel Hedge-

based algorithms, Hedge-HI and Hedge-HI-Restart, which do not

use discretization. The challenge in analyzing the proposed algo-

rithms is that the number of experts grows with the number of

experts. We present a new analysis for Hedge-HI and a novel high-

probability regime analysis for the restart algorithm to obtain the re-

gret bounds. Further, the computation complexity Hedge-HI-Restart

is𝑂 (min{𝑡,
√
𝑇 }) which is significantly lower, asymptotically, com-

pared to that of 𝑂 (𝑡) of the HIL algorithm in [22].

To sum up, while the core idea of HI has been studied previously,

highlighting the relevance and importance of the problem, our

work differentiates itself with improved theoretical bounds and a

novel algorithm with better performance. Additionally, our model

is generalized to incorporate dynamic threshold learning, non-ideal

remote DL models, and non-i.i.d. offloading costs.

2.2 Prediction with Expert Advice (PEA)

In the classical PEA setting [6], a learner has 𝑁 experts to choose

from, and the objective is to learn the expert with minimum cu-

mulative loss over 𝑇 rounds. PEA and a plethora of its variants

are well-studied in the literature, and the Hedge algorithm [13] is

known to provide an optimal regret bound 𝑂 (
√
𝑇 log𝑁 ) for the

standard setting. In [14], the authors introduced a PEA variant

called the branching experts, where new experts may be revealed

in each round. The cumulative loss of any new expert is either

equal or close to the cumulative loss of one of the existing experts.

They provided a 𝑂 (√𝑇𝑁𝑇 ) regret algorithm. This setting was later

studied for stochastic losses in [32]. However, in these works, 𝑁𝑇 ,
the number of experts revealed till round 𝑇 is assumed to be finite

and is independent of 𝑇 . We later show that the HIL problem is

related to the branching experts problem. The key differences are

that in HIL, 1) the losses are not revealed when a local DL inference

is accepted, as the device does not know the ground truth, and 2)

we do not assume that 𝑁𝑇 is finite but may depend on𝑇 . Regarding
the latter, in HIL 𝑁𝑇 may be equal to 𝑇 in the worst case. If 𝑁𝑇
grows linearly with𝑇 , the regret for any algorithm for the HI learn-

ing problem is linear. This makes the problem more interesting

as it raises the question: what are the minimal assumptions under

which this problem will have sub-linear regret? We present one

such assumption (Assumption 1) and propose Hedge-HI-Restart,

which achieves sub-linear regret.

3 SYSTEM MODEL

We consider an edge intelligence system comprising an end device,

or simply a device, and an edge server, or simply server. The device

periodically senses/collects data samples and is tasked with per-

forming multi-class classification of these data samples. The system

is equipped with two DL models to perform this classification task.

The device is embedded with the local DL model, and the server

is equipped with a state-of-the-art large DL model, which we call

remote DL. The remote DL is a state-of-the-art, higher classification
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accuracy model than the local DL. For each data sample, the device

has the option of accepting the inference of the local DL model or

enlisting the help of the server to use the remote DL model. We

refer to this as offloading the task to the remote DL model.

Multi-class Classification. Let X denote a feature space from

which the data samples (e.g., images) are generated, and Y =
{1, . . . ,𝑚} denote label set with𝑚 classes. Given a pre-trained clas-

sifier ℎ : X ↦→ Y, an inference task involves computing ℎ(𝑥). Given
(𝑥,𝑦), classification error on sample 𝑥 is given by �[ℎ(𝑥) ≠ 𝑦].

We consider a discrete-time system with a time index 𝑡 . Let
𝑥𝑡 ∈ X denote the data sample collected by the device in round

𝑡 . In general, for each input, a DL model designed to carry out

a multi-class classification task, outputs scores corresponding to

each class using a score function. The higher the score for a class,

the more confident the model is in classifying the input to that

class. Let 𝑓𝑖 (𝑥𝑡 ) denote the score for class 𝑖 for input 𝑥𝑡 . Let ℎ𝑙
denote the inference of the local DL model. Typically in a multi-

class classification model, ℎ𝑙 (𝑥𝑡 ) = argmax𝑖∈Y 𝑓𝑖 (𝑥𝑡 ). Similarly, let

ℎ𝑟 (𝑥𝑡 ) denote the classification/inference provided by the server

when 𝑥𝑡 is offloaded to the remote DL.

We consider deterministic pre-trained DL models ℎ𝑙 and ℎ𝑟 , i.e.,
given the same data sample, they output the same scores. This is

true for all traditional feed-forward networks, such as recurrent

neural networks, convolutional neural networks, and transformers.

During the DL training phase, a typical assumption is that the data

samples are drawn i.i.d. using an unknown distribution from X.

We make the same assumption for the inference phase that 𝑥𝑡 are
drawn i.i.d. from X using an unknown distribution, potentially

different from the training phase distribution.

ConfidenceMetric. A confidence metric measures the confidence

ofℎ𝑙 in classifying the data samples. The values of the score function

can be used to obtain different confidence metrics. In general, a

confidence metric is output by a deterministic function 𝑔, acting on
𝑓 (𝑥𝑡 ) = [𝑓1 (𝑥𝑡 ) 𝑓2 (𝑥𝑡 ) · · · 𝑓𝑚 (𝑥𝑡 )] for any 𝑥𝑡 , given by𝑔 : 𝑓 (𝑥𝑡 ) ↦→
Z, where Z ⊆ [0, 1]. As discussed later, Z can be a discrete set if

the DLmodel is quantized. Let𝑍𝑡 ∈ Z denote the confidence metric

computed using 𝑔 for sample 𝑥𝑡 . Since 𝑥𝑡 are i.i.d. and ℎ𝑙 and 𝑔 are

deterministic functions, 𝑍𝑡 are i.i.d. We define the random vector

Z = {𝑍1, . . . , 𝑍𝑇 }. The confidence metric we use is the widely used

maximum soft-max value [15], defined as follows. The soft-max

value for class 𝑖 is given by 𝑔𝑖 (𝑥𝑡 ) = 𝑒 𝑓𝑖 (𝑥𝑡 ) /∑𝑗 𝑒
𝑓𝑗 (𝑥𝑡 ) . The data

sample 𝑥𝑡 is classified into the class with maximum soft-max value,

and thus, 𝑍𝑡 = max𝑖 𝑔𝑖 (𝑥𝑡 ).
Multiple data samples may result in the same confidence metric

value. In practice, this is a result of the precision at which the

scoring function values are stored. For example, an 8-bit quantized

ResNet8 outputs maximum soft-max values at a precision 0.0039
[3], resulting in a maximum of 256 distinct values. Let 𝑁𝑡 (≤ 𝑡)
denote distinct confidence metric values observed till time 𝑡 . We

focus on the performance of the system in rounds 1 to𝑇 and derive

the worst-case regret bound in terms of𝑁𝑇 . Note that the maximum

number of experts revealed cannot exceed 𝑇 . Therefore, we have
𝑁𝑡 ≤ 𝑁𝑇 ≤ min( |Z|,𝑇 ).
Online Algorithm and Losses. In each round 𝑡 , an online algo-

rithm 𝝅 decides to offload 𝑥𝑡 or accept the inference ℎ𝑙 (𝑥𝑡 ) after

observing 𝑍𝑡 . We use 𝜋𝑡 to denote the decision to accept/offload in

round 𝑡 . Let Λ𝑡 ∈ (0, 1) denote the random loss incurred if the data

sample collected in round 𝑡 , i.e., 𝑥𝑡 , is offloaded to the server for

inference. We assume that the inferenceℎ𝑙 (𝑥𝑡 ) for an offloaded sam-

ple 𝑥𝑡 will be received within round 𝑡 . The loss Λ𝑡 may encompass

the costs for transmission energy and the idle energy consumed by

the transceiver until the inference is received and/or the monetary

cost paid to the server. Our analysis applies to the general scenario

where the Λ𝑡 s may be correlated across time.

If in round 𝑡 , the inference ℎ𝑙 (𝑥𝑡 ) is accepted, then the loss

incurred Φ𝑡 is given by

Φ𝑡 = �(ℎ𝑙 (𝑥𝑡 ) ≠ ℎ𝑟 (𝑥𝑡 )), (1)

where (·) is the indicator function. The intuition behind the def-

inition of Φ𝑡 is that the inference ℎ𝑟 (𝑥𝑡 ) provided by the remote

DL is more likely to be correct than ℎ𝑙 (𝑥𝑡 ), i.e., the inference of
the local DL. Since the device does not know the ground truth of

the label of 𝑥𝑡 , it does not know if ℎ𝑙 (𝑥𝑡 ) and/or ℎ𝑟 (𝑥𝑡 ) are the

correct labels. However, by matching the output label to ℎ𝑟 (𝑥𝑡 ), the
accuracy increases. We note that (1) generalizes the loss function

considered in [5, 22], where the authors presented the regret-bound

analysis for the case where ℎ𝑟 (𝑥𝑡 ) is the correct label for all 𝑥𝑡 , i.e.,
the remote DL has 100% accuracy. Also, note that ℎ𝑟 (𝑥𝑡 ) will be
unknown when the device accepts the local inference ℎ𝑙 (𝑥𝑡 ). Thus,
Φ𝑡 is unknownwhenℎ𝑙 (𝑥𝑡 ) is accepted. This is one of the challenges
we tackle in designing and analyzing the proposed algorithms.

Loss incurred under 𝝅 in round 𝑡 , denoted by 𝑙𝑡 (𝜋𝑡 ), is given by

𝑙𝑡 (𝜋𝑡 ) =
{
Φ𝑡 if accept ℎ𝑙 (𝑥𝑡 ),
Λ𝑡 if offload 𝑥𝑡 .

(2)

A fixed-threshold online algorithm chooses a threshold 𝜃 ∈ Z and

in each round 𝑡 , the data sample 𝑥𝑡 is offloaded if 𝑍𝑡 ≤ 𝜃 , else the
inference ℎ𝑡 (𝑥𝑡 ) is accepted. Thus, for fixed-threshold algorithms,

𝜋𝑡 is fully characterized by 𝜃 , and therefore, with a slight abuse in

notation, we use 𝑙𝑡 (𝜃 ) as the loss in round 𝑡 , given by

𝑙𝑡 (𝜃 ) =
{
Φ𝑡 if 𝑍𝑡 ≥ 𝜃,

Λ𝑡 if 𝑍𝑡 < 𝜃 .
(3)

Note that 𝑙𝑡 (𝜃 ) ∈ [0, 1]. Let J = {(Λ𝑡 ,Φ𝑡 ) : 𝑡 = 1, . . . ,𝑇 } denote the
vector of random losses in 𝑇 rounds.

Regret Minimization. The decisions of 𝝅 depend on past ob-

servations {𝑙𝜏 (𝜋𝜏 ), 𝜏 < 𝑡} and {𝑍𝜏 , 𝜏 ≤ 𝑡}. We are interested in

characterizing the performance of the system in rounds 1 to 𝑇 .
Given the realizations of the random vector Z, the sample path cu-

mulative loss, or simply cumulative loss, 𝐿𝑇 (𝝅) under algorithm 𝝅
in 𝑇 rounds is given by 𝐿𝑇 (𝝅) =

∑𝑇
𝑡=1 𝑙𝑡 (𝜋𝑡 ). Note that both 𝑙𝑡 (𝜋𝑡 )

and 𝐿𝑇 (𝝅) are functions of the realizations of Z. However, we omit

the latter from the notation to keep the expressions concise. The

sample path cumulative loss 𝐿𝑇 (𝜃 ) of a fixed-threshold policy is

given by

𝐿𝑇 (𝜃 ) =
𝑇∑
𝑡=1

𝑙𝑡 (𝜃 ). (4)

Let 𝜃∗ denote the optimal-fixed threshold algorithm that minimizes

the expected cumulative loss among fixed-threshold algorithms,
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given by

𝜃∗ = argmin
𝜃 ∈Z

EZ [𝐿𝑇 (𝜃 )] .

Here, 𝜃∗ balances the trade-off between improved inference accu-

racy and increased loss due to offloading. We aim to develop online

algorithms for learning the optimal threshold. To this end, we adopt

the regret minimization approach. The expected regret 𝑅𝑇 (𝝅) of
algorithm 𝝅 is defined as

𝑅𝑇 (𝝅) = E𝝅Z [𝐿𝑇 (𝝅)] − EZ [𝐿𝑇 (𝜃∗)], (5)

where the expectation E𝜋
Z
[·] is with respect to the joint probability

distribution induced by 𝝅 and the random vector Z. The regret

analysis we present is valid for adversarial losses, i.e., the bounds

are valid for any sequence of losses J.

Our objective is to devise online algorithms that have sub-linear

regret, i.e.,
𝑅𝑇 (𝝅 )

𝑇 goes to zero as𝑇 goes to infinity. We refer to this

regret minimization problem as the HI Learning (HIL) problem.

Notation: We use �(·) for the indicator function, capital letters
𝑍 , Φ, Λ for random variables, bold letters J and Z for vectors, and

calligraphic lettersZ and B for sets. The functions 𝑂 (·) and Ω(·)
are the standard big-O and big-Omega notations.

4 SAMPLE PATH ANALYSIS AND RELATION
WITH BRANCHING EXPERTS

In this section, we prove a structural property of the sample path

cumulative loss of fixed threshold policies, i.e., 𝐿𝑇 (𝜃 ) as defined
in (4). Specifically, we show that if the goal is to design a fixed

threshold policy that minimizes the sample path cumulative loss by

round 𝑇 , choosing a threshold from the set of distinct confidence

metric values observed up to round𝑇 suffices. Given this structural

property, a special case of the HIL problem, where the cost Φ𝑡 is
revealed immediately after accepting the inference ℎ𝑙 (𝑥𝑡 ), is related
to the branching expert problem [14], a variant of the classical pre-

diction with expert advice problem. Further, we use the structural

result as the basis for the proposed Hedge-HI algorithm and to

obtain a lower bound for the regret for the HIL problem.

Recall that 𝑁𝑡 is the number of distinct confidence metric val-

ues observed in 𝑡 rounds. The distinct values of any realization of

𝑍1, . . . , 𝑍𝑡 can bewritten in an ordered sequence 𝑧 [1] , 𝑧 [2] , . . . , 𝑧 [𝑁𝑡 ]
where 𝑧 [1] < 𝑧 [2] < . . . < 𝑧 [𝑁𝑡 ] . Let 𝑧 [0] = 0. We define sets 𝐵𝑘𝑡 ,
where 𝑘 ∈ {0, 1, . . . , 𝑁𝑡 }, that partitionZ as follows.

𝐵𝑘𝑡 = {𝜃 ∈ Z : 𝑧 [𝑘 ] ≤ 𝜃 < 𝑧 [𝑘+1] }, ∀𝑘 ∈ {0, 1, . . . , 𝑁𝑡 }. (6)

Lemma 1. Let 𝐿𝑡 (𝜃 ) denote the cumulative loss incurred for using

a fixed threshold 𝜃 for 𝑡 rounds. Then, 𝐿𝑡 (𝜃 ) is equal for all 𝜃 ∈ 𝐵𝑘𝑡 .

Proof. In the following analysis, we partition the 𝑡 rounds into
two sets, wherein the first partition contains the rounds in which

the confidence metric is strictly less than 𝑧 [𝑘+1] and the second

partition contains the rounds in which the confidence metric is

at least 𝑧 [𝑘+1] . Let J𝑡 = {(Λ𝜏 ,Φ𝜏 ) : 𝜏 = 1, . . . ,𝑇 }. By definition,

𝜃 ∈ 𝐵𝑘𝑡 implies 𝑧 [𝑘 ] ≤ 𝜃 < 𝑧 [𝑘+1] , and thus, for any 𝜃 ∈ 𝐵𝑘𝑡 ,

𝐿𝑡 (𝜃 ) =
𝑡∑

𝜏=1

𝑙𝑡 (𝜃 ) =
∑

𝜏 :𝑧𝜏<𝑧 [𝑘+1]
𝑙𝜏 (𝜃 ) +

∑
𝜏 :𝑧𝜏 ≥𝑧 [𝑘+1]

𝑙𝜏 (𝜃 )

=
∑

𝜏 :𝑧𝜏 ≤𝑧 [𝑘 ]
𝑙𝜏 (𝜃 ) +

∑
𝜏 :𝑧𝜏 ≥𝑧 [𝑘+1]

Φ𝜏

=
∑

𝜏 :𝑧𝜏 ≤𝑧 [𝑘 ]
Λ𝜏 +

∑
𝜏 :𝑧𝜏 ≥𝑧 [𝑘+1]

Φ𝜏 . (7)

In the third step above, we have used the fact that there is no confi-

dence metric value observed between 𝑧 [𝑘 ] and 𝑧 [𝑘+1] . Otherwise,
we will have additional partitions between 𝑧 [𝑘 ] and 𝑧 [𝑘+1] from
definition (6). The result follows as (7) is independent of 𝜃 . �

An important consequence of Lemma 1 is that, in round 𝑡 , it
is sufficient for an online algorithm to choose a threshold from

the set B𝑡 = {𝑧 [1] , 𝑧 [2] , . . . , 𝑧 [𝑁𝑡 ] }, reducing the number of experts

to choose from |Z| to 𝑁𝑡 . In other words, the experts in round

𝑡 are the distinct confidence metric values observed till time 𝑡 .
Thus, in the sequel, we use a new expert is revealed when a new

(distinct) confidence metric value is observed in round 𝑡 . Also, for
any realization of {J,Z}, from Lemma 1 we have

min
𝜃 ∈Z

𝐿𝑇 (𝜃 ) = min
𝜃 ∈B𝑇

𝐿𝑇 (𝜃 ). (8)

Corollary 1. Let a distinct confidence metric value 𝑧𝑡+1 is re-
vealed in round 𝑡 + 1 and 𝑧 [𝑘 ] < 𝑧𝑡+1 < 𝑧 [𝑘+1] for some 𝑘 ∈
{0, 1, . . . , 𝑁𝑡 }, then 𝐿𝑡 (𝑧𝑡+1) = 𝐿𝑡 (𝑧 [𝑘 ] ).

Proof. In round 𝑡 , 𝑧𝑡+1 was not revealed, and from the hypothe-

sis, we have 𝑧𝑡+1 ∈ 𝐵𝑘𝑡 . Therefore, from Lemma 1, choosing thresh-

old 𝜃 = 𝑧𝑡+1 for first 𝑡 rounds results in the same cumulative loss

as that of 𝜃 = 𝑧 [𝑘 ] . �

Note that Lemma 1 and Corollary 1 are true for any realization of

{𝑍1, . . . , 𝑍𝑡 } and any 𝑡 . From these results, we conclude that, in the

HIL problem, each new expert revealed in a round has a cumulative

loss equal to the cumulative loss of an existing expert, which we

refer to by parent expert. After the new expert is revealed, its cumu-

lative loss in the subsequent rounds deviates from the cumulative

loss of its parent expert. This setting falls under branching experts

with perfect clones problem studied in [14], except that in the HIL

problem, the additional challenge is that the loss Φ𝑡 is unknown
when the local inference is accepted. The authors in [14] provided

a lower bound Ω(√𝑇𝑁𝑇 ) for the branching experts problem. It also

applies to the HIL problem and is stated in the lemma below.

Lemma 2 (Theorem 11 [14]). Any online algorithm has regret

Ω(√𝑇𝑁𝑇 ) for the HIL problem.

Therefore, HIL problem will have a sub-linear regret bound only

if 𝑁𝑇 is finite or it grows sub-linearly with 𝑇 . Next, we present

Hedge-HI and show that its regret has the same dependency on 𝑁𝑇
to become sub-linear.

5 THE HEDGE-HI ALGORITHM

5.1 Algorithm Design

Hedge-HI builds upon the classical Hedge algorithm [13] that solves

the PEA problem with finite set of 𝑁 experts. Hedge uses a learning

rate 𝜂 ≥ 0, assigns weight 𝑤𝑡 (𝑖) = 𝑒−𝜂𝐿𝑡−1 (𝑖 ) for each expert 𝑖
based on the observed cumulative loss, and chooses expert 𝑖 with
probability 𝑝𝑖 = 𝑤𝑡 (𝑖)/𝑊𝑡 , where𝑊𝑡 =

∑𝑡
𝜏=1𝑤𝜏 (𝑖). For a suitable

choice of 𝜂, Hedge has𝑂 (
√
𝑇 ln𝑁 ) regret. In HIL, as a consequence
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of Lemma 1 and Corollary 1, in any round 𝑡 , it is sufficient to choose

the distinct confidence metric values (experts) as the thresholds

from the set B𝑡 . But, unlike the standard PEA problem, the expert

set grows with 𝑡 as new confidence metric values may be revealed

in different rounds. Therefore, we extend the Hedge algorithm for

the growing number of expert setting. In particular, we use a new

total weight parameter 𝑊̂𝑡 to account for the new expert revealed.

A second challenge is that the loss Φ𝑡 is only revealed for the

offloaded inference as ℎ𝑟 (𝑥𝑡 ) will be unknown locally. To address

this situation, we employ the exploration-exploitation trade-off to

obtain the ground truth and estimate the loss of our algorithm. This

is achieved by offloading a subset of the samples where a decision

to accept the local ML inference is made. The Hedge algorithm

is further modified as follows: each round generates a Bernoulli

random variable, 𝜁𝑡 , with a probability of 𝜖 . When 𝜁𝑡 = 1, the sample

is offloaded to the server, irrespective of the initial decision based on

the chosen expert’s threshold. These additional samples facilitate

the device to estimate Φ𝑡 accurately. Specifically, we estimate 𝑙𝑡 (𝜃 )
using 𝑙𝑡 (𝜃 ), given by

𝑙𝑡 (𝜃 ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑍𝑡 ≥ 𝜃 and 𝜁𝑡 = 0 (accept ℎ𝑙 (𝑥𝑡 ))
Φ𝑡
𝜖 if 𝑍𝑡 ≥ 𝜃 and 𝜁𝑡 = 1 (offload 𝑥𝑡 )

Λ𝑡 if 𝑍𝑡 < 𝜃 (offload 𝑥𝑡 ) .

For any 𝑍𝑡 and 𝜃 ∈ Z, we have,

E𝜁 [𝑙𝑡 (𝜃 )] = �(𝑍𝑡 ≥ 𝜃 )E𝜁 [�(𝜁𝑡 = 1)] Φ𝑡
𝜖

+ �(𝑍𝑡 < 𝜃 )Λ𝑡

= �(𝑍𝑡 ≥ 𝜃 )Φ𝑡 + �(𝑍𝑡 < 𝜃 )Λ𝑡 = 𝑙𝑡 (𝜃 ). (9)

Thus, the proposed estimated loss 𝑙𝑡 (𝜃 ) is an unbiased estimator of

𝑙𝑡 (𝜃 ). We use 𝑙𝑡 (𝜃 ) in our algorithm, and the weights update rule

would be 𝑤𝑡+1 (𝜃𝑡 ) = 𝑤𝑡 (𝜃𝑡 )𝑒−𝜂𝑙𝑡 (𝜃𝑡 ) . The steps of Hedge-HI are
presented in Algorithm 1, and we denote it by 𝝅H.

5.2 Regret Analysis

The expected cumulative loss under 𝝅𝐻 involves joint expectation

involving 𝜁𝑡 and the probability distributions 𝑝𝑡 used in line 10 of

Algorithm 1. Therefore, we have

E
𝝅H [𝐿𝑇 (𝝅H)] =

𝑇∑
𝑡=1

∑
𝜃 ∈B𝑡

𝑤𝑡 (𝜃 )
𝑊̂𝑡

E𝜁 [𝑙𝑡 (𝜃 )] . (10)

Let E𝝅
H [𝐿̃𝑇 (𝝅H)] denote the expected pseudo cumulative loss

based on the estimated losses 𝑙𝑡 (𝜋H𝑡 ), given by

E
𝝅H [𝐿̃𝑇 (𝝅H)] =

𝑇∑
𝑡=1

∑
𝜃 ∈B𝑡

𝑤𝑡 (𝜃 )
𝑊̂𝑡

E𝜁 [𝑙𝑡 (𝜃 )] . (11)

Lemma 3. E𝝅
H [𝐿𝑇 (𝝅H)] − E𝝅H [𝐿̃𝑇 (𝝅H)] ≤ 𝜖𝑇 .

Proof. If 𝝅H chooses 𝜃 in round 𝑡 , the loss is given by

𝑙𝑡 (𝜃 ) = �(𝑍𝑡 ≥ 𝜃 )�(𝜁𝑡 = 0)Φ𝑡 + (1 − �(𝑍𝑡 ≥ 𝜃 )�(𝜁𝑡 = 0))Λ𝑡

⇒ E𝜁 [𝑙𝑡 (𝜃 )] = �(𝑍𝑡 ≥𝜃 ) (1−𝜖)Φ𝑡 +(1−�(𝑍𝑡 ≥𝜃 ) (1−𝜖))Λ𝑡 . (12)

From (9) and (12), we obtain

E𝜁 [𝑙𝑡 (𝜋H𝑡 )] − E𝜁 [𝑙𝑡 (𝜃 )] = −𝜖Φ𝑡 + �(𝑍𝑡 ≥ 𝜃 )𝜖Λ𝑡 ≤ 𝜖. (13)

The result follows by using (13), (10), and (11). �

Algorithm 1: Hedge-HI

1: Initialize: select any 𝜃0 ∈ Z. Set B0 = {𝜃0}, 𝑛0 = 0 ,

𝑤1 (𝜃0) = 1, and𝑊1 = 1.

2: for each round 𝑡 = 1, 2, . . . ,𝑇 do

3: if distinct confidence metric value 𝑍𝑡 (new expert) is

revealed then

4: 𝑛𝑡 = 𝑛𝑡−1 + 1 and B𝑡 = B𝑡−1 ∪ {𝑍𝑡 }
5: Initialize 𝐿̃𝑡 (𝑍𝑡 ) to the cumulative loss of 𝑍𝑡 ’s parent.

6: Compute new weight𝑤𝑡 (𝑍𝑡 ) = 𝑒−𝜂𝐿̃𝑡 (𝑍𝑡 ) , and
𝑊̂𝑡 =𝑊𝑡 +𝑤𝑡 (𝑍𝑡 )

7: else

8: B𝑡 = B𝑡−1 and 𝑊̂𝑡 =𝑊𝑡

9: end if

10: Choose 𝜃 ∈ B𝑡 with probability 𝑝𝑡 =
𝑤𝑡 (𝜃 )
𝑊̂𝑡

.

11: if 𝑍𝑡 < chosen threshold then

12: Offload 𝑥𝑡 , receive loss 𝑙𝑡 = Λ𝑡 .

13: else

14: Generate a Bernoulli random variable 𝜁𝑡 with
P(𝜁𝑡 = 1) = 𝜖 .

15: if 𝜁𝑡 = 1 then

16: Offload 𝑥𝑡 , receive loss 𝑙𝑡 =
Φ𝑡
𝜖 .

17: else

18: Accept the inference ℎ𝑙 (𝑥𝑡 ), assign loss 𝑙𝑡 = 0.

19: end if

20: end if

21: Compute 𝑙𝑡 (𝜃 ),∀𝜃 ∈ B𝑡 .

22: Update weights𝑤𝑡+1 (𝜃 ) = 𝑒−𝜂𝑙𝑡 (𝜃 )𝑤𝑡 (𝜃 ), ∀𝜃 ∈ B𝑡 .

23: Cumulative weight𝑊𝑡+1 =
∑
𝜃 ∈B𝑡

𝑤𝑡 (𝜃 ).
24: end for

Theorem 1. The regret of Hedge-HI satisfies 𝑅𝑇 (𝝅H) ≤ 𝑔(𝜖, 𝜂),
where

𝑔(𝜖, 𝜂) =
(
𝜖 + 𝜂

2𝜖

)
𝑇 + EZ [𝑁𝑇 ]

𝜂
log 2. (14)

Proof. Let 𝐿̃𝑇 (𝜃 ) denote the sample-path pseudo cumulative

based on the estimated losses for using 𝜃 in 𝑇 rounds. First, we

obtain a lower bound for log 𝑊𝑇+1
𝑊1

:

log
𝑊𝑇+1
𝑊1

= log𝑊𝑇+1 = log
∑

𝜃 ∈B𝑇

𝑒−𝜂
∑𝑇

𝑖=1 𝑙𝑖 (𝜃 )

≥ log max
𝜃 ∈B𝑇

𝑒−𝜂𝐿̃𝑇 (𝜃 )

≥ max
𝜃 ∈B𝑇

log 𝑒−𝜂𝐿̃𝑇 (𝜃 ) = − min
𝜃 ∈B𝑇

𝜂𝐿̃𝑇 (𝜃 ).

Taking expectation with respect to the Bernoulli distribution of 𝜁
on both sides, leveraging the property that the expectation of the

minimum is bounded above by the minimum of the expectations

and (9), we obtain

E𝜁

[
log

𝑊𝑇+1
𝑊1

]
≥ − min

𝜃 ∈B𝑇

𝜂E𝜁 [𝐿̃𝑇 (𝜃 )] = − min
𝜃 ∈B𝑇

𝜂𝐿𝑇 (𝜃 ). (15)
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Next, we obtain an upper bound for log 𝑊𝑇+1
𝑊1

.

log
𝑊𝑇+1
𝑊1

= log

𝑇∏
𝑡=1

𝑊𝑡+1
𝑊𝑡

=
𝑇∑
𝑡=1

log
𝑊𝑡+1
𝑊̂𝑡

+
𝑇∑
𝑡=1

log
𝑊̂𝑡

𝑊𝑡
. (16)

We note that 𝑊̂𝑡 (defined in line 6, Algorithm 1) normalizes the

weights𝑤𝑡 . Therefore, we have

log
𝑊𝑡+1
𝑊̂𝑡

= log
∑
𝜃 ∈B𝑡

𝑤𝑡 (𝜃 )
𝑊̂𝑡

𝑒−𝜂𝑙𝑡 (𝜃 )

≤ log
∑
𝜃 ∈B𝑡

𝑤𝑡 (𝜃 )
𝑊̂𝑡

(
1 − 𝜂𝑙𝑡 (𝜃 ) +

(𝜂𝑙𝑡 (𝜃 ))2
2

)

= log

⎡⎢⎢⎢⎢⎣1 +
∑
𝜃 ∈B𝑡

𝑤𝑡 (𝜃 )
𝑊̂𝑡

(
−𝜂𝑙𝑡 (𝜃 ) +

(𝜂𝑙𝑡 (𝜃 ))2
2

)⎤⎥⎥⎥⎥⎦
≤

∑
𝜃 ∈B𝑡

𝑤𝑡 (𝜃 )
𝑊̂𝑡

(
−𝜂𝑙𝑡 (𝜃 ) +

(𝜂𝑙𝑡 (𝜃 ))2
2

)

≤
∑
𝜃 ∈B𝑡

𝑤𝑡 (𝜃 )
𝑊̂𝑡

(
−𝜂𝑙𝑡 (𝜃 ) +

𝜂2𝑙𝑡 (𝜃 )
2𝜖

)
. (17)

In the second step above, we have used 𝑒−𝑥 ≤ 1 − 𝑥 + 𝑥2/2. It
is easy to show that the function −𝜂𝑙𝑡 (𝜃 ) + (𝜂𝑙𝑡 (𝜃 ))2/2 ≥ −0.5
for any value of 𝜂𝑙𝑡 (𝜃 ), and thus, in the third step we have used

log(1 + 𝑥) ≤ 𝑥 . In the last step, we have used 𝑙 (𝜃 ) ∈ [0, 1/𝜖].
Let 𝐸𝑡 denote the event of a new expert arrival in round 𝑡 . If

𝐸𝑡 = 1, then in Algorithm 1, line 6, we have 𝑊̂𝑡 =𝑊𝑡 +𝑤𝑡 (𝑍𝑡 ), else
𝑊̂𝑡 =𝑊𝑡 . Thus,

𝑊̂𝑡

𝑊𝑡
=

{
1 if 𝐸𝑡 = 0,

1 + 𝑤𝑡 (𝑍𝑡 )
𝑊𝑡

if 𝐸𝑡 = 1.
(18)

Therefore, from (16), we have

log
𝑊𝑇+1
𝑊1

=
𝑇∑
𝑡=1

log
𝑊𝑡+1
𝑊̂𝑡

+
𝑇∑
𝑡=1

log
𝑊̂𝑡

𝑊𝑡

≤
𝑇∑
𝑡=1

log
𝑊𝑡+1
𝑊̂𝑡

+
𝑇∑
𝑡=1

�(𝐸𝑡 = 1) log
(
1 + 𝑤𝑡 (𝑍𝑡 )

𝑊𝑡

)
(19)

≤
𝑇∑
𝑡=1

log
𝑊𝑡+1
𝑊̂𝑡

+
𝑇∑
𝑡=1

�(𝐸𝑡 = 1) log
(
1 + 𝑒−𝜂𝐿̃𝑡 (𝑍𝑡 )

𝑊𝑡

)

≤
𝑇∑
𝑡=1

log
𝑊𝑡+1
𝑊̂𝑡

+ 𝑁𝑇 log 2

≤
𝑇∑
𝑡=1

∑
𝜃 ∈B𝑡

𝑤𝑡 (𝜃 )
𝑊̂𝑡

(
−𝜂𝑙𝑡 (𝜃 )+

𝜂2𝑙𝑡 (𝜃 )
2𝜖

)
+𝑁𝑇 log 2. (20)

We have used (18) in the second step; 𝑒−𝜂𝐿̃𝑡 (𝑍𝑡 ) << 𝑊𝑡 and the

number of events 𝐸𝑡 = 1 till time 𝑇 is 𝑁𝑇 in the fourth step; and

(17) in the last step. Now, taking expectation with respect to the

Bernoulli distribution of 𝜁 on both sides of (20), we obtain

E𝜁

[
log

𝑊𝑇+1
𝑊1

]
≤ −𝜂

𝑇∑
𝑡=1

∑
𝜃 ∈B𝑡

𝑤𝑡

𝑊̂𝑡
E𝜁 [𝑙𝑡 (𝜃 )]

+
𝑇∑
𝑡=1

∑
𝜃 ∈B𝑡

𝑤𝑡

𝑊̂𝑡

𝜂2E𝜁 [𝑙𝑡 (𝜃 )]
2𝜖

+ 𝑁𝑇 log 2

≤ −𝜂E𝜋𝐻 [𝐿̃𝑇 (𝜃 )] +
𝜂2

2𝜖
𝑇 + 𝑁𝑇 log 2 (21)

In the second step above, we have used (11) for the first term, and

E𝜁 [𝑙𝑡 (𝜃 )] = 𝑙𝑡 (𝜃 ) ≤ 1, from (9), in the second term. In the last step,

we have used Lemma 3.

The result follows from (15) and (21) and taking expectation with

respect to Z. �

The bound in Theorem 1 is valid without taking expectation

with respect to expert arrivals Z. Thus, the regret bound is valid for

adversarial losses and any sequence of expert arrivals. The bound

neatly captures the effect of 𝜖 on the regret. Note that the term 𝜖𝑇
is a direct consequence of offloading the sample at round 𝑡 , when
𝜁 = 1. We minimize this bound and determine the parameters that

make the bound sublinear in 𝑇 .

Lemma 4. The function 𝑔(𝜖, 𝜂) defined in (14) has the global mini-

mumat (𝜖∗, 𝜂∗), where 𝜖∗ =
√
𝜂/2 and𝜂∗ =

(
2(EZ [𝑁𝑇 ])2 log2 2/𝑇 2

) 1
3
.

Proof. The proof is deferred to [1] due to space limitation. �

The following corollary is a direct consequence of Theorem 1

and Lemma 4.

Corollary 2. Hedge-HI achieves the following regret bound for

𝜖∗ =
√
𝜂/2 and 𝜂∗ =

(
2(EZ [𝑁𝑇 ])2 log2 2/𝑇 2

) 1
3
:

𝑅𝑇 (𝝅H) ≤ 3𝑇
2
3 (EZ [𝑁𝑇 ] log 2/2)

1
3 . (22)

From Corollary 2, we infer that if EZ [𝑁𝑇 ] is finite or sub-linear
in𝑇 , then Hedge-HI has sub-linear regret. It would be interesting to

find sub-linear regret bounds even if EZ [𝑁𝑇 ] grows linearly with

𝑇 . We show this is possible under a mild assumption in the next

section. The computational complexity of Hedge-HI in round 𝑡 is
dominated by lines 10 and 22 in Algorithm 1 involving an iteration

over the set B𝑡 . Thus, its computational complexity in round 𝑡 is
𝑂 (𝑡) since |B𝑡 | = 𝑁𝑡 ≤ 𝑡 .

6 HEDGE-HI WITH SINGLE RESTART

In this section, we propose Hedge-HI-Restart. We prove that, with

high probability, it has a sub-linear regret, even if EZ [𝑁𝑇 ] = 𝑂 (𝑇 ),
under the following assumption.

Assumption 1. In any round 𝑡 , a confidence metric value equal

to an optimal threshold 𝜃∗ is revealed with fixed non-zero probability,

i.e., P(𝑍𝑡 = 𝜃∗) = 𝜈 , for some 𝜈 ∈ (0, 1].
The assumption is true, for example, in scenarios where |Z| is

large albeit a finite value, and the 𝑍𝑡 values are observed uniformly

at random as a result of uniformly sampling 𝑥𝑡 from X. Let 𝑞𝜏 =
P(𝜃∗ ∈ B𝜏 ) denote the probability that the best expert 𝜃∗ is revealed
in the first 𝜏 slots. Recall that 𝑍𝑡 are i.i.d. We have

𝑞𝜏 = 1 − [1 − 𝜈]𝜏 = 1 −
[
1 − 𝜏𝜈

𝜏

]𝜏
≥ 1 − 𝑒−𝜏𝜈 . (23)

In the last step above, we have used (1 − 𝑥/𝑛)𝑛 < 𝑒−𝑥 . Note that
as 𝜏 increases, 𝑞𝜏 , the probability that 𝜃∗ is revealed, increases. The
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idea behind Hedge-HI-Restart is to wait for a sufficient number of

rounds 𝜏 such that 𝜃∗ is revealed with a high enough probability

and then freeze the set of experts to be utilized in Hedge-HI.

Algorithm 2: Hedge-HI-Restart (with parameter 𝜏)

1: For 𝑡 = 1, . . . , 𝜏 , use Hedge-HI
2: For 𝑡 > 𝜏 , use Hedge-HI only using the experts from B𝜏 and

resetting the weights𝑤𝜏+1 (𝜃 ) = 1, for all 𝜃 ∈ B𝜏 .

We present Hedge-HI-Restart with parameter 𝜏 in Algorithm 2

and use 𝝅HR to denote it. We note that 𝝅HR uses Hedge-HI for the

first 𝜏 slots, for some 𝜏 > 0. At the start of round 𝜏 + 1, it resets the

weights, and for all 𝑡 ≥ 𝜏 + 1, it uses Hedge-HI with the experts

revealed till round 𝜏 , i.e., without adding the new experts revealed

after round 𝜏 . Later, as part of the regret analysis, we will compute

the value of 𝜏 that results in a sub-linear regret bound.

Theorem 2. The regret 𝑅𝑇 (𝝅HR) of the Hedge-HI-Restart satisfies,

𝑅𝑇 (𝝅HR) ≤ 𝜖𝑇 + 𝜂𝑇

2𝜖
+ (2𝑒𝜂𝜏 + 1)log(EZ [𝑁𝜏 ])

𝜂
, w.p. 𝑞𝜏 .

Proof. Proof of the theorem is given in Appendix A. �

Note that the bound in Theorem 2 is valid for adversarial losses

and stochastic expert arrivals. From (23), for the probability 𝑞𝑡 to
approach 1, we need to choose 𝜏 = Ω(𝑇𝛼 ), for some𝛼 > 0. However,

from Theorem 2, we observe that the third term in the regret bound

increases exponentially in 𝜏 . Therefore, to obtain a sublinear regret

bound, we impose an upper bound on 𝜏 , specifically, 𝜏 ≤ 𝑐
𝜂 , for

some constant 𝑐 > 0. We present the sublinear regret bound in the

following corollary (proof is deferred to [1]).

Corollary 3. For any constant 𝑐 > 0, let 𝑐1 =
√
2(2𝑐 + 1)

and choose 𝜂 = (𝑐1 log(EZ [𝑁𝑇 ])/𝑇 )
2
3 and 𝜖 =

√
𝜂/2. Then, for

any 𝛼 ∈ (0, 1), Hedge-HI-Restart has 𝑂
(
𝑇

2
3 (log(EZ [𝑁𝑇 ]))

1
3

)
re-

gret, with probability at least 1 − 𝑒−𝜈𝜏 , where

𝜏 = 𝑐 (𝑇 /𝑐1E[log𝑁𝑇 ])
2𝛼
3 . (24)

From Corollary 3, we observe that the regret bound of Hedge-HI-

Restart scales with (log(EZ [𝑁𝑇 ]))
1
3 which is a significant improve-

ment over the regret bound of Hedge-HI (cf. Corollary 2). Further,

the regret bound is sub-linear even if 𝑁𝑇 = 𝑇 , i.e., a new confidence

metric value is revealed in each round. This is possible when the

confidence metric space Z is continuous.

Similar to Hedge-HI, the computational complexity of Hedge-

HI-Restart is given by 𝑂 (𝑡). However, for 𝑡 > 𝜏 , we have 𝑡 ≤ 𝜏
as no new experts are added to B𝜏 . Therefore, the computation

complexity of Hedge-HI-Restart is𝑂 (min(𝑡, 𝜏)). Contrast this with
the computational complexity of the 𝑂 (𝑡) per inference for the HI
algorithm in [22]. Onemay choose small 𝜏 by choosing a small value

for 𝛼 in (24). However, this reduces the rate at which probability

in (23) goes to 1. In our simulations, we choose 𝛼 = 0.75 for which

𝜏 is in the order of
√
𝑇 /log(EZ [𝑁𝑇 ]) and demonstrate that Hedge-

HI-Restart has significantly lower runtime than the alternatives.

Remark: Though Assumption 1 is key to proving the regret

bound for Hedge-HI-Restart, we study its performance without the

assumption in simulations.

7 NUMERICAL RESULTS

In this section, we evaluate the performance and the runtime of

Hedge-HI and Hedge-HI-Restart , denoted by 𝝅H and 𝝅HR, against

four algorithms: 1) On-Device, which accepts all the local DL in-

ferences; 2) Full Offload, which offloads all the local DL inferences;

3) 𝜃∗, the optimal fixed-threshold algorithm; 4) the HIL algorithm

[22]. We conducted simulations for 𝑇 = 10000 rounds, setting 𝜖
and 𝜂 to the values as discussed in Lemma 4 and Corollary 3. We

average the results over 100 runs of each simulation that generates

100 different realizations of input sample sequences.

Dataset, DLmodel, and losses: We considered thewidely-studied

image classification application and used the dataset ImageNet,

which has 1000 classes and 50000 images in its validation dataset.

We also used other well-known datasets Imagenette and Imagewoof,

subsets of ImageNet, containing 10 classes and around 400 images

per class each. However, results for these datasets follow similar

trends shown below and can be found in the technical report [1].

We classify the images using an 8-bit quantized MobileNet tflite

model with a width parameter of 0.25 [30]. The accuracy of this

model for classifying the validation dataset of ImageNet dataset is

35%, which is the accuracy for On-Device. The model outputs 8-bit

scores, thus |Z| = 256, and the number of distinct soft-max values

in 𝑇 rounds 𝑁𝑇 ≤ 256. The model is 500 KB, and we deploy it on a

Raspberry Pi with 4 CPU cores, 1.5 GHz frequency, and 8 GB RAM.

We consider that the remote DL model has 100% accuracy. As a

result, Full Offload has 100 % accuracy. When the local DL inference

is accepted, the cost Φ𝑡 equals 1 if the inference is incorrect and
0 otherwise. The loss for offloading Λ𝑡 is a constant cost equal to

𝜆 across slots. We observe similar trends for Λ𝑡 generated from a

uniform distribution and are not presented due to redundancy.

Performance comparison. In Figure 2, we compare the perfor-

mance of the algorithms in terms of normalized cumulative loss,

accuracy, and the number of offloaded images.We present 𝝅HR with

two restart times, 𝜏 = 100, 500, obtained by substituting 𝑇 = 10000

and 𝑁𝑇 = 256 in
√
6𝑇 /log(EZ [𝑁𝑇 ]) and

√
140𝑇 /log(EZ [𝑁𝑇 ]), re-

spectively, chosen according to the discussion at the end of Section

6. Observe that in terms of cumulative loss, the HI-based approaches

outperform Full Offload and On-Device for almost the entire range

of values of 𝜆. Further, the cumulative loss of 𝝅H and 𝝅HR (for

𝜏 = 100 and 𝜏 = 500) is comparable to that of the optimal fixed

threshold policy even though these policies are online policies and

do not have information about the correctness of the inference of

the local-DL for samples that are not offloaded. Though the pro-

posed algorithms and HI from [22] have similar performance, we

will show shortly that our algorithms, grounded in the structural

property discussed in Section 4, demonstrate enhanced efficiency,

particularly when considering the runtime per inference.

Runtime comparison: Figure 3(a) presents the runtime compari-

son between the algorithms for the ImageNet dataset. As expected,

since the expert set can grow only up to round 𝜏 in 𝝅HR algorithms,

the time per inference increases up to round 𝜏 and stabilizes there-

after. We note that the time per inference for HI in [22] and 𝝅H also

saturates once all the 256 distinct maximum soft-max values are

revealed. Observe that 𝝅HR has a runtime half that of HI [22]. To
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(a) Normalized cumulative loss (b) Accuracy of classification (c) Ratio of offloaded samples

Figure 2: Performance comparison between different algorithms for ImageNet dataset classification for varying 𝜆.

(a) ImageNet dataset. (b) Synthetic data.

Figure 3: Comparison of average time per inference for vary-

ing 𝑡 under different algorithms.

further study the runtime performance of the algorithms, we syn-

thetically generated a new confidence metric value in each round

and presented the runtimes in Figure 3(b). As expected, the runtime

per inference for HI in [22] and 𝝅H keeps growing with 𝑡 , while
that of 𝝅HR saturates after round 𝜏 , resulting in a notable differ-

ence of two orders of magnitude. Note that this difference is bound

to increase if we run the algorithms on resource-constrained IoT

devices instead of Raspberry Pi. We thus conclude that 𝝅HR has a

significantly lower response time and is more conducive to imple-

menting HIL on resource-constrained devices than other HI-based

algorithms while having comparable loss performance.

8 CONCLUSION

HI is a promising approach for distributed inference which selec-

tively offloads the data samples for which the local DL inference

is likely incorrect. Our objective is to learn an optimal threshold

for the confidence metric that minimizes the losses for accepting

incorrect local DL inference and the losses for offloading. We pro-

posed two novel algorithms Hedge-HI and Hedge-HI-Restart and

proved sub-linear regret bounds for both algorithms. The asymp-

totic runtime of Hedge-HI-Restart is 𝑂 (√𝑇 ), as compared to 𝑂 (𝑇 )
for its alternatives, which is prohibitive for resource-constrained

devices. We present numerical results using the ImageNet dataset;

we found that Hedge-HI-Restart achieves a cumulative loss close to

the optimal threshold policy while providing an order of magnitude

lower runtime than the alternatives.
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A PROOF OF THEOREM 2

For 𝑡 > 𝑡 , let 𝐿𝑡,𝑡 (𝜃 ) and 𝐿𝑡,𝑡 (𝝅HR) denote the cumulative loss in the

slots {𝑡+1, . . . , 𝑡} under fixed-threshold 𝜃 and the Hedge-HI-Restart,
respectively, and are given by

𝐿𝑡,𝑡 (𝜃 ) =
𝑡∑

𝑟=𝑡+1
𝑙𝑟 (𝜃 ), and 𝐿𝑡,𝑡 (𝝅HR) =

𝑡∑
𝑟=𝑡+1

𝑙𝑟 (𝜋HR𝑡 ).

𝐿𝑇 (𝜃∗) is the minimum sample path cumulative loss that can be

achieved for a given realization of {J,Z}. Since 𝜃∗ ∈ B𝜏 , we have

𝐿𝑇 (𝜃∗) = min
𝜃 ∈B𝜏

𝐿𝑇 (𝜃 ) = 𝐿𝜏 (𝜃∗) + 𝐿𝜏,𝑇 (𝜃∗)

= min
𝜃 ∈B𝜏

𝐿𝜏 (𝜃 ) + min
𝜃 ∈B𝜏

𝐿𝜏,𝑇 (𝜃 ), w.p. 𝑞𝜏 . (25)

The following lemma proves a new bound for Hedge-HI that is

equally valid for Hedge-HI-Restart.

Lemma 5. Given 𝜏 , under Hedge-HI (or Hedge-HI-Restart), we have

E
𝝅H [𝐿𝜏 (𝝅H)] − min

𝜃 ∈B𝜏

𝐿𝜏 (𝜃 ) ≤ 𝜖𝜏 + 𝜂𝜏

2𝜖
+ 2𝑒𝜂𝜏 log𝑁𝜏

𝜂
.

Proof. The proof structure mirrors that of our proof in Theorem

1 so we highlight only its altered parts. We first write the lower

bound in (15) for E𝜁 [log 𝑊𝜏+1
𝑊1

]:

E𝜁

[
log

𝑊𝜏+1
𝑊1

]
≥ −𝜂 min

𝜃 ∈B𝜏

𝐿𝜏 (𝜃 ). (26)

The rest of the analysis involves computing an upper bound for

log 𝑊𝜏+1
𝑊1

in terms of 𝐿𝜏 (𝝅HR). In any round 𝑡 , if a new expert 𝑧𝑡 is

revealed, then we can write

𝑤𝑡 (𝑧𝑡 )
𝑊𝑡

=
𝑒−𝜂𝐿𝑡 (𝑧𝑡 )∑

𝜃 ∈B𝑡−1 𝑒
−𝜂𝐿𝑡 (𝜃 ) ≤ 1

𝑁𝑡−1
(𝑒−𝜂

∑
𝑗 ∈B𝑡−1 𝐿𝑡 (𝜃 ) )−1/𝑁𝑡−1

≤ 1

𝑁𝑡−1
(𝑒−𝜂𝑡𝑁𝑡−1 )−1/𝑁𝑡−1 =

𝑒𝜂𝑡

𝑁𝑡−1
. (27)

Therefore,

log
𝑊𝜏+1
𝑊1

=
𝜏∑
𝑡=1

log
𝑊𝑡+1
𝑊̂𝑡

+
𝜏∑
𝑡=1

�(𝐸𝑡 = 1) log
(
1 + 𝑤𝑡 (𝑧𝑡 )

𝑊𝑡

)

≤
𝜏∑
𝑡=1

log
𝑊𝑡+1
𝑊̂𝑡

+
𝜏∑
𝑡=1

�(𝐸𝑡 = 1) 𝑒𝜂𝑡

𝑁𝑡−1

≤
𝜏∑
𝑡=1

log
𝑊𝑡+1
𝑊̂𝑡

+ 𝑒𝜂𝜏
𝑁𝜏∑
𝑛=1

1

𝑛

≤
𝜏∑
𝑡=1

∑
𝜃 ∈B𝑡

𝑤𝑡

𝑊̂𝑡

(
−𝜂𝑙𝑡 (𝜃 ) +

𝜂2𝑙𝑡 (𝜃 )
2𝜖

)
+ 𝑒𝜂𝜏 (log𝑁𝜏 + 1). (28)

We have used (19) in the first step; log(1 + 𝑥) < 𝑥 and (27) in the

second step; the number of events 𝐸𝑡 = 1 till time 𝜏 is𝑁𝜏 in the third

step and (17) in the last step. By taking expectation with respect to

the Bernoulli distribution of 𝜁 on both sides of (28) and mirroring

the steps to get (21), we obtain:

E𝜁

[
log

𝑊𝜏+1
𝑊1

]
≤−𝜂E𝝅H [𝐿𝜏 (𝝅H)]+𝜂𝜖𝜏+ 𝜂

2𝜏

2𝜖
+2𝑒𝜂𝜏 log𝑁𝜏 . (29)

From (26) and (29), we obtain the result. �

For 𝑡 > 𝜏 , Hedge-HI-Restart uses Hedge-HI with the set of

experts from B𝜏 . Since 𝜃
∗ belongs to B𝜏 with probability 𝑞𝜏 , with

this probability, the regret bound of Hedge-HI applies to the losses

𝐿𝜏,𝑇 (𝜋HR) and 𝐿∗𝜏,𝑇 (B𝜏 ) for the horizon 𝑇 − 𝜏 . This is stated in the

following lemma (proof is deferred to [1]).

Lemma 6. Under Hedge-HI-Restart, we have

E
𝝅HR [𝐿𝜏,𝑇 (𝝅HR)] − min

𝜃 ∈B𝜏

𝐿𝜏,𝑇 (𝜃 ) ≤ 𝜖 (𝑇 − 𝜏) + 𝜂 (𝑇 − 𝜏)
2𝜖

+ log𝑁𝜏

𝜂
.

Summing the inequalities in Lemmas 5 and 6, we obtain

E
𝝅HR [𝐿𝑇 (𝝅HR)] − [ min

𝜃 ∈B𝜏

𝐿𝜏 (𝜃 ) + min
𝜃 ∈B𝜏

𝐿𝜏,𝑇 (𝜃 )]

≤ 𝜖𝑇 + 𝜂𝑇

2𝜖
+ (2𝑒𝜂𝜏 + 1) log𝑁𝜏

𝜂

⇒E𝝅HR

Z
[𝐿𝑇 (𝝅HR)] − EZ [ min

𝜃 ∈B𝜏

𝐿𝑇 (𝜃 )]

≤ 𝜖𝑇 + 𝜂𝑇

2𝜖
+ (2𝑒𝜂𝜏 + 1) logEZ [𝑁𝜏 ]

𝜂
, w.p. 𝑞𝜏 .

In the last step above, we have used (25) andEZ [log𝑁𝜏 ] ≤ logEZ [𝑁𝜏 ].
The result follows from the fact that

EZ [ min
𝜃 ∈B𝜏

𝐿𝑇 (𝜃 )] ≤ min
𝜃 ∈B𝜏

EZ [𝐿𝑇 (𝜃 )] .


